
ibm.com/redbooks

Front cover

IMS Connectivity in an On
Demand Environment:
A Practical Guide to IMS Connectivity

Jouko Jäntti
Jordi Guillaumes i Pons

Gen Sasaki
Egide Van Aerschot

Andres Wolf Andreoni

Become familiar with IMS OTMA and
IMS Connect details and usage

Explore IMS MFS Web Services
and IMS SOAP Gateway

Introduce yourself to ODBA,
stored procedures, and IMS RDS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IMS Connectivity in an On Demand Environment: A
Practical Guide to IMS Connectivity

February 2006

SG24-6794-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (February 2006)

This edition applies to IBM IMS Version 9 (program number 5655-J38) or later for use with the IBM z/OS
operating system.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiii
Become a published author . xiv
Comments welcome. .xv

Chapter 1. IMS connectivity in an on demand environment . 1
1.1 Addressing the components of the on demand strategy. 2
1.2 IMS in the On Demand Operating Environment . 2
1.3 Solutions for IMS connectivity . 2
1.4 The organization of this book . 4

Chapter 2. Open Transaction Manager Access . 7
2.1 OTMA client . 8
2.2 OTMA message structure . 9
2.3 Commit processing message flows. 12

2.3.1 Commit-then-send (commit mode 0) flow . 12
2.3.2 Send-then-commit message (commit mode 1) flows . 13
2.3.3 IMS commit mode 1 message processing . 16

2.4 Implementing OTMA . 19
2.5 OTMA security issues . 21
2.6 Super member support for IMS Connect . 23

2.6.1 Super member feature availability. 24
2.6.2 Defining the super member feature. 24
2.6.3 Using the super member feature. 25

2.7 OTMA callable interface . 26
2.7.1 OTMA C/I initialization. 27
2.7.2 OTMA C/I security. 27
2.7.3 OTMA C/I restrictions . 28
2.7.4 Compiling and binding requirements for OTMA C/I . 28
2.7.5 Call functions implemented by OTMA C/I . 28

2.8 DSNAIMS stored procedure for OTMA C/I access . 29
2.9 WebSphere MQ as an OTMA client . 30

Chapter 3. IMS Connect overview . 33
3.1 Introduction to IMS Connect . 34
3.2 IMS Connect architecture . 34
3.3 A brief history and evolution of IMS Connect . 37

3.3.1 ITOC: The predecessor to IMS Connect. 37
3.3.2 IMS Connect Version 1.1 . 38
3.3.3 IMS Connect Version 1.2 . 38
3.3.4 IMS Connect Version 2.1 . 39
3.3.5 IMS Version 9 integrated IMS Connect - IMS Connect Version 2.2 39

3.4 IMS Connect clients . 41
3.5 IMS Control Center . 41

Chapter 4. Configuring IMS Connect. 43

© Copyright IBM Corp. 2006. All rights reserved. iii

4.1 Introduction . 44
4.2 Installing IMS Connect . 44
4.3 Configuring IMS Connect . 45

4.3.1 IMS Connect start procedure . 45
4.3.2 Authorizing IMS Connect and BPE to the APF . 46
4.3.3 Updating the program properties table . 46
4.3.4 Creating the IMS Connect configuration member . 47
4.3.5 Defining IMS Connect security . 53
4.3.6 Installing the default user exits into IMS Connect resource library 53

4.4 IMS Control Center support . 54
4.4.1 IMS Connect configuration for IMS Control Center support 55
4.4.2 IMS Control Center configuration . 55

4.5 Confirming IMS Connect install with the sample Java client . 56

Chapter 5. IMS Connect operations. 63
5.1 IMS Connect REPLY commands . 64

5.1.1 CLOSEHWS . 64
5.1.2 OPENDS or STARTDS. 65
5.1.3 OPENIP or STARTIP . 65
5.1.4 OPENPORT or STARTP. 66
5.1.5 RECORDER . 66
5.1.6 SETRACF . 66
5.1.7 SETRRS . 67
5.1.8 STOPCLNT. 67
5.1.9 STOPDS . 67
5.1.10 STOPIP. 68
5.1.11 STOPPORT . 68
5.1.12 VIEWDS . 69
5.1.13 VIEWHWS . 69
5.1.14 VIEWIP . 70
5.1.15 VIEWPORT. 71
5.1.16 VIEWUOR. 71

5.2 IMS Connect MODIFY commands . 72
5.3 IMS Connect BPE commands. 73
5.4 IMS command support for IMS Connect and OTMA. 74

5.4.1 /DISPLAY OTMA . 74
5.4.2 /DISPLAY TMEMBER tmember_name TPIPE tpipe_ID. 74

Chapter 6. Accessing IMS Connect . 77
6.1 IMS Connect in Parallel Sysplex environment . 78
6.2 Load Balancer . 78
6.3 Virtual IP address (VIPA) . 80
6.4 Static VIPA . 81
6.5 Dynamic VIPA takeover . 81
6.6 Dynamic VIPA takeback . 82
6.7 Application-specific dynamic VIPA . 83
6.8 Sysplex Distributor . 85
6.9 IMS Connect load balancing and failover . 87
6.10 Retrieving output messages . 88
6.11 The whole picture . 90

Chapter 7. IMS Connect programming model . 91
7.1 IMS Connect message structures . 92

7.1.1 IMS Request Message (IRM) . 92

iv IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

7.1.2 Request Status Message (RSM). 92
7.1.3 Complete Status Message (CSM). 92
7.1.4 Request Mod Message (RMM) . 93

7.2 IMS Connect sample message flows . 93
7.2.1 Non-conversational transaction, CM=0, sync level=confirm 93
7.2.2 Non-conversational transaction, CM=1, sync level=none. 94
7.2.3 Non-conversational transaction, CM=1, sync level=confirm 94
7.2.4 Conversational transaction, CM=1, sync level=confirm . 95
7.2.5 Send-only transaction, CM=0, sync level=confirm . 96
7.2.6 The CANCEL TIMER request . 97

7.3 Socket connections and settings. 98
7.3.1 Persistent sockets . 98
7.3.2 Transaction sockets . 99
7.3.3 Non-persistent sockets . 100

7.4 Asynchronous output support . 100
7.4.1 What is asynchronous output? . 100
7.4.2 Implementing asynchronous output support . 101
7.4.3 SINGLE message control . 102
7.4.4 SINGLE WAIT message control . 103
7.4.5 NOAUTO message control . 103
7.4.6 AUTO message control. 104
7.4.7 Purge not deliverable . 105
7.4.8 Reroute request . 106

Chapter 8. IMS Connect security . 109
8.1 General security overview. 110
8.2 IMS Connect security . 112

8.2.1 Connecting IMS Connect to OTMA. 112
8.2.2 User verification . 113
8.2.3 User exit security . 113
8.2.4 Local option security . 113

8.3 OTMA security . 113

Chapter 9. IMS Connect user exit support . 115
9.1 IMS Connect components and user exits . 116
9.2 IMS Connect communication with user exits . 116
9.3 User exits supported . 118

9.3.1 IMS Connect TCP/IP user message exit (HWSIMSO0 and HWSIMSO1) 119
9.3.2 Sample user message exit (HWSSMPL0 and HWSSMPL1) 119
9.3.3 Difference between HWSIMSO0/SMPL0 and HWSIMSO1/SMPL1 120
9.3.4 IMS Connector for Java user message exit (HWSJAVA0) 121
9.3.5 IMS Connect IMSplex message exits (HWSCSLO0 and HWSCSLO1) 121
9.3.6 Security exit (IMSLSECX) . 122
9.3.7 User initialization exit routine (HWSUINIT) . 123
9.3.8 Event recording user exit (HWSTECL0) . 125

9.4 Message structures between IMS Connect and user exits . 127
9.4.1 Input message from client and passed to exit. 127
9.4.2 Input message returned from message exit . 130
9.4.3 Output message from IMS Connect to IMS Connector for Java client 131
9.4.4 Output message: IMS Connect to non-IMS Connector for Java client 132

9.5 IMS Connect DRU exit for asynchronous output support . 135
9.5.1 ALTPCB ISRT message routing flow using OTMA exits. 135
9.5.2 How IMS Connect communicates with the DRU exit . 137

 Contents v

9.5.3 HWSYDRU0 sample DRU exit . 137
9.5.4 Debugging the IMS OTMA exits . 138

Chapter 10. IMS Connect diagnostics . 141
10.1 IMS Connect recorder trace . 142

10.1.1 Enabling IMS Connect recorder trace . 142
10.1.2 Starting and stopping the IMS Connect recorder trace 142
10.1.3 Printing out the recorder trace . 143
10.1.4 Interpreting the recorder trace printout . 143
10.1.5 Example of recorder trace output . 145

10.2 IMS Connect traces. 148
10.2.1 BPE configuration . 148
10.2.2 Formatting incore trace tables. 148

10.3 IMS Connect Dump Formatter . 149
10.3.1 IMS Connect Dump Formatter activation . 149
10.3.2 Accessing the IMS Connect Dump Formatter. 150
10.3.3 Using the IMS Connect Dump Formatter . 151

Chapter 11. IMS Connect Extensions . 155
11.1 Introduction to IMS Connect Extensions . 156
11.2 Event collection and reporting. 161

11.2.1 Activate event collection . 161
11.2.2 Journal management . 163
11.2.3 IMS Connect event records . 167
11.2.4 Event Collection print utility . 170
11.2.5 Recorder trace utility . 174
11.2.6 Active session utility . 175
11.2.7 IMS Performance Analyzer IMS Connect reports . 177
11.2.8 IMS Problem Investigator . 184

11.3 Workload management . 189
11.3.1 Transaction routing . 190
11.3.2 Workload balancing . 193
11.3.3 Transaction pacing . 194

11.4 Status Monitor . 195
11.4.1 System view . 196
11.4.2 Port view . 197
11.4.3 Form definition . 199

11.5 Security . 200
11.6 User exits management . 201

11.6.1 User exits definition. 201
11.6.2 User exits commands . 203

11.7 IMS Connect problem determination. 205
11.7.1 NODELAYACK issues . 205
11.7.2 Incorrect message length . 208
11.7.3 Client fails to ACK message . 210
11.7.4 Timeout issues . 213
11.7.5 Duplicate clients . 214

11.8 Highlights of IMS Connect Extensions Version 1 Release 2. 216
11.8.1 Status Monitor: Active sessions . 217
11.8.2 Programming interface for user applications. 218
11.8.3 Primary datastore routing . 218
11.8.4 Journal and journal print enhancements . 218
11.8.5 Client services exit . 219

vi IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

11.8.6 Enhanced tracing . 219

Chapter 12. IMS Connector for Java . 221
12.1 J2EE Connector architecture (JCA) . 222

12.1.1 System contracts . 222
12.1.2 Common Client Interface . 223
12.1.3 Resource adapter module. 223

12.2 JCA infrastructure and API . 224
12.2.1 Connection management . 224
12.2.2 Transaction management . 227
12.2.3 Other JCA v1.5 items . 228
12.2.4 Interaction with EIS . 228
12.2.5 Security . 230
12.2.6 Summary. 231

12.3 Building applications that use IMS Connector for Java. 232
12.3.1 Introduction . 232
12.3.2 Connection properties. 232
12.3.3 Interaction properties . 242
12.3.4 Use considerations . 247
12.3.5 Summary. 255

Chapter 13. IMS Connector for Java rerouting and timeout support 257
13.1 Asynchronous message processing . 258
13.2 Messages inserted to ALTPCB . 258
13.3 Multiple and timed out IOPCB responses . 259

13.3.1 Discarding the non-delivered messages. 259
13.3.2 Rerouting the non-delivered messages . 261

Chapter 14. Building roll your own clients . 265
14.1 Basic structure of a simple IMS Connect client program. 266
14.2 IMS Connect message structures . 268

14.2.1 The IMS Connect input message . 268
14.2.2 The IMS Connect output message . 274

14.3 IMS Connect Unicode support . 275
14.3.1 Transaction code translation. 276
14.3.2 Output message including Unicode data from IMS Connect 277
14.3.3 Message structures for Unicode support . 277

14.4 Complete pseudocode samples . 279
14.4.1 Commit mode 1 send-receive programming. 279
14.4.2 Commit mode 0 send-receive programming. 280
14.4.3 Commit mode 0 RESUME TPIPE programming. 281

14.5 Detailed code examples . 282
14.5.1 C example. 283
14.5.2 Java example . 291

Chapter 15. IMS Connect client diagnostics. 297
15.1 No response from IMS or IMS Connect . 298

15.1.1 Hanging clients . 298
15.1.2 TCP/IP socket timeouts . 299
15.1.3 IMS Connect execution timeouts . 300

15.2 Error messages from IMS . 302
15.3 Wrong status codes from IMS Connect . 302

15.3.1 Duplicate clientID (reason code 56) . 303
15.3.2 OTMA protocol error (reason code 36) . 305

 Contents vii

15.3.3 Other errors. 305
15.4 Exceptions in IMS Connector for Java applications . 309

15.4.1 Naming (JNDI)-related errors . 309
15.4.2 Connection pool-related errors . 312

15.5 Diagnosing problems related to sockets . 319
15.5.1 IMS Connect and IMS Connector for Java parameters for sockets 319
15.5.2 z/OS UNIX System Services parameters for sockets . 320

Chapter 16. IMS MFS Web Services . 321
16.1 IMS MFS Web Services introduction . 322
16.2 IMS MFS Web Services development process overview . 322
16.3 IMS MFS Web Services supported features . 323

16.3.1 Supported device types . 325
16.3.2 Supported MFS statements . 325

16.4 IMS MFS Web Services limitations . 325
16.5 Adding operations, messages, and bindings . 326
16.6 Creating an enterprise service . 326
16.7 Deploying an MFS-based IMS enterprise service. 327

Chapter 17. IMS MFS Web Enablement . 329
17.1 How does IMS MFS Web Enablement work? . 330
17.2 IMS MFS XML Utility . 330

17.2.1 Overview of the MFS XML Utility . 331
17.2.2 User modes. 331
17.2.3 Invoking the MFS XML Utility . 332

17.3 IMS MFS Web Enablement runtime support. 336
17.3.1 MFS Web Enablement features and functions . 337
17.3.2 MFS Servlet . 338
17.3.3 MFS Adapter . 341

17.4 Installing the instance servlet WAR file . 342
17.5 Accessing the deployed instance servlet . 343
17.6 Sample MFS style sheets . 344
17.7 Instructions to Web-enable IMS Phonebook application. 346

17.7.1 Step 1: Parsing the MFS source file with MFS XML Utility 346
17.7.2 Step 2: Generating an instance servlet . 347
17.7.3 Step 3: Generating a WAR file . 349
17.7.4 Step 4: Configuring WebSphere Application Server . 350
17.7.5 Step 5: Deploying the application WAR file. 351
17.7.6 Step 6: Invoking the instance servlet . 352
17.7.7 Step 7: Invoking the Phonebook application. 352
17.7.8 Step 8: Logging out . 352

Chapter 18. IMS SOAP Gateway. 353
18.1 IMS SOAP Gateway introduction . 354
18.2 Making your IMS application a Web service . 355

18.2.1 Creating a WSDL file for your IMS application . 355
18.2.2 Deploying WSDL and configuring properties with IMS SOAP Gateway 357
18.2.3 Writing the client application . 357

Chapter 19. Open Database Access . 359
19.1 Accessing IMS databases through the ODBA . 360
19.2 The database resource adapter (DRA) . 360
19.3 Setting up the DRA and the ODBA interface . 361

19.3.1 Creating the ODBA DRA startup table . 361

viii IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

19.3.2 Loading and running ODBA in the z/OS application region 363
19.3.3 Linking application programs . 363
19.3.4 Establishing and defining security. 363

19.4 Writing ODBA application programs . 366
19.4.1 General application program flow . 366
19.4.2 Making calls to IMS. 367
19.4.3 The application interface block (AIB) . 368
19.4.4 DL/I calls in the ODBA application . 369
19.4.5 Server program structure and the unit of recovery . 372

19.5 Considerations for using ODBA . 373
19.5.1 Restrictions . 373
19.5.2 Multiple access to IMS subsystems . 373
19.5.3 IMS Fast Path resource usage . 374
19.5.4 The commit scope change and IMS resource occupancy 374
19.5.5 RRS logging performance. 375

19.6 Problem determination . 375
19.6.1 Finding the problem . 375
19.6.2 IMS initialization errors . 375
19.6.3 Running errors . 376
19.6.4 The application interface block . 376

19.7 IBM-supplied ODBA infrastructures . 376
19.7.1 DB2 stored procedure. 376
19.7.2 WebSphere Application Server for z/OS and IMS Remote Data Access 377
19.7.3 WebSphere Information Integrator Classic Federation for z/OS. 378

19.8 Summary of IBM-supplied ODBA infrastructures . 380

Chapter 20. ODBA from DB2 stored procedures . 383
20.1 A short introduction to DB2 stored procedures . 384
20.2 DB2 stored procedures’ use of ODBA . 384
20.3 Sample ODBA using DB2 stored procedures . 386

20.3.1 Provided sample jobs . 386
20.3.2 Provided sample source codes. 388

20.4 Step-by-step instructions for using the sample . 388
20.4.1 Step 1: Creating an IMS DRA startup table . 389
20.4.2 Step 2: Setting up the DB2 stored procedure address space for ODBA. 390
20.4.3 Step 3: Creating the WLM application environment . 391
20.4.4 Step 4: Building the stored procedure by DSNTEJ61. 392
20.4.5 Step 5: Defining the IMS environment . 393
20.4.6 Step 6: Running the stored procedure by DSNTEJ62 393
20.4.7 Step 7: Analyzing the output . 394

20.5 Commands for ODBA DB2 stored procedure environment. 396
20.5.1 IMS commands . 396
20.5.2 DB2 commands . 397
20.5.3 z/OS Workload Manager commands . 398
20.5.4 RRS panel utility . 400

20.6 Sample Java client application for ODBA stored procedure 401

Chapter 21. IMS Remote Database Services . 405
21.1 The big picture of the IMS Java environment . 406

21.1.1 IMS dependent regions. 406
21.1.2 IBM products on the z/OS environment . 406

21.2 IMS JDBC interface. 407
21.2.1 The layered set of IMS Java class libraries. 407

 Contents ix

21.2.2 The basic concepts of relational access to hierarchical databases 408
21.2.3 Comparison of DL/I access and IMS JDBC SQL access 409
21.2.4 Supported SQL keywords . 410
21.2.5 IMS Java SQL usage . 411

21.3 DLIModel utility . 420
21.3.1 Example of using the DLIModel utility . 422
21.3.2 DLIModel utility plug-in . 425
21.3.3 Example of using the DLIModel utility plug-in . 426

21.4 Remote Database Services . 428
21.4.1 Remote Database Services components . 430
21.4.2 Client/server interaction . 432
21.4.3 Security . 433

21.5 Sample IMS RDS access . 434
21.5.1 Step 1: Creating the IMS DRA startup table . 435
21.5.2 Step 2: Setting up WebSphere Application Server for z/OS subsystem. 435
21.5.3 Step 3: Installing the metadata class for the sample application 446
21.5.4 Step 4: Setting up application server for distributed platforms environment . . . 448
21.5.5 Step 5: Developing the sample application. 451
21.5.6 Step 6: Defining the IMS environment . 457
21.5.7 Step 7: Running a Web application. 458
21.5.8 Problem determination for Remote Database Services 461
21.5.9 Summary of the IMS RDS implementation . 465

Appendix A. Sample code: Non-IMS Connector for Java client code 469
C sample source code . 470
Java sample source code . 484

Appendix B. IMS RDS application example . 499
ImsRdsSampleGlobal.java. 500
ImsJavaRdsSample.java . 502
GlobalInput.html . 504
LocalInput.html . 505
Output.jsp. 505

Appendix C. Additional material . 507
Locating the Web material . 508
Using the Web material . 508

Abbreviations and acronyms . 509

Related publications . 511
IBM Redbooks . 511
Other publications . 511
Online resources . 512
How to get IBM Redbooks . 513
Help from IBM . 513

Index . 515

x IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.

© Copyright IBM Corp. 2006. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
C/MVS™
CICS®
DB2 Connect™
DB2 Universal Database™
DB2®
DFS™
DRDA®
ESCON®

Eserver®
IBM®
IMS™
Language Environment®
MVS™
OS/2®
Parallel Sysplex®
PowerPC®
POWER™
RACF®

Rational®
Redbooks (logo) ™
Redbooks™
Tivoli®
VisualAge®
VTAM®
WebSphere®
xSeries®
z/OS®
zSeries®

The following terms are trademarks of other companies:

Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, JavaBeans, JavaScript, JDBC, JDK, JSP, JVM,
J2EE, J2SE, RSM, Solaris, Sun, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries,
or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xii IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Preface

IBM® Information Management System (IMS™) is the IBM premier transaction and
hierarchical database management system. Connectivity has always been a priority with IMS.
IMS exploits the latest technologies to address customers’ requirements for accessing IMS
transactions and data. This IBM Redbook is about IMS connectivity.

This book provides a general overview of the IMS Open Transaction Manager Access
(OTMA) function and extensive information about IMS Connect and its usage, including a
chapter that describes the IMS Connect Extensions product and how you can enhance the
IMS Connect operating environment with it.

This book provides a broad understanding of IMS Connector for Java™. We cover some
special considerations, such as using the conversational transactions, rerouting, and timeout
support, as well as programming roll-your-own clients without using IMS Connector for Java.

We also introduce Open Database Access and provide examples of using it with stored
procedures and with IMS Remote Database Services. As for future directions, we also
include a chapter about the IMS SOAP Gateway. This book updates and adds to the
information in the previous IBM Redbook IMS e-business Connectors: A Guide to IMS
Connectivity, SG24-6514.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, San Jose Center.

Jouko Jäntti is a Senior IT Specialist at IBM Global Services in Finland and also works for
the Silicon Valley Laboratory as a member of IMS Worldwide Advocate Team. During the
years of 2001 to 2003, he was a Project Leader specializing in IMS with the IBM International
Technical Support Organization, San Jose Center. He is the lead author of the IMS-related
redbooks listed in “IBM Redbooks” on page 511.

Jordi Guillaumes i Pons works for “la Caixa,” a Spanish savings bank, as an IMS systems
programmer. He has a bachelor’s degree in systems engineering, and 18 years of experience
in the IT field, having spent 10 of those developing IMS banking applications and the last
three as an IMS systems programmer. His areas of expertise include Java and J2EE™
development, and recently he has been involved in the transition from APPC-based
connectivity to IMS Connect and IMS Connector for Java taking place in his company.

Gen Sasaki is an I/T specialist for IBM Japan Systems Engineering Co., Ltd., in Chiba,
Japan. He holds a master’s degree in Engineering (Mechanics) from the University of Chiba.
He provides technical support for IMS and IMS data management tools, with six years of
experience. His area of expertise includes IMS Web connectivity.

Egide Van Aerschot has been working for the IBM Program Support Center in Montpellier,
France since 1998 and is a member of the New Technology Center team, supporting and
providing education for J2EE projects, IBM WebSphere® Business Integration, and
connections to established systems. Before his current position, he worked for IBM Belgium
as an Account Systems Engineer, responsible for many projects related to transactional
processing with major Belgium customers. During this period, he also participated in several
residencies in the United States. He graduated from the University of Louvain as a civil
engineer.

© Copyright IBM Corp. 2006. All rights reserved. xiii

Andres Wolf Andreoni is an I/T specialist at IBM Global Services in Spain. He has six years
of experience in IMS. He holds a degree in Physics from the Universidad Autonoma de
Barcelona. He has been assigned full time to “la Caixa,” one of the largest financial entities in
Spain. His areas of expertise and responsibilities include IMS installation and maintenance,
IMS system management, IMS problem determination, IMS Tools, and IMS related products.

Thanks to the following people for their contributions to this project:

Emma Jacobs
Deanna Polm
International Technical Support Organization, San Jose Center

Rich Conway
Bob Haimowitz
International Technical Support Organization, Poughkeepsie Center

Rose Levin
Ken Blackman
Kyle Charlet
Tram Dinh
Kevin Flanigan
Bill Huynh
Barbara Klein
LeiLei Li
Steve Nathan
James Polo
Judith Smith
Kevin Wang
Jack Yuan
IBM Silicon Valley Laboratory, San Jose, U.S.

Jim Martin
David Mierowski
Edward Breese
Rafael Avigad
Fundi Software

Very special thanks to Suzie Wender for contributing to the writing of Chapter 6, “Accessing
IMS Connect” on page 77, as well as to Jenny Hung for providing Chapter 16, “IMS MFS Web
Services” on page 321 and Chapter 17, “IMS MFS Web Enablement” on page 329, and to
Haley Fung for providing Chapter 18, “IMS SOAP Gateway” on page 353, in addition to their
overall support for this redbook project.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

xiv IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 1. IMS connectivity in an on
demand environment

The On Demand Operating Environment is one that can seamlessly integrate the computing
infrastructure—hardware, software, and the related integration services—with vital business
applications. It is one that is:

� Integrated

Business applications can interoperate end-to-end across your enterprise. This means
integration with other products within IBM and with other products and platforms within the
industry.

� Open

You have the flexibility to run the applications and middleware your business needs. This
means open standards for portability and ease of development, helping customers
programmers and their programs interact smoothly.

� Virtualized

You can improve utilization rates to create cost-efficiencies and maximize your IT
investment. This means virtualization for flexibility to grow and expand and the ability to
exploit new resources as they become available.

� Autonomic computing

Systems can heal and manage themselves, and you can focus on your business, not your
technology infrastructure. This is addressed by autonomic computing, offering ease of
use, elimination or reduction in outages, and reducing the education curve for new people.

A new enterprise infrastructure is needed that integrates existing systems and delivers their
long-promised business benefits. IMS is addressing all the four components of the on
demand strategy. IBM provides support for a variety of connectivity and integration solutions
with IMS. This is the area on which we concentrate in this book.

1

© Copyright IBM Corp. 2006. All rights reserved. 1

1.1 Addressing the components of the on demand strategy
Connectivity and integration has always been a priority with IMS. IMS has provided solutions
that can use workstations or servers to access IMS data. Information can be retrieved from
the server system in a two-tier environment or in a three-tier environment. Our strategy here
is to support standard connectivity solutions as well as those tailored to the IMS environment.

IMS tooling shipped with IBM WebSphere can provide connectivity to IMS applications and
data in addition to other environments, regardless of the tools used or with what they want to
connect. For our customers, it is important to maintain their core business applications and
provide integration to the new ones. IMS users should remain confident about its viability for
new developments, using Java as a way of addressing skills shortages, and complementing
IMS with WebSphere.

IMS views integration as a continuing journey and continues to support and enhance new
technology for connectivity and e-business enablement into the foreseeable future.

1.2 IMS in the On Demand Operating Environment
The IBM Information Management System (IMS) is the IBM premier transaction and
hierarchical database management system, the product of choice for critical online
operational applications and data where support for high availability, performance, capacity,
integrity, and low cost are key factors. Today, IMS manages the world’s mission-critical data
and continues as a major player in the on demand world. IMS customers’ million instructions
per second (MIPS) has been growing rapidly to more than 2.6 million MIPS worldwide, and
customer migration to the latest IMS versions has also been growing rapidly, with greater
numbers getting into production faster than previous versions. As we move further into the
new era of on demand computing, IMS is still helping to lead the way. More than 35 years
since the first IMS-ready message for the Apollo space program, IMS along with
IBM Eserver® zSeries® are breaking technology barriers and continue to help lead the
industry, even though it is sometimes taken for granted.

IMS is continuing to provide solutions to exploit the latest technologies to address customers’
requirements. In exploiting new technologies and balancing priorities to address the
increasing demands and sophistication of their customers, IMS customers are at the leading
edge. Their customers have been making the highest demands for performance and
availability, along with interoperability, flexibility, and support for new, emerging technologies.
And IMS has been continuing to provide solutions to address these needs. To extend
customers’ existing assets in modern on demand architectures, IMS is focusing on enterprise
modernization through integration and open access with an on demand service-oriented
architecture.

1.3 Solutions for IMS connectivity
IMS provides a variety of solutions for providing access to IMS applications and data as Web
services. Figure 1-1 on page 3 shows examples of IMS connectivity solutions for Web
services.

2 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 1-1 IMS connectivity solutions

When customers need rapid response for business transactions and inquiries from many
locations using numerous different types of devices, the IMS Connect function provides
easy-to-install, easy-to-use, high-performance transparent access to IMS applications and
data from practically any application environment, including Linux®. Customers can use their
storehouse of IMS applications from IMS Connect client applications to access their IMS and
IBM DB2® data from the Internet. When customers need high-speed, transparent universal
interchange of information throughout the enterprise, and with partners and customers, IMS
provides the ability to store and retrieve XML data natively. IMS also converts non-XML data
to XML for interchange and converts it back or stores it natively.

When customers need to deploy new Web-based applications, at the lowest possible cost, to
maintain competitive advantage, IMS has state-of-the-art development tools available today
to Web-enable and thereby protect customers’ long-standing investment in IMS applications,
data, and skills. Additionally, IMS customers can now build new applications using Java
programming, with XML for universal data interchange, write and test them on workstations
and integrate them with existing applications on the host. When customers need to develop a
service-oriented architecture to better integrate business processes end-to-end, their IMS
applications and IMS transactions can be published on the Internet as Web services,
connecting to IMS through Simple Object Access Protocol (SOAP) and Enterprise
JavaBeans™ (EJB™) bindings, within customers’ service-oriented architecture (SOA),
thereby assisting business-to-business application integration. IMS Version 9 is the IMS
offering for the On Demand Operating Environment.

The integrated IMS Connect function in IMS Version 9 provides easy-to-install, easy to use,
high-performance, high-volume, and secure transparent access to IMS applications and
operations from any TCP/IP-supported environment, including Linux. It provides commands
to manage the network environment and assist with workload balancing, resulting in better
resource utilization. It reduces the design and coding effort for client applications and
provides easier access to IMS applications and operations, thereby improving programmer
productivity. It can be used with IBM WebSphere and Rational® development tools to quickly
transform static Web sites into sources of dynamic Web content, improving marketing

IMS Web Services Connectivity Solutions

IMS
DB

O
D
B
A

WAS zOS
+ JDBC
Driver

IMS
Distributed

JDBC

Java
Component
EJB / Bean

W
S
D
L RMI/

IIOP

WASIMS Distributed JDBC

IMS
Appls.

O
T
M
A

MQ-IMS
Bridge
(XCF)

MQJMS to
MQ

Java
Component
EJB / Bean

W
S
D
L

MQ QueuesWASMQ to
IMS Bridge

IMS
Appls.

O
T
M
A

IMS
Connect

IMS
Connector for

Java

Java
Component
EJB / Bean

W
S
D
L TCP/IP

WASIMS Connect /
IMS Connect Java Client

IMS
Appls.

O
T
M
A

IMS
Connect

W
S
D
L TCP/IP

IMS SOAP GatewayIMS SOAP Gateway –
Technology Preview

WebSphere II CF Java
Component
EJB / Bean

W
S
D
L

WebSphere
IICF JDBC

Client

WAS
IMS
DB

DRA
/

ODBA

WebSphere
IICFTCP/IP

IMS
DB

IMS
DB

IMS
DB

IMS
DB

IMS
DB

WebSphere IICF = WebSphere Information Integrator Classic Federation for z/OS
WAS = WebSphere Application Server, MQ = WebSphere MQ

Chapter 1. IMS connectivity in an on demand environment 3

effectiveness and customer service, and to transform IMS transactions into Web services for
service-oriented architectures (SOAs), enabling quick response to new customer
requirements, business opportunities, and competitive threats. It can be used with DB2 and
the IMS Control Center to control both IMS and DB2 operations, improving system availability
and operator productivity.

The integrated IMS Connect function of IMS Version 9 can be used to replace the separately
priced IMS Connect product offered for earlier IMS versions, simplifying administration and
reducing cost. IMS Connect provides one-to-any and any-to-one connectivity. Performance
measurements have demonstrated more that 6000 transactions per second with a single IMS
Connect instance to a single IMS. This can be greatly increased using parallel IMS Connect
instances. Performance measurements have demonstrated more than 22,000 transactions
per second (2 billion per day) with IMS on a zSeries Model 990 processor.

1.4 The organization of this book
This book concentrates on the connectivity functions of IMS. In the first part, we provide a
general overview of the IMS Open Transaction Manager Access (OTMA) function and
extensive information about IMS Connect and its usage. We also include one chapter that
describes the IMS Connect Extensions product and how you can enhance the IMS Connect
operating environment with that product. The topics in this part include:

� Chapter 2, “Open Transaction Manager Access” on page 7
� Chapter 3, “IMS Connect overview” on page 33
� Chapter 4, “Configuring IMS Connect” on page 43
� Chapter 5, “IMS Connect operations” on page 63
� Chapter 6, “Accessing IMS Connect” on page 77
� Chapter 7, “IMS Connect programming model” on page 91
� Chapter 8, “IMS Connect security” on page 109
� Chapter 9, “IMS Connect user exit support” on page 115
� Chapter 10, “IMS Connect diagnostics” on page 141
� Chapter 11, “IMS Connect Extensions” on page 155

In the second part of the book, we introduce the IMS Connector for Java and other methods
to access IMS transactions. Some special considerations, such as rerouting and timeout
support are also covered in this part, as well as programming the clients without using the
IMS Connector for Java. The part contains the following chapters:

� Chapter 12, “IMS Connector for Java” on page 221
� Chapter 13, “IMS Connector for Java rerouting and timeout support” on page 257
� Chapter 14, “Building roll your own clients” on page 265
� Chapter 15, “IMS Connect client diagnostics” on page 297
� Chapter 16, “IMS MFS Web Services” on page 321
� Chapter 17, “IMS MFS Web Enablement” on page 329
� Chapter 18, “IMS SOAP Gateway” on page 353

Next, we introduce ways to access IMS databases using Open Database Access (ODBA)
and provide examples of using it with DB2 stored procedures and with IMS Remote Database
Services. We discuss these topics in the following chapters:

� Chapter 19, “Open Database Access” on page 359
� Chapter 20, “ODBA from DB2 stored procedures” on page 383
� Chapter 21, “IMS Remote Database Services” on page 405

4 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

At the end of the book, we provide sample code for some of the examples described in this
book. We also make some code available at the IBM Redbooks FTP site as an additional
material for downloading. For more information, see Appendix C, “Additional material” on
page 507 and the following URL:

ftp://www.redbooks.ibm.com/redbooks/SG246794

Chapter 1. IMS connectivity in an on demand environment 5

ftp://www.redbooks.ibm.com/redbooks/SG246794

6 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 2. Open Transaction Manager
Access

Open Transaction Manager Access (OTMA) is a function of IMS that was introduced with IMS
Version 5. OTMA is a transaction-based, connectionless client/server protocol that provides
an access path and an interface specification for sending and receiving transactions and data
from IMS.

OTMA is specifically implemented for IMS in an z/OS® sysplex-capable environment.
Therefore, the domain of OTMA is restricted to the domain of the z/OS cross-system coupling
facility (XCF). XCF is a component of z/OS that provides functions to support cooperation
between authorized programs running within a sysplex. OTMA and z/OS applications
compose an XCF group, where OTMA and the applications are group members. In a Parallel
Sysplex environment, different members can be on different z/OS images.

OTMA is designed to be a high-performance protocol that allows z/OS programs to access
IMS applications. The support of large networks is handled through the use of OTMA clients.
Because the OTMA connections use internal cross-system communication that is almost
comparable to main memory processing, OTMA has very high performance in general.

2

© Copyright IBM Corp. 2006. All rights reserved. 7

2.1 OTMA client
OTMA provides the facility for IMS to communicate very efficiently with z/OS applications
other than Virtual Telecommunications Access Method (VTAM®). These z/OS applications
are called OTMA clients. These OTMA clients can be an IBM written application, an
independent software vendor's application, or user-written code. Figure 2-1 shows examples
of the OTMA client applications and the corresponding network client applications.

Figure 2-1 Examples of the different OTMA components

IMS Connect is a commonly used OTMA client. The IBM-supplied IMS e-business
connectors, such as IMS Connector for Java, are based on the use of IMS Connect. We
discuss these connectors in more detail later in this book. The IBM WebSphere MQ product
also has the OTMA interface implemented, which we briefly describe in 2.9, “WebSphere MQ
as an OTMA client” on page 30, and another example of an OTMA client can be distributed
computer environment/remote procedure call (DCE/RPC).

For those who are going to write an OTMA client of their own, there is an application
programming interface called the OTMA callable interface (OTMA C/I). It was introduced in
IMS Version 6.1. OTMA C/I is an application programming interface (API) that abstracts out
the details of OTMA and XCF. Refer to 2.7, “OTMA callable interface” on page 26 for more
information about OTMA C/I.

The OTMA interface allows the IMS Transaction Manager to be a server to many different
OTMA clients. The OTMA client can be any z/OS program that runs in the same XCF group
as IMS and the client acts as an interface between IMS Transaction Manager and the
network. By using OTMA, each client can submit transactions or IMS commands to IMS and
receive output from IMS applications or from IMS itself. IMS is the server in this configuration,
because it can handle many OTMA clients.

The OTMA client handles all device dependencies for a particular network protocol, which
can be TCP/IP or Systems Network Architecture (SNA) or any other protocol the client wants
to support, for example, CORBA, and IMS Transaction Manager can operate without needing
any device-characteristic information. The majority of IMS message processing options, such
as non-response mode and response mode transactions, conversational processing, Fast

WebSphere
MQ
application

DCE/
RPC

IMS

OTMAXCF
Services

TCP/IP
Socket
application

IBM-supplied
IMS
Connector

Other client
application

Client Applications OTMA Clients OTMA Server

XCF Group

IMS
Connect

MQ
OTMA
Bridge

DCE
AS

Other
OTMA
Client

8 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Path transactions, Multiple Systems Coupling (MSC) processing, and IMS commands, can be
implemented with OTMA. OTMA does not support Message Format Service (MFS), although
MODname can be provided within the messages. This MODNAME will be placed in the
IOPCB MODNAME field so that it can be used by the IMS application.

2.2 OTMA message structure
The OTMA client communicates with IMS by sending and receiving messages. It adds the
OTMA message prefix to the input messages and it uses the message prefix to route the
output data to the originating device or program. The OTMA message prefix consists of the
following sections, shown in Figure 2-2:

� Message Control Information (MCI), such as the transaction-pipe name, message type,
sequence numbers (if any), processing flag, response indicator, and chaining indicator

� State data, such as map name, synchronization level and commit mode for the
transaction, various tokens, and server state

� Security data, such as the type of the user information, user ID or user token, and various
security flags

� User data, which is any special information needed by the client, or IMS commands to be
executed

Figure 2-2 OTMA message structure

The message prefix is followed by the application data section of the message, which can be
the data sent to the IMS application, or the response sent to the client.

OTMA headers are written into the IMS log record type X'01' for OTMA input messages and
into the IMS log record X'03' for responses to the OTMA destination. OTMA messages can be
mapped by the DFSYMSG DSECT in IMS.SDFSMAC. For a detailed description of the
message structure, see Chapter 5 IMS Version 9: Open Transaction Manager Access Guide
and Reference, SC18-7829.

The key parameters that affect the nature of the transaction processing and the message flow
are the commit mode, synchronization level, and processing flag. Not all of the combinations
of these parameter values are valid. For example, the synchronization level is ignored for the
commit-then-send commit mode (sync level confirm is always used), and synchronized
Tpipes can only be used with commit-then-send mode. The send-then-commit mode must be
used for IMS conversational and Fast Path expedited message handling (EMH) transactions.

Here is a brief explanation of these key parameter values:

� Commit mode (synchronization flag in state data portion of the OTMA headers), as shown
in Table 2-1 on page 10

< ------------------------------------ OTMA PREFIX -------------------------->

Message Control
Information

State Prefix Security Data User Data Application
Data

Chapter 2. Open Transaction Manager Access 9

Table 2-1 Values for the synchronization flag in the OTMA header

� Synchronization level (in state data portion of the OTMA headers), as shown in Table 2-2

Table 2-2 Values for the synchronization level in the OTMA header

� Processing flag (in message-control information portion of the OTMA headers), as shown
in Table 2-3

Table 2-3 Values for the processing flag in the OTMA header

The logical connection between the OTMA client and IMS is called the transaction pipe, or
Tpipe. The concept of the Tpipe corresponds to the concept of an IMS logical terminal
(LTERM) and a physical node connection in an SNA network. Tpipes do not have to be
predefined, and the client can create and use as many Tpipes as it needs.

Different OTMA clients can use the same Tpipe name because the structure that is created in
IMS to keep messages relies on two names: the client name and the Tpipe name. The client
name is the XCF member name of the client that the client uses when it joins the XCF group,
and it is provided directly to IMS by the XCF interface.

IMS supports a full-duplex message flow for OTMA messages. If the half-duplex message
flow is desired, it should be implemented and maintained by the client.

In the full-duplex message flow, the client associates its transactions with a Tpipe name, and
IMS uses the Tpipe name to associate all input and output with a particular client. The
transactions and output messages are processed in parallel, and the client can maximize the
parallelism by creating its own process for every transaction and output message.

Content Value Meaning

Commit-then-send
(commit mode 0)

X'40' The server commits output before sending. Traditional
IMS flow.

Send-then-commit
(commit mode 1)

X'20' The server sends output before committing it, similar to
Advanced Program-to-Program Communication (APPC)
synchronous flow.

Content Value Meaning

None X'00' The server application does not request an ACK message
when sending output to a client.

Confirm X'01' The server sends transaction output with the response
requested flag set.

SYNCPT X'02' This message is part of a protected conversation under the
Resource Recovery Services (RRS) recovery platform, and
the resources updated under this conversation uses the
two-phase commit protocol.

Content Value Meaning

Synchronize Tpipe X'40' Input and output sequence numbers are maintained for the
transaction pipe.

Asynchronous output X'20' The server is sending unsolicited queued data messages.

Error Message Follows X'10' An error data message set by the server when sending a
NAK.

10 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

The general message flow from OTMA client, shown in Figure 2-3, to IMS server is as follows:

1. The OTMA client receives the message from the network and submits an IMS transaction
or an IMS command through XCF. The IMS transaction code or command is specified in
the application data section of the input message. A message prefix is always attached to
the input message. It contains the Tpipe name, the commit mode, client and server
tokens, and many other flags.

2. The input message is enqueued on the scheduler message block (SMB) for a transaction
or is processed by IMS for a command.

3. The LTERM field from the IOPCB contains the Tpipe name specified in the MCI section of
the input message, or the LTERM field can be overridden by the destination override
specified in the state data section of the input message.

4. The client can also provide a MODNAME in the map name specified in the state data
section of the input message. It will be placed in the IOPCB. Similarly, this prefix field will
be updated in a reply if the IMS application specifies a new MODNAME in the insert
(ISRT) call.

5. The IMS application cannot see the OTMA prefix when it issues the get unique (GU) call.

Figure 2-3 General message flows from OTMA client and from LU2 to IMS

6. Output is sent:

– For IMS commands, output is sent back synchronously, with a few exceptions.

– For IMS transactions using commit-then-send mode, application output is enqueued on
a dynamically created IMS Tpipe structure before it is sent to the client.

– For IMS transactions using send-then-commit mode, the output is sent synchronously
by IMS and bypasses the message queues.

7. The synchronization level determines whether the application requests an
acknowledgment from the client when sending send-then-commit mode output. (In
commit-then-send mode, acknowledgments are always requested.)

GU IOPCB

DB Access

ISRT IOPCB

IMS
CTL

SNA / VTAM

IMS/DB2
DB

LU Terminals

IMS TRX

MPP/IFP

e-business environment
z/OS

OTMA
TCP
/IP

OTMA
ClientIMS TRX/Command

XCF connection

Chapter 2. Open Transaction Manager Access 11

Because XCF cannot guarantee sequential delivery of messages, IMS ensures that incoming
segmented messages are ordered correctly.

For a synchronized Tpipe, all output messages are serialized through a single process, and
sequence numbers can be assigned to messages for resynchronizing purposes in the event
of a failure. The output message is enqueued to a client-specific and dynamically created
Tpipe structure before being sent to the client.

2.3 Commit processing message flows
The OTMA client can control how IMS commits transactions by the commit mode value in the
state data. There are two possibilities: commit-then-send mode or send-then-commit mode.
The fundamental difference between these two commit modes is the way the output to the
client is handled. Commit-then-send is also called commit mode 0 (CM0), and with it, IMS
commits output before sending it. Send-then-commit mode is called commit mode 1 (CM1),
and with it, IMS sends the output to the client before committing the data.

2.3.1 Commit-then-send (commit mode 0) flow
The commit-then-send flow is also known as the standard IMS flow, because it is the way IMS
has traditionally worked. The output message is enqueued to the output queue (in the case of
OTMA, to the Tpipe structure) and sent after the transaction program has reached its commit
point and completed, as shown in Figure 2-4.

Figure 2-4 Commit-then-send message flow

IMSOTMA Client Application

GU Call
 ...
ISRT to IOPCB
Sync Start
Sync End

Transaction
completes

Transaction
inserted to SMB

OTMA Prefix DATA

DATATRANOTMA Prefix TRAN DATA

MSGQ

DATA

MSGQ

Output sent

OTMA Prefix ACK
Output dequeued

Send

Receive

Send

12 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

In order to guarantee that client transactions are processed and that they are processed only
once, OTMA provides a protocol for synchronizing transactions. This is done by defining the
Tpipe as synchronized in the MCI section of the message and by using commit mode 0. IMS
then waits for the response from the client (acknowledgment) before the output is dequeued
from the message queue. This provides the message recoverability similar to that provided for
Set and Test Sequence Number (STSN) terminals, such as SLUP, 3600, and ISC terminals. if
ACK is not received or a NAK is sent by the client, the output message is not dequeued.

Message recoverability is applicable only for commit-then-send mode transactions. Any input
messages on the message queue that are marked nonrecoverable are discarded during an
IMS restart. Any input messages on the message queue that are marked recoverable are left
on the message queue and are eligible for scheduling after the IMS restart completes.

Transactions from OTMA clients are recoverable if the recoverable sequence number in the
MCI section of the message prefix is not 0. IMS then forces the transaction to be recoverable
even if the TRANSACT macro does not contain the INQUIRY=RECOVER parameter.

2.3.2 Send-then-commit message (commit mode 1) flows
With send-then-commit mode, there are three different levels of synchronization that can be
used: none, confirm, or sync point. The message flow is different in all these different cases.
With commit-then-send mode, the synchronization level parameter is ignored, and the
synchronization level of confirm is always used.

With the send-then-commit flow, the output is not enqueued; instead, it is sent directly to the
client before the transaction is committed. Therefore, the output is nonrecoverable in case of
a transaction abort. Even though the message is received, the OTMA client should not
process the message. After sync point is complete, OTMA will send another output indicating
whether the sync point was successful or failed. This is called a deallocation message. If the
sync point was successful, a deallocate confirm message is sent, and the OTMA client knows
that the transaction has not backed out. If the sync point was not successful (for example,
DB2 voted “no” during two-phase commit), OTMA will send a deallocate abort message, and
the OTMA client knows that the transaction has backed out. It then has to make the decision
of what to do with the output message.

Send-then-commit (sync level=none)
With send-then-commit flow, IMS sends the output message, but does not request or wait for
an acknowledgement from the client. After the message is sent, sync point processing
continues. Even though the OTMA client gets the message, it should not process the
message until the deallocate message is received from OTMA. Figure 2-5 on page 14 shows
the message flow for send-then-commit with sync level=none and deallocate confirm
message. If the sync point does not complete successfully, OTMA sends the deallocate abort
instead of the deallocate confirm message, and then the client discards the output message.

Chapter 2. Open Transaction Manager Access 13

Figure 2-5 Send-then-commit message flow with sync level=none, deallocate confirm

Send-then-commit (sync level=confirm)
If the synchronization level is set to confirm in the state-data section, IMS sends the output
message, request, and acknowledgement (ACK) or negative acknowledgement (NAK) before
continuing sync point processing. This increases region occupancy.

If an ACK is returned, sync point processing continues. Even though the OTMA client has
received the message and returned an ACK, it still does not process the message until the
deallocate message is received. Figure 2-6 on page 15 shows the deallocate confirmed flow.
Again, if the sync point does not complete successfully, OTMA sends the deallocate abort
instead of the deallocate confirm message, and then the client discards the output message.

If a NAK is returned, the transaction will abend U0119. The database updates are backed out,
and message DFS555I is sent to the client. The client then sends an ACK for the DFS555I
message, and IMS responds with the commit aborted message.

While OTMA is waiting for an ACK/NAK, a /DIS TMEMBER xxx TPIPE yyy command shows
a status of WAIT_A (waiting for ACK). If a you enter the /STOP TMEMBER xxx TPIPE yyy
command, a NAK is generated and the transaction will abend U0119.

IMSOTMA Client Application

GU Call
 ...
ISRT to IOPCB
Sync Start

Sync End

 Transaction
 completes

Transaction
inserted to SMB

OTMA Prefix DATA

DATATRANOTMA Prefix TRAN DATA

MSGQ

DATA
Output sent

Send

Receive

Receive
OTMA Prefix Deallocate Confirm

14 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 2-6 Send-then-commit message flow with sync level=confirm

Send-then-commit (sync level=sync point)
Figure 2-7 on page 16, shows the message conceptual flow in a situation where OTMA
application programs and OTMA remote application programs participate with IMS in
protected conversations with coordinated resource updates. z/OS Resource Recovery
Services (RRS) does the global coordination of resources. RRS manages the sync point
process on behalf of the conversation participants: the application program and IMS. IMS is
acting as local resource manager.

IMSOTMA Client Application

GU Call
 ...
 ISRT to IOPCB
Sync Start

Sync End

 Transaction
 completes

Transaction
inserted to SMB

OTMA Prefix DATA

DATATRANOTMA Prefix TRAN DATA

MSGQ

DATA

Output sent -
Request ACK

Send

Receive

Receive
OTMA Prefix Deallocate Confirm

OTMA Prefix ACK
Send

Commit confirmed

Chapter 2. Open Transaction Manager Access 15

Figure 2-7 Send-then-commit message flow with sync level=sync point

In the resource coordination, two-phase commit (2PC) protocol is used. The two-phase
commit protocol is a process involving the participants, the sync point manager, and the
resource managers to ensure that, for updates made to a set of resources by the third-party
application program, either all occur or none occurs. In simple terms, the application program
decides to commit its changes to some resources. This commit is made to the sync point
manager who then polls all of the resource managers as to the feasibility of the commit call.
This is the preparation phase, often called phase 1. Each resource manager votes yes or no,
and when the sync point manager has gathered all the votes, phase 2 begins. If all votes are
to commit the changes, the phase 2 action is commit. Otherwise, phase 2 becomes a
backout. System failures, communication failures, resource manager failures, or application
failures are not barriers to the completion of the two-phase commit process.

The work done by various resource managers is called a unit of recovery (UOR) and spans
from one consistent point of the work to another consistent point, usually from one commit
point to another. It is the unit of recovery that is the object of the two-phase commit process.

The OTMA environment requires some additional code, because OTMA is not a resource
manager. The additional code needed is an OTMA client, which supplied by IBM or an
equivalent. The client indicates to IMS (in the OTMA message prefix) that this message is
part of a protected conversation; therefore, IMS and the client are participants in the
coordinated commit process as managed by RRS.

2.3.3 IMS commit mode 1 message processing
OTMA processing of commit mode 1 (send-then-commit) input messages can be confusing,
especially if program-to-program message switches are involved. Commit mode 1 (CM1)
input messages can produce commit mode 0 (CM0) IOPCB output messages, which can
require special processing by the OTMA client. CM1 input messages can also produce the
message DFS2082 RESPONSE MODE TRANSACTION TERMINATED WITHOUT REPLY

IMSOTMA Client Application

GU Call
 ...
ISRT to IOPCB
Sync Start

Sync End

 Transaction
 completes

Transaction
inserted to SMB

OTMA Prefix DATA

DATATRANOTMA Prefix TRAN DATA

MSGQ

DATA

Output sent -
Request ACK

Send

Receive

Receive
OTMA Prefix Commit Confirmed

OTMA Prefix ACK
Send

Commit confirmed

Transaction
committed if RRS
commit received

16 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

for nonresponse mode transactions. There are also special considerations for IMS
conversational transactions.

TIB control block
Each input message has a transaction instance block (TIB) control block associated with it. In
IMS Version 8, the TIB is 1,696 bytes in extended private and 150 bytes in the local system
queue area (LSQA). For CM0 messages, the TIB is freed when the input message has been
put on the IMS message queue. For CM1 messages, the TIB is not freed until a CM1 IOPCB
output message or DFS2082 message has been sent. In some cases, neither of these two
actions happens, and the TIB can be orphaned and never freed. This fills up storage and can
cause the IMS control region to abend. These cases are explained later in this section.

CM1 input with no program-to-program message switches
When a CM1 input message is sent to a transaction, OTMA treats that transaction as a
response mode even if the transaction is defined as nonresponse. If the application does reply
to the IOPCB, the output is CM1. If the application does not reply to the IOPCB and does not
do a program-to-program message switch, OTMA responds with a DFS2082 RESPONSE
MODE TRANSACTION TERMINATED WITHOUT REPLY message.

CM1 input with program-to-program message switch
If the CM1 transaction does do a program-to-program message switch to one or more
transactions, those message-switched-to transactions can be scheduled synchronously or
asynchronously. At most, only one of the message-switched-to transactions is scheduled
synchronously.

Synchronously scheduled messaged-switched-to transactions
If a message-switched-to transaction is scheduled synchronously, it has the responsibility of
replying to the IOPCB or doing a program-to-program message switch to a transaction that is
scheduled synchronously and replies to the IOPCB. If the application does reply to the
IOPCB, the output is CM1. If the application does not reply to the IOPCB and does not do a
program-to-program message switch, OTMA responds with a DFS2082 RESPONSE MODE
TRANSACTION TERMINATED WITHOUT REPLY message. This is unlike non-OTMA
transactions where only the first transaction scheduled can generate a DFS2082 message. If
this transaction does program-to-program message switches, the message-switched-to
transactions use the rules described in the following section, and, at most, one of them is
scheduled synchronously.

Asynchronously scheduled messaged-switched-to transactions
If a message-switched-to transaction is scheduled asynchronously, any IOPCB output is
CM0. If it does not reply to the IOPCB and does not do program-to-program message
switches, there is no DFS2082 message, even if the transaction is defined as a response
mode. If an asynchronous transaction does program-to-program message switches, all of the
message-switched-to transactions are scheduled asynchronously.

Choosing synchronous or asynchronous
Whether a message-switched-to transaction is scheduled synchronously or asynchronously
depends on several factors:

� IOPCB out from the CM1 input transaction
� EXPRESS or non-EXPRESS ALTPCB
� The OTMAASY parameter
� Response mode or nonresponse mode
� When the transaction is scheduled

Chapter 2. Open Transaction Manager Access 17

IOPCB output and program-to-program message switches
If the CM1 input transaction (or synchronous message-switched-to transaction) replies to the
IOPCB and also does program-to-program message switches, all of its message-switched-to
transactions are scheduled asynchronously. The IOPCB output from this transaction is CM1,
but the IOPCB output from all of its message-switched-to transactions is CM0.

No IOPCB output and all message switches by EXPRESS ALTPCB
If the CM1 input transaction (or synchronous message-switched-to transaction) does not
reply to the IOPCB and does program-to-program message switches using only EXPRESS
ALTPCBs, all of its message-switched-to transactions are scheduled asynchronously. There
is no CM1 output and no DFS2082 message. OTMA deletes the TIB during phase 2 sync
point so that it will not be orphaned.

No IOPCB output and message switches by non-EXPRESS ALTPCBs
If the CM1 transaction (or synchronous message-switched-to transaction) does not reply to
the IOPCB and does program-to-program message switches using non-EXPRESS ALTPCBs
or a mix of EXPRESS and non-EXPRESS ALTPCBs, the OTMAASY parameter comes into
effect. OTMA does not delete the TIB and it can become orphaned.

OTMAASY=N
If OTMAASY=N is specified (or defaulted), any message-switched-to transaction (response
or nonresponse) is eligible to be scheduled synchronously.

If any message-switched-to transactions schedule before the CM1 input transaction (or
synchronous message-switched-to transaction) has completed (these were inserted with
EXPRESS ALTPCBs), they are scheduled asynchronously.

The first message-switched-to transaction (response or nonresponse) to be scheduled after
the CM1 input transaction (or synchronous message-switched-to transaction) has completed
is scheduled synchronously. If this transaction replies to the IOPCB, the output is CM1. If this
transaction does not reply to the IOPCB and does not do program-to-program message
switches, OTMA returns a DFS2082 message.

All other message-switched-to transactions are scheduled asynchronously, and their IOPCB
output is CM0.

OTMAASY=Y
If OTMAASY=Y is specified, only response message-switched-to transactions are eligible to
be scheduled synchronously.

If any message-switched-to transactions schedule before the CM1 input transaction (or
synchronous message-switched-to transaction) has completed (these were inserted with
EXPRESS ALTPCBs), they are scheduled asynchronously.

The first response mode message-switched-to transaction to be scheduled after the CM1
input transaction (or synchronous message-switched-to transaction) has completed is
scheduled synchronously. If this transaction replies to the IOPCB, the output is CM1. If this
transaction does not reply to the IOPCB and does not do program-to-program message
switches, OTMA returns a DFS2082 message.

All other message-switched-to transactions are scheduled asynchronously, and their IOPCB
output is CM0.

18 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

If all message-switched-to transactions are nonresponse mode or schedule before the CM1
input transaction (or synchronous message-switched-to transaction) ends, there is not a
synchronous transaction scheduled and there is no CM1 output and no DFS2082 message.
In this case, the TIB is orphaned and never deleted (until an IMS cold start).

Conversational transactions
For an input conversational transaction, only the message-switched-to continuation of the
conversation is scheduled synchronously. All other transactions are scheduled
asynchronously.

MSC implications
If a CM1 input message is sent through Multiple Systems Coupling (MSC) to a back-end IMS
and the transaction there does not reply to the IOPCB, there is not a DFS2082 message sent
back to the client.

The OTMA client can hang or time out. The input TIB and ITASK are never freed in the
front-end system and are orphaned.

Shared queues implications
In an IMS shared queues environment for IMS Version 6 and IMS Version 7, CM1 input
transactions must run on the same IMS on which they are received (the front-end IMS
system). For IMS Version 8 and IMS Version 9, CM1 transactions can run on any IMS copy in
the IMSplex (an IMSplex is one or more IMS address spaces that work together as a unit).
IMS Version 9 has a new parameter (AOS=N) that says that CM1 transactions can only run
on the front-end IMS copy (both OTMA and APPC). All of the CM1 IOPCB output is routed
back through the front-end IMS using XCF. RRS is used to coordinate the front-end IMS and
back-end IMS sync point processing.

In an IMS shared queues environment, all message-switched-to transactions from a CM1
input transaction (or synchronous message-switched-to transaction) must run on the same
IMS copy as the original transaction. The only exceptions are IMS conversational
transactions, which can run on any IMS copy in the IMSplex. Message-switched-to
transactions from an asynchronously scheduled transaction can run on any IMS copy.

If a CM1 transaction runs on a back-end IMS copy, a second TIB is built there. If the TIB
becomes orphaned, as described earlier, there are two orphaned TIBs—one in the front end
and one in the back end.

2.4 Implementing OTMA
The OTMA feature is part of IMS Transaction Manager, so it is not necessary to do any
special installation steps for it. You also do not need any IMS system generation
specifications for OTMA.

The following OTMA-related IMS execution parameters can be specified in the IMS startup
procedure or in the DFSPBxxx PROCLIB member:

� GRNAME=

GRNAME specifies the name of the XCF group for OTMA. IMS joins that group during the
startup of IMS or as a result of the /START OTMA command.

Chapter 2. Open Transaction Manager Access 19

� OTMA= Y/N

OTMA=Y (yes) specifies that the OTMA feature is to be initialized during the IMS startup.

OTMA=N (no) specifies that OTMA is not initialized during the startup. OTMA can be
started later with the IMS command /START OTMA if it is not started by the OTMA=Y
parameter. The default is N.

� OTMAMD= Y/N

OTMAMD=Y (yes) specifies the member override function of the OTMA Prerouting exit
routine (DFSYPRX0) is enabled for a transaction initiated from an OTMA client.

OTMAMD=N (no) specifies the member override function of the OTMA Prerouting exit
routine (DFSYPRX0) is not enabled. The default is N.

� OTMANM=

OTMANM specifies the member name that IMS uses when joining the XCF group. If
OTMANM is not specified in an IMS system that is not RSR or XRF, the APPLID from the
IMS system definition is used. The APPLID from the IMS system definition can be
overwritten by the APPLID1 startup parameter in the IMS procedure or in the DFSPBxxx
PROCLIB member. For IMS with RSR or XRF, USERVAR is used by OTMA.

� OTMASE=

OTMASE specifies the default type of OTMA RACF® security after an IMS restart. The
default is F. If the default is used, it appears as X in a /DIS OTMA command. The following
values are possible:

– C: OTMA RACF security is CHECK. The existing RACF calls are made. IMS
commands are checked against the CIMS class. IMS transactions are checked against
the TIMS class.

– F: OTMA RACF security is FULL. This is the same as CHECK, but additional security
checking is performed in dependent regions.

– N: OTMA RACF security is NONE. No calls to RACF are made.

– P: OTMA RACF security is PROFILE. Each OTMA message defines the level of
security checking to be done.

The /SECURE OTMA command overrides the value you specify in the OTMASE
keyword.

If you do not specify the OTMASE keyword, IMS retains the OTMA security settings
(which are established by the /SECURE OTMA command) after a warm start or an
emergency restart.

� OTMASP=Y/N

OTMASP=Y (yes) specifies that if a new Tpipe is created to deliver ALTPCB output, it is a
synchronous Tpipe. This is usually used when WebSphere MQ is the OTMA client. IMS
Connect does not use synchronous Tpipes.

OTMASP=N (no) specifies that if a new Tpipe is created to deliver ALTPCB output, it is an
asynchronous Tpipe. The default value is N.

The OTMA DFSYDRU0 exit can override this parameter by turning on a bit that specifies
that a new Tpipe will be synchronous. It must also turn on a second bit to say that valid
sequence numbers will be passed for this Tpipe. This is required for WebSphere MQ
output to be persistent.

20 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� OTMAASY=Y/N

OTMAASY=Y (yes) specifies that a nonresponse transaction originating from a
program-to-program switch be scheduled asynchronously. This parameter is for
send-then-commit (commit mode 1) messages only. A DFS2082 message is not issued for
a transaction scheduled asynchronously.

OTMAASY=Y can also be used in multiple program-to-program switches to ensure that
only the response transaction is scheduled synchronously.

Setting this parameter to Y can help to prevent a race condition that can occur when you
do multiple program switches in a send-then-commit transaction and you mix response
and nonresponse transactions. OTMAASY ensures that the response transaction, the one
most likely to return IOPCB output, is scheduled synchronously.

The default value is OTMAASY= N. See 2.3.3, “IMS commit mode 1 message processing”
on page 16 for a more detailed discussion of the OTMAASY parameter.

Checking the status of OTMA
Use the /DISPLAY OTMA command to check the status of OTMA in IMS. Example 2-1 shows
that SCSIM9G is the XCF member name (OTMANM) of the OTMA server (that is IMS), it is
active (OTMA=Y), and it belongs to the XCF group IMS9EXCF (GRNAME). The OTMASE
parameter is set or defaulted to FULL. HWS910G in this example is an XCF member name of
an OTMA client that happens to be IMS Connect in this case.

Example 2-1 /DIS OTMA command output

DFS000I GROUP/MEMBER XCF-STATUS USER-STATUS SECURITY IMSG
DFS000I IMS9EXCF IMSG
DFS000I -SCSIM9G ACTIVE SERVER FULL IMSG
DFS000I -HWS910G ACTIVE ACCEPT TRAFFIC IMSG
DFS000I *05178/195343* IMSG

2.5 OTMA security issues
Use the /SECURE command to control the RACF security level for input from OTMA clients.
It is used for administrative control of the IMS environment and as an emergency operations
control command to throttle RACF activity, without requiring an IMS shutdown. The /SEC
OTMA command is used with the CHECK, FULL, NONE, or PROFILE parameters.

You can use the /DISPLAY OTMA command to show the security level that is currently in
effect. Use the OTMASE execution parameter to change the level of security desired at the
IMS startup. The default is FULL. The /SECURE OTMA command overrides the value you
specify in the OTMASE keyword. If you do not specify the OTMASE keyword, IMS retains the
OTMA security settings (which are established by the /SECURE OTMA command) after a
warm start or emergency restart.

The parameters in the /SEC OTMA command have the following meanings:

� CHECK

Causes existing RACF calls to be made. IMS commands are checked using the RACF
resource class of CIMS. IMS transactions are checked using TIMS.

� FULL

Causes the same processing as the CHECK parameter, but uses additional RACF calls to
create the security environment for dependent regions.

Chapter 2. Open Transaction Manager Access 21

� NONE

Does not call RACF within IMS for security verification.

� PROFILE

Causes the values in the security-data section of the OTMA message prefix for each
transaction to be used.

If RACF is used for security, the XCF group name and the member name
(IMSXCF.group.member) have to be defined in the FACILITY class. Note that the SAF
interface is used, so if OTMA security is activated, the FACILITY class needs to be defined.

If the IMSXCF.group.member is not defined in the FACILITY class, a client bid is not allowed.
This is also a technique used to control OTMA client access to production systems and to
prevent an unauthorized OTMA client (OTMA CI) from accessing an IMS system. Use the
/SECURE OTMA PROFILE command so that subsequent transactions can be processed
according to the values in the security-data section of the OTMA message prefix for each
transaction.

If the group name and IMS member name (IMSXCF.group.member) are defined in the
FACILITY class and if IMS security is not set to NONE, the user ID in the token for the client
bid must be valid (that is, have read access to the profile).

Only transactions or commands that must be protected belong to the TIMS or CIMS classes.
If the transaction is not in the TIMS class, or the command is not in the CIMS class, the
transaction is allowed, regardless of the option set by the /SECURE OTMA command.

The XCF client must be z/OS APF authorized.

For OTMA applications defined with full security, security is kept until the application ends.
Full security also creates an access control environment element (ACEE) in the dependent
region. This can be used to enforce security for CHNG calls, AUTH calls, or deferred
conversational program-to-program message switches.

The client-bid request for a client includes:

� Access control environment element (ACEE) aging value

� Hash table size

The hash table contains the user ID and time stamp (of the last RACINIT command). The
table size must be large enough to hold the total number of expected user IDs.

� The client-user token

The user token is optional, except when RACF security is used, and is identified in the
security section of the message prefix.

You can specify “No Security Checking” for the security flag in the security-data section of
the message prefix for any transaction.

If RACF security is used, the user token is mandatory for a client bid. If the user token (for
a client bid) fails RACF verification, the client receives a NAK message from the server.

If you specify /SECURE OTMA NONE, IMS does not use RACF for security verification,
regardless of what security is specified by the class for a client bid or for transactions. If you
specify /SECURE OTMA PROFILE (NONE, FULL, or CHECK), IMS checks the message
security-data section.

22 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

2.6 Super member support for IMS Connect
When the commit-then-send (CM0) protocol is used to send transactions to OTMA from IMS
Connect, all asynchronous output is queued to an output Tpipe. These queues are not
shared, so to retrieve the asynchronous messages, you must issue a RESUME TPIPE
request to the same OTMA client (in this case, the same IMS Connect) that sent the original
message.

If you are using Sysplex Distributor to connect your clients with IMS Connect, you do not
know which IP address will get the request, because Sysplex Distributor can route it to any of
the IMS Connect servers it is managing. This means that your RESUME TPIPE request can
be routed to a different IMS Connect than the one that generated the asynchronous output.
Consequently, you are not able to retrieve those queued messages waiting in the original
Tpipe.

In addition, if you are using a configuration with several IMS Connect instances, if one of
those instances fails, you have no way to recover the asynchronous messages queued in its
Tpipes until you recover the failed IMS Connect.

Figure 2-8 shows an example of such a configuration with two IMS Connect instances, one
IMS, and Sysplex Distributor. In this example, a transaction coming from the client can be
diverted to IMS Connect A or IMS Connect B. If this transaction generates asynchronous
output, it is queued in the queue associated with the IMS Connect where Sysplex Distributor
sent the original transaction. If we want to pull this asynchronous message, the client must
send a RESUME TPIPE message, which Sysplex Distributor sends again to one of the two
IMS Connect instances. We cannot be sure that the RESUME TPIPE will end in the same
IMS Connect where the message is queued, so we cannot guarantee the retrieval of the
message.

Figure 2-8 Two IMS Connect instances managed by Sysplex Distributor

OTMA introduces the super member concept as a way to solve this problem. A super member
is a special OTMA member that can be shared by a set of instances of IMS Connect to handle
the CM0 hold queue messages.

Figure 2-9 on page 24 shows the same previous configuration, adding the super member
feature. Now, the asynchronous messages are not queued in separate members for each of
the IMS Connect instances, but in a new, shared OTMA member (the super member). In this

S
ys

pl
ex

 D
is

tri
bu

to
r

IMS

ATM

IMS Connect B

IMS Connect A

Que

Que

Chapter 2. Open Transaction Manager Access 23

way, when we want to retrieve the asynchronous messages, each one of the IMS Connect
instances is able to reach the super member and thus its message queues.

Therefore, the actual selection of Sysplex Distributor is not relevant. And, if you lose one of
the two IMS Connect instances, you are still able to retrieve the asynchronous output using
the remaining instance without waiting for the failed instance to recover.

Figure 2-9 Two IMS Connect instances sharing a super member

2.6.1 Super member feature availability
The following IMS OTMA and IMS Connect APARs provide the super member function:

� IMS Version 8: PK09944
� IMS Connect V2R2: PK10910
� IMS Version 9: PK09946
� IMS Version 9: Integrated IMS Connect, PK10911

2.6.2 Defining the super member feature
To use the super member feature, first you have to define it in the HWSCFGxx member
corresponding to each of the IMS Connect instances that will be sharing the super member,
as shown in the line marked “1” in Example 2-2.

Example 2-2 Defining a super member name in HWSCFGxx

HWS (ID=IM1ACONN)
TCPIP (HOSTNAME=TCPIP,RACFID=STC,MAXSOC=2000,PORTID=(7001),
EXIT=(HWSSMPL1))
SMEMBER=(SMEM1), 1.
DATASTORE (ID=IM1A,GROUP=IM1AXCF,MEMBER=HWSIM1A,TMEMBER=SCSIM1A)
DATASTORE (ID=IMSC,GROUP=IM1AXCF,MEMBER=HWSIMSC,TMEMBER=SCSIMS8C)

Sy
sp

le
x

D
is

tri
bu

to
r

IMS

ATM

ATM

IMS Connect B

IMS Connect A

X
C
F

Ext

Que

M

M

S
M

Send and Receive

Resume Tpipe

24 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

In this example, we use the name SMEM1 for the super member name. If we wanted another
IMS Connect instance to be able to retrieve the asynchronous messages generated by
transactions originated by IM1ACONN, we simply use the same super member name. OTMA
and IMS Connect create the shared queues structure as needed. When a transaction
generates asynchronous output, it is queued in the Tpipe associated with the super member,
and thus that output will be retrievable by any IMS Connect that uses the same super member
name.

The super member implementation adds another interesting feature to OTMA: One OTMA
Tpipe running in the shared queues environment is deleted if it is idle for two consecutive IMS
checkpoints. This alleviates the storage consumption caused by the creation of a large
number of Tpipes.

2.6.3 Using the super member feature
After the super member function is activated by a set of IMS Connects, use the IMS Connect
command VIEWHWS to display the super member name. Issue the IMS commands such as
/DISPLAY OTMA and /DISPLAY TMEMBER TPIPE to display member information with the
super member name. When you issue the /START TMEMBER TPIPE, /STOP TMEMBER
TPIPE, or /TRACE TMEMBER TPIPE command with a regular member specified, OTMA
expands the command to cover the related super member. These commands can also be
issued to an existing super member directly.

For asynchronous output messages created through ALT-PCB processing, the messages are
stored into the super member directly. If the input messages are submitted from an IMS
Connect that supports the super member, the input parameter list to the DFSYPRX0 and
DFSYDRU0 user exits contains a new flag indicating that the message is from a super
member supported client. Also, the OTMA state-data prefix pointed to by the input parameter
list contains the super member name, if any.

If multiple IMS systems are involved with the super member, those IMS systems must also
have IMS shared queues implemented. If there is only one IMS system connected by a set of
IMS Connects, shared queues support is not required. Super member functions can also
activated in the supported environments shown in Figure 2-10 on page 26.

Note: Do not use the super member name as the destination of the RESUME TPIPE
interactions. You must use the original datastore name. OTMA knows that the datastore is
associated with a super member and retrieves the asynchronous output from the correct
queue.

Chapter 2. Open Transaction Manager Access 25

Figure 2-10 Potential environments running with the super member

In addition, the super member solution provides the following enhancements to shared
queues customers:

� The /DISPLAY OTMA command is enhanced to show OTMA members that are created at
the shared queues back-end system.

� OTMA Tpipe clean up can be performed in the shared queues environment.

� IMS Connect can go to the front-end IMS to retrieve the ALT-PCB output messages
created by the shared queues back-end system.

2.7 OTMA callable interface
The IMS OTMA callable interface (C/I) is a function that provides a high-level interface for
access to IMS applications from other z/OS subsystems. The interface consists of 10 API
calls that can be used to join the IMS/OTMA XCF group, connect to IMS, allocate
communication sessions, send IMS transactions and commands, receive output from IMS,
close communication sessions, and leave an XCF group.

A benefit of OTMA C/I is that it is easy to use. It is possible for the user to implement their own
OTMA client without a callable interface, but it is not necessarily a simple task, because an
understanding of the technical protocols of z/OS XCF and IMS OTMA is required. The OTMA
callable interface extracts the details of OTMA and XCF. OTMA C/I supports the execution of
IMS transactions and commands, and it enables programs running from other z/OS
subsystems to connect to multiple IMSs. OTMA C/I API calls can be made from an authorized
or unauthorized library, and OTMA C/I can connect to all IMS OTMA releases.

SD

IMS
Connect

IMS
Connect

IMS
V9

SD

IMS
Connect

IMS
Connect IMS

IMS
Connect

IMS
Connect

IMS
Connect

IMS

IMS
Connect IMS

IMS

XRF Primary

XRF Alternate

No Super Member
IMS
V8

IMS
Connect

SD
IMS

Front-end Back-end

Where SD stands for Sysplex Distributor, and it can be a workload balancer.

26 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

2.7.1 OTMA C/I initialization
OTMA C/I provides a stand-alone program, DFSYSVI0, that must be run after the z/OS IPL to
initialize the OTMA C/I. DFSYSVI0 invokes DFSYSVC0, one of the OTMA C/I modules.
DFSYSVC0 loads and registers the SVC services by an authorized address space running on
the same z/OS image as the application programs accessing it.

You must add an entry in the z/OS program properties table (PPT) for the OTMA callable
interface initialization program. Complete the following steps to do this:

1. Edit the SCHEDxx member of the SYS1.PARMLIB data set.

2. Add the entry shown in Example 2-3 to the SCHEDxx member.

Example 2-3 SCHEDxx definitions for OTMA callable interface

PPT PGMNAME(DFSYSVI0) /* PROGRAM NAME = DFSYSVI0 */
 CANCEL /* PROGRAM CAN BE CANCELED */
 KEY(7) /* PROTECT KEY ASSIGNED IS 7 */
 SWAP /* PROGRAM IS SWAPPABLE */
 NOPRIV /* PROGRAM IS NOT PRIVILEGED */
 DSI /* REQUIRES DATA SET INTEGRITY */
 PASS /* CANNOT BYPASS PASSWORD PROTECTION */
 SYST /* PROGRAM IS A SYSTEM TASK */
 AFF(NONE) /* NO CPU AFFINITY */
 NOPREF /* NO PREFERRED STORAGE FRAMES */

Take one of the following actions to make the SCHEDxx changes effective:

� Re-IPL the z/OS system.

� Issue the z/OS SET SCH= command.

Example 2-4 shows a sample JCL procedure for running DFSYSVI0.

Example 2-4 Sample JCL for initializing OTMA callable interface

PROC RGN=3000K,SOUT=A,
// PARM1=
//*
//IEFPROC EXEC PGM=DFSYSVI0,
// REGION=&RGN
//*
//STEPLIB DD DISP=SHR,UNIT=SYSDA,
// DSN=IMS.SDFSRESL
//SYSPRINT DD SYSOUT=&SOUT
//SYSUDUMP DD SYSOUT=&SOUT

2.7.2 OTMA C/I security
A new RACF FACILITY class IMSXCF.OTMACI has to be defined for the OTMA C/I to protect
XCF groups from any non-authorized caller. When the RACF resource is defined, RACF
RACHECK is invoked before OTMA C/I performs a XCF JOIN. This method protects the
access to XCF, the XCF group, and the member. This RACF checking is performed only when
a non-authorized caller is using OTMA C/I. Additional security characteristics remain
consistent with OTMA.

Related reading: For additional information about updating the program properties table,
see z/OS V1R6.0 MVS Initialization and Tuning Reference, SA22-7592.

Chapter 2. Open Transaction Manager Access 27

2.7.3 OTMA C/I restrictions
These restrictions apply to the OTMA C/I:

� Application program languages other than C and C++ are not currently supported by
OTMA C/I. Other languages, such as COBOL, Assembler, and PL/I, will be supported in
the future.

� All OTMA calls must be made in the same state (PSW key, supervisor or problem state,
authorized or non-authorized) as the otma_open call. For example, if you were authorized
when you did the otma_open call, you must be authorized for all subsequent calls.

� The commit-then-send option of IMS OTMA is not supported by OTMA C/I. If IMS
generates a commit-then-send output and sends it to an OTMA C/I client, OTMA C/I
ignores the output and does not deliver it to the OTMA C/I client.

� The resynchronization feature of IMS OTMA is not supported.

� The IMS command /SECURE OTMA PROFILE is not currently supported.

2.7.4 Compiling and binding requirements for OTMA C/I
The header file included in the API calling program declares each API invocation and
variables used for the invocation. For a C/C++ program using the OTMA callable interface,
the C/C++header file, DFSYC0.H, needs to be included in the C/C++ program.

The object stub, DFSYCRET, receives all the API invocations and issues a SVC call to
perform the requested function. The object stub needs to be available during the link-editing
of the API invoking program. DFSYCRET is in SDFSRESL or ADFSLOAD data sets.

2.7.5 Call functions implemented by OTMA C/I
OTMA callable interface implements 10 different functions with the following API calls:

� otma_create

Creates storage structures to support communications, but does not establish a
connection with IMS.

� otma_open

Establishes a connection with IMS. Issues an otma_create prior to establishing an
otma_open call.

� otma_openx

Provides the same function as the otma_open API, with an added parameter to specify
OTMA Destination Resolution User (DRU) exit name routine and special options.

� otma_alloc

Creates an independent transaction session.

� otma_send_receive

Sends to IMS and passes parameters for receive functions.

� otma_send_receivex

Provides the same function as otma_send_receive API, with an added parameter to pass
OTMA user data.

� otma_send_async

Sends input (transaction or IMS command) only to IMS.

28 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� otma_receive_async

Receives unsolicited or queued output from IMS.

� otma_close

Releases the independent transaction session.

� otma_free

Ends the connection with IMS.

IMS Version 9 Open Transaction Manager Access Guide and Reference, SC18-7829, further
explains these API calls.

2.8 DSNAIMS stored procedure for OTMA C/I access
DSNAIMS is a stored procedure that enables DB2 UDB applications to invoke IMS
transactions and commands easily, without having to maintain their own connections to IMS.
This stored procedure uses the IMS OTMA C/I to connect to IMS and execute the
transactions. Figure 2-11 shows the general structure of DSNAIMS stored procedures. When
you implement DSNAIMS stored procedure to your DB2 UDB for z/OS environment, you can
access an IMS transaction or IMS command by using SQL call interface.

Figure 2-11 DSNAIMS stored procedure for OTMA C/I access

From the OTMA functional point of view, DSNAIMS can handle:

� Send-receive IMS transaction

� Send-only IMS transaction

� Receive-only IMS transaction

� Send-receive two-phase commit IMS transaction (with RRS)

� IMS command

� Specifying LTERM/MFS MOD name for I/O PCB mask of the IMS application

� Specifying Tpipe name (for send-only and receive-only)/DRU exit name/OTMA user data
header contents

IMS CTLTCP
/IP

z/OS

Any
Server

Any Platform

DRDA
Client

(SQL)
CALL sp

ioarea

(SQL)
COMMIT

/ROLLBACK

DB2

SRRCMT
/SRRBACK

MPP
GU IOPCB

DB Access

ISRT IOPCB

MPP
GU IOPCB

DB Access

ISRT IOPCB

DSNAIMS

WLMSPAS

RRS

WLM

z/OS

IMS
DB

OTMA

OTMA CI
Implemented

Stored
Procedure

OTMA CI
Implemented

Stored
Procedure

Chapter 2. Open Transaction Manager Access 29

DSNAIMS cannot handle:

� Specifying OTMA commit mode explicitly

� IMS conversational transaction

� IMS multisegment message
(This restriction will be removed by APAR PK07907.)

For more information about the DSNAIMS stored procedure, see the following documents:

� DB2 UDB for z/OS Version 8 Installation Guide, GC18-7418

� DB2 UDB for z/OS Version 8 Application Programming and SQL Guide, SC18-7415

� DB2 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7083

2.9 WebSphere MQ as an OTMA client
In this section, we provide only a very general overview of connecting IMS with WebSphere
MQ, formerly known as MQSeries. For more details, refer to the WebSphere MQ product
documentation available at:

http://www.ibm.com/software/integration/wmq/

IMS applications can access WebSphere MQ messages in two ways:

� Using the WebSphere MQ API

The IMS application uses the WebSphere MQ API calls to get and put messages with
synchronization point coordination with IMS. Applications are bound with specific
WebSphere MQ provided stub modules. For online programs, this requires connecting
WebSphere MQ to IMS through an external subsystem (ESS) connection, similar to the
IMS to DB2 subsystem connection. For batch, there is no ESS interface, and thus the
sync point coordination requires z/OS RRS.

� As an OTMA client using the WebSphere MQ IMS bridge

The WebSphere MQ IMS bridge is code in the WebSphere MQ queue manager, and it
does not require connecting WebSphere MQ to IMS through ESS.

The WebSphere MQ IMS bridge is an OTMA client that ships with WebSphere MQ queue
manager code. The IMS bridge communicates with IMS using specially defined queues for
taking the messages off the queue and sending them to IMS using the IMS OTMA interface
as well as receiving the output messages through the OTMA interface.

As with all OTMAs and OTMA clients, WebSphere MQ (client) and the IMS control region
(OTMA server) must be in the same XCF group. One WebSphere MQ queue manager can
connect to multiple IMS control regions, and one IMS control region can connect to multiple
WebSphere MQ queue managers. WebSphere MQ and IMS can be on different z/OS LPARs
in the same Parallel Sysplex®.

When the message arrives in WebSphere MQ, it is sent through XCF to the IMS OTMA
interface. The message can be an IMS transaction or an IMS command, but it cannot be an
IMS LTERM. IMS puts it on the IMS message queue, and the application does a get unique
(GU) call to the IOPCB to retrieve the message. This is very similar to the implicit LU6.2
process. A remote queue manager can send a message to a local queue destined for IMS
through OTMA.

30 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

http://www.ibm.com/software/integration/wmq/

The connection is defined in WebSphere MQ CSQZPARM using the OTMACON keyword on
the CSQ6SYSP macro. OTMACON has five positional parameters, and it is specified as
follows:

OTMACON = (Group,Member,Druexit,Age,Tpipepfx)

The parameters have the following meanings:

� Group: XCF group.

� Member: WebSphere MQ XCF member.

� Druexit: IMS exit to format OTMA user data (overrides DFSYDTx), consider a name of
DRU0xxxx (xxxx is a MQ queue manager name).

� Age: How long (in seconds) a user ID from WebSphere MQ is considered previously
verified in IMS.

� Tpipepfx: Three-character prefix for Tpipe name to avoid collision with IMS transaction
code names.

Member CSQ4ZPRM in data set WMQ.SCSQPROC has default CSQZPARM members that
you can use to build your members. For WebSphere MQ, you have to define one or more
storage classes with the XCFGNAME and XCFMNAME parameters of the IMS systems to
which you will connect. Example 2-5 provides an example for defining the storage class to
WebSphere MQ.

Example 2-5 STGCLASS definition for a WebSphere MQ IMS bridge queue

DEFINE STGCLASS(IMSG) -
PSID(02) –
XCFGNAME(IMS9EXCF)
XCFNAME(SCSIM9G)

SCSIM9G in our example is the XCF name of our target IMS system. Note that although
XCFGNAME is also specified in the storage class definition, it will not be used, but the one
defined in the OTMACON is used. When a STGCLASS is defined for a new IMS, WebSphere
MQ does not connect unless WebSphere MQ or OTMA is recycled. Then, for input
messages, you need to define local queues referring to the STGCLASS defined as in the
previous example. For output messages, you need to define the corresponding reply-to
queues.

After startup, WebSphere MQ joins the XCF group defined in the OTMACON parameter. The
IMS bridge initiates a client bid resync to each active IMS defined in the STGCLASS macros.
When the bid is successful, the IMS bridge opens the bridge queues and messages flow.
There are no WebSphere MQ commands to start or stop the IMS bridge. There are IMS
commands:

� /START OTMA - /STOP OTMA
� /START TMEMBER xxxx TPIPE yyyy - /STOP …

For more information about defining the WebSphere MQ IMS bridge connection, refer to
WebSphere MQ for z/OS System Setup Guide, Version 5 Release 3.1, SC34-6052.

Chapter 2. Open Transaction Manager Access 31

32 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 3. IMS Connect overview

IBM IMS Connect provides connectivity to IMS from any TCP/IP client, enabling you to
access IMS resources from a TCP/IP network. IMS Connect supports TCP/IP sockets access
to IMS transactions and commands.

IMS Connect provides a general purpose and structured interface for:

� IMS connectors
� User-written clients
� IMS Control Center

This chapter provides an overview of IMS Connect, discussing the following topics:

� Introduction to IMS Connect
� IMS Connect architecture
� A brief history and evolution of IMS Connect
� IMS Connect clients
� IMS Control Center

3

© Copyright IBM Corp. 2006. All rights reserved. 33

3.1 Introduction to IMS Connect
IMS Connect is an integrated feature of IMS Version 9 that provides high-performance
communications for IMS between one or more TCP/IP or local z/OS clients and one or more
IMS systems. IMS Connect has the following features:

� Provides commands to manage the communication environment

� Assists with workload balancing

� Supports multiple TCP/IP clients accessing multiple datastore resources

� Reduces design and coding efforts for client applications

� Offers easier e-business access to IMS applications and operations with advanced
security and transactional integrity

IMS Connect is included as part of IMS Version 9 in the IMS system services function
modification identifier (FMID) HMK9900. To provide the same function between one or more
TCP/IP clients and one or more IMS Version 7 or IMS Version 8 clients, IMS Connect is also
available as one of the IBM DB2 UDB and IMS Tools products, IMS Connect Version 2,
Release 2 (program number 5655-K52). IMS Connect Version 2.2 will continue to be
supported for IMS Version 7 and IMS Version 8 clients, but future enhancements to the IMS
Connect functionality will be made available only with IMS Version 9 or later.

The IMS Connect architecture is designed to support any TCP/IP clients communicating with
socket calls. IMS Connect supports TCP/IP sockets access to IMS transactions and
commands. It does not require modifications to the existing IMS transactions.

IMS Connect also supports the TCP/IP clients using the IMS Connector for Java. The IMS
Connector for Java is a collection of Java beans that enable a Java application to
communicate data requests through TCP/IP and the IMS Connect to IMS. IMS Connect with
WebSphere Development Tooling and the IMS Connector for Java can significantly ease the
development of on demand business solutions that access IMS transactions. These solutions
can be deployed in IBM WebSphere Application Server, allowing you to use Web
applications, Java 2 Platform, Enterprise Edition (J2EE) applications, or Web services to
quickly transform static Web sites into sources of dynamic Web content.

IMS Connect with IBM DB2 Version 8, the Universal Database Control Center provides a
single graphical user interface to control both IMS and DB2, easing IMS operations.

3.2 IMS Connect architecture
IMS Connect runs in an address space on a z/OS system and performs router functions
between TCP/IP clients and local option clients with IMS. Figure 3-1 on page 35 shows an
overview of the IMS Connect architecture and introduces the IMS Connect components.

Terminology: By IMS Connect in this redbook, we refer to the integrated IMS Connect
function of IMS Version 9 and IMS Connect Version 2.2, unless explicitly indicated
differently.

34 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 3-1 IMS Connect architecture

IMS Connect interfaces with Open Transaction Manager Access (OTMA) to provide a direct
communication path from clients to IMS applications. OTMA is a feature of IMS that enables
any z/OS client (IMS Connect in this case) to access IMS applications through the
cross-system coupling facility (XCF) services. For additional information about OTMA, see
Chapter 2, “Open Transaction Manager Access” on page 7.

Request messages received from TCP/IP clients, using TCP/IP connections or local option
clients using the z/OS program call (PC), are passed to IMS through XCF. Then, IMS
Connect receives response messages from IMS and passes them back to the originating
TCP/IP or local option clients.

IMS Connect supports TCP/IP clients communicating with socket calls, but it can also support
any TCP/IP client that communicates with a different input data stream format. User-written
message exits can execute in the IMS Connect address space to convert customer message
format to OTMA message format before IMS Connect sends the message to IMS. The
user-written message exits also convert OTMA message format to customer message format
before sending a message back to IMS Connect. IMS Connect then sends the output to the
client.

In addition to TCP/IP client communications, IMS Connect also supports local communication
through the local option. This option provides a non-socket (non-TCP/IP) communication
protocol for use between IBM WebSphere and IMS Connect in the z/OS environment.
Servlets that run in IBM WebSphere Application Server for z/OS and use IMS Connector for
Java can communicate with IMS Connect through the local option.

IBM Software Group

Web server
pgms

Any TCP/IP
client

IMS
Connector
for Java

Solid IMS-based
Architecture

TCP/IP clients

IMS Connect

XCF

SOCKET
calls ...

BPE

Environments (EVC)

TCP/IP
Driver

(Socket
Calls)

IMS
Control
Region

SCI

Operations
Manager

(OM)

SCI

transactions
and cmds

Comm.
Analyzer
(DDMs)

APPC
LU Manager

SCI

IMS
Control
Region

XCF OTMA
SCI

IMS Control
Center

Command Component (CMD)

Call Interface

enhanced commands

TCP/IP client
Comm.
component
(CCC)

Local
Option
Drive

Local Option
Comm.

Component

Datastore
Comm.

component

OTMA
Driver
(XCF

services)

IMSplex
Comm.

Component

IMSplex
Driver

Structured
Call

Interface

SCI

Chapter 3. IMS Connect overview 35

IMS Connect also supports TCP/IP connections from the DB2 UDB V8.1 Control Center to
exchange IMS Control Center commands and responses. A single IMS Connect can support
communication between the IMS Control Center and any IMS within the sysplex. This
IMSplex support for enhanced commands requires IMS Operations Manager (OM). The
interface between an IMS Control Center and OM uses the Structure Call Interface (SCI).

The IMS Connect configuration supports multiple IMS Connects accessing the same IMS
system and a single IMS Connect accessing multiple IMS systems. If the datastore goes
down, the status of the datastore is sent to IMS Connect from IMS OTMA through XCF. When
the datastore is brought back up and restarted, IMS Connect is notified and automatically
reconnects to the datastore if it was originally connected to the datastore before the datastore
went down. You do not need to manually reconnect to the datastore.

If you stop and restart TCP/IP, IMS Connect does not automatically reconnect. You have to
stop and restart IMS Connect and the IMS Connect clients will have to reconnect.

IMS Connect components
IMS Connect consists of 11 core components. These 11 components are:

� Client communication component (CCC)

CCC processes communication requests between the front-end drivers and the back-end
drivers.

� Command component (CMD)

CMD processes commands received from the z/OS console operator.

� Datastore communication component (DCC)

DCC processes communication requests between the back-end drivers and the front-end
drivers.

� Environment component (EVC)

EVC provides IMS Connect startup and termination services. The EVC loads IMS
Connect modules, tables, and required storage areas; loads and calls the user message
exits and user initialization exits; and terminates IMS Connect.

� IMS Connect Base Primitive Environment (IMS Connect BPE)

IMS Connect BPE provides common system services to all IMS Connect components.

� IMSplex communications component (ICC)

ICC processes communication requests between the front-end TIDC driver and the
back-end IPDC driver.

� IMSplex driver (IPDC)

IPDC is a back-end driver and enables IMS Connect to communicate with IMS by using
the IMS SCI connection.

� Local option communication component (LOCC)

LOCC processes communication requests between the front-end PCDC driver and the
back-end drivers, OTDC and IPDC.

Note: As a feature of IMS Connect, we explain the local option in this redbook but we do
not recommend that you use it. It does not provide better performance than the TCP/IP
hyper sockets and it is not going to be further developed in the future.

36 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� Local option driver (PCDC)

PCDC is a front-end driver and provides the mechanism to communicate with clients by
using the local option, which is a non-socket communications protocol.

� OTMA driver (OTDC)

OTDC is a back-end driver and provides the mechanism to communicate with the IMS
datastores by using an XCF connection to IMS OTMA.

� TCP/IP driver (TIDC)

TIDC is a front-end driver and provides the mechanism to communicate with clients by
using a TCP/IP socket connection to the clients.

Figure 3-1 on page 35 shows the layout of each IMS Connect component.

Driver components
IMS Connect uses the driver components (TIDC, PCDC, IPDC, and OTDC) to isolate the core
components from the communication software. The TCP/IP driver is used to communicate
with TCP/IP clients using the TCP/IP communications protocol. The local option driver
(PCDC) is used to communicate with the local option clients. The IMS OTMA driver is used to
communicate with the datastores (IMSs) using the IMS OTMA communications protocol. The
IMSplex driver is used to communicate with the IMS Operations Manager (OM) using SCI.

Communication between components takes place using the call interface service. The call
interface provides the encapsulation and isolation of structures between the components.
Each IMS Connect component provides its own set of functions, which it registers with the
call interface. When a component requires that a function is performed by another
component, the first component calls the call interface using the following parameters:

� Component name to which the request is to be forwarded
� Function the component is to perform
� Parameters required for the function

The call interface uses a function work element (FWE) to carry information between
components.

Base Primitive Environment
The IMS Connect Base Primitive Environment (IMS Connect BPE) is a common system
service upon which IMS Connect is built. IMS Connect initializes the IMS Connect BPE in the
IMS Connect address space. The IMS Connect BPE provides IMS Connect with these
services:

� Environment
� Storage
� Serialization
� Tracing

3.3 A brief history and evolution of IMS Connect
This section provides the background of the evolution of IMS Connect, describing
enhancements included in the versions.

3.3.1 ITOC: The predecessor to IMS Connect
Before the IMS Connect product, IMS TCP/IP connectivity was originally provided in the IMS
TCP/IP OTMA Connection (ITOC). ITOC was provided free of charge from the IMS home

Chapter 3. IMS Connect overview 37

page and downloaded the relevant files from the Web for installation. Basically, ITOC had
similar functionality to IMS Connect, but the ITOC product service has been discontinued on
March 1, 2001. ITOC functionality has been enhanced and repackaged as IMS Connect.

3.3.2 IMS Connect Version 1.1
IMS Connect Version 1.1 includes the following features:

� SMP/E installability

Improved manageability over ITOC with System Modification Program/Extended (SMP/E)
install and maintenance.

� Formatted dump support

Support to format selected IMS Connect control blocks.

� Persistent sockets

Improved performance over ITOC with persistent socket support for send-then-commit
(commit mode 1).

� Asynchronous output support

Asynchronous output support with IMS Version 7 or later.

� User initialization exit support

User exit to enable you to perform initialization and termination processing.

� Send only capability

Allows the flow connect, send (sendonly) and disconnect.

� Local option

Support for non-TCP/IP communications (program calls) between IMS Connector for Java
with WebSphere Application Server and IMS Connect when IMS Connect and
WebSphere Application Server reside in the same z/OS image.

� Unicode support

Support for sending Unicode application data to an IMS host application capable of
dealing with Unicode, such as a Java application running in IMS.

� ACK/NAK required notification support

Provides client notification that an acknowledgement (ACK) or negative acknowledge
(NAK) response for a DFS™ message is required by the client.

3.3.3 IMS Connect Version 1.2
IMS Connect Version 1.2 provides the following enhancements over IMS Connect
Version 1.1:

� IMS Connector for Java J2EE runtime support for WebSphere access

WebSphere Adapter support with the addition of the IMS Connector for Java J2EE
Connector architecture (JCA) runtime support. You can use it with the IMS Connector for
Java of VisualAge® for Java and WebSphere Studio Application Developer Integration
Edition.

Note: IMS Connect Version 1.1 has been at end of service since November 30, 2003.

38 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� Two-phase commit support in local IBM Eserver zSeries environments

Allows IMS transactions to participate as a resource in two-phase commit (2PC) external
transactions. Recoverable Resource Services (RRS) manages the sync point
coordination. WebSphere Application Server for z/OS, IMS Connect, RRS, and IMS must
reside in the same z/OS image.

� Security enhancements

Support for PassTicket and Trusted User.

� Enhanced timer granularity

Provides a greater level of granularity for time out settings. Each client SEND can specify
a different value.

� Exit enhancement

User message exit limitation relief.

� Auto reconnect to a recycled IMS

Support to automatically reconnect to an IMS that rejoins the XCF group.

� Internet Protocol V6 support

Support for larger addressing scheme, Internet Protocol (IP) V6.

� IMSplex support OM distributed interface

Allows IMS Control Center to issue IMS enhancement commands.

3.3.4 IMS Connect Version 2.1
IMS Connect Version 2.1 provides the following enhancements over IMS Connect
Version 1.2:

� PING support

Mechanism to determine availability of IMS Connect.

� J2EE XA two-phase commit support

J2EE Connector architecture XA two-phase commit for distributed and z/OS environments
to expand transactional integrity. XA is a two-phase commit protocol defined by the
X/Open protocol. IMS Connector for Java is the required resource adapter.

� SSL support

Support for the Secure Sockets Layer (SSL) encryption and authentication protocol.

3.3.5 IMS Version 9 integrated IMS Connect - IMS Connect Version 2.2
IMS Connect adds the following enhancements to the previous features:

� Persistent socket support for commit mode 0

Adds persistent socket support for commit mode commit_then_send (commit mode 0).
Supports the functions sendonly, resume_tpipe, and non-conversational transactions and
a mix of sendonly, resume_tpipe, and non-conversational transactions within a single
connection.

This feature is available in IMS Connect Version 2.1 through the APAR PQ80468.

Note: IMS Connect Version 1.2 has been at end of service since April 30, 2005.

Chapter 3. IMS Connect overview 39

� Purge not deliverable support

Mechanism to remove an output message that cannot be delivered to the remote client
from the IMS message queue. It adds new IRM_F3_PURGE(X'04').

Applies to IOPCB replies. Does not apply to commit mode 1, resume_tpipe, or sendonly
requests.

This enhancement needs the IMS APAR PQ87088 for IMS Version 9 and PQ87087 for
IMS Version 8. It is available for IMS Connect Version 2.1 by APAR PQ87160.

� New resume_tpipe single with wait option

Resume_tpipe identifies a request for asynchronous output messages from IMS, the
single type means receive one message and disconnect the socket. A new flag,
IRM_F5_SWAIT, allows the wait for a single message if none are currently queued in IMS.

It needs the IMS APAR PQ83639 for IMS Version 9, PQ79040 for IMS Version 8, and
PQ78912 for IMS Version 7. This is available for IMS Connect Version 2.1 by PQ80468.

� Cancel timer support

Allows the same endpoint device or another endpoint device to cancel IMR_Timer or a
HWSCFGxx timer value associated with a prior client application send request. A device
that sends a cancel timer must connect and specify the same client name as the client
name for which the cancel timer is being issued.

Adds the new IRM_F4_CANTIMER with a value of C'C'. Return code X'2C' is returned to
the requesting client.

This function is available through the APAR PQ96500 for IMS Connect Version 2.2 and
PQ96501 for the integrated IMS Connect function of IMS Version 9. It is also available for
IMS Connect Version 2.1 with PQ85126.

� Internal reroute of commit mode 0 (CM0) output

When a commit mode 1 (CM1) transaction does a program switch to a second transaction
and both transactions issue an insert to the IOPCB, OTMA sends the output for the first
transaction on the port Tpipe CM1 and the output for the second transaction on the port
Tpipe CM0. IMS holds the second transaction output and IMS Connect cannot retrieve it,
even using a resume_tpipe call.

This enhancement allows IMS Connect to verify that all CM0 output has a valid client_id
as the Tpipe name and that it is set correctly. IMS Connect rejects the output with a
reroute request to the inputting client_id. OTMA removes the port Tpipe and re-queues
the output on the client_id requested by IMS Connect.

This function does not require your involvement.

You need to have installed APAR PQ96425 for IMS Connect Version 2.2, PQ96428 for
IMS Connect integrated function IMS Version 9, or PQ86077 for IMS Connect Version 2.1.
In addition, you need APAR PQ84254 for IMS Version 8 and PQ80469 for IMS Version 7.

� Support to allow up to 65,535 sockets

This enhancement extends the TCP/IP sockets from 2,000 to 65,535 per IMS Connect.
You can allow up to 65,535 sockets to be connected to IMS Connect, specifying the value
of the parameter maxsoc on the TCP/IP statement.

APAR PQ90051in IMS Connect Version 2.2 and APAR PQ91578 for IMS Connect
integrated function IMS Version 9 provide this function.

� IMS Connect z/OS commands

Support of modify command support:

F jobname,command

40 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

The command verbs are query, update, shutdown, and delete.

� Support for IMS Connect Extensions

Support for a new product, IMS Connect Extensions (5655-K48), which enhances and
augments the services of IMS Connect. We describe this product in more detail in
Chapter 11, “IMS Connect Extensions” on page 155.

3.4 IMS Connect clients
Using IMS Connect, you can develop applications as:

� Roll your own (RYO) client
� IMS Connector for Java client

A RYO client can be written in any language that supports the TCP/IP interface. You need to
know the protocol provided by IMS Connect and OTMA to develop this TCP/IP socket
application. The advantage of a RYO client compared with IMS Connector for Java client is
that the RYO client has similar functionality to and flexibility of the WebSphere MQ IMS bridge
client applications, which support the OTMA protocol and the message routing. We provide
examples of building the RYO clients in Chapter 14, “Building roll your own clients” on
page 265.

IMS Connector for Java development environment is included in IBM WebSphere Application
Developer Integrated Edition and in Rational Application Developer Version 6. The IMS
Connector for Java client might have a little less flexibility than the RYO client, depending on
your requirements. But you can build the IMS Connector for Java client without in-depth
knowledge of the protocol of IMS Connect and OTMA, and you can use utilities that aid
programmer productivity. We provide information about using the IMS Connector for Java in
Chapter 12, “IMS Connector for Java” on page 221.

3.5 IMS Control Center
You can manage your IMS systems using a graphical interface from a workstation using the
IMS Control Center. The IMS Control Center uses the IMS single point of control (SPOC)
functions. The IMS Control Center is part of the IBM DB2 Universal Database™ Version 8
Control Center. The DB2 Control Center is available with the IBM DB2 Universal Database
(DB2 UDB) Administration Client, Version 8.2.

Using the IMS Control Center, you can view the members of the IMSplex and define groups
of members. The Control Center supports both IMS Version 8 and later versions. From the
Control Center, you can issue IMS type-2 commands using command windows or wizards,
depending on how much assurance you want. Wizards help you build and issue the
commands. The results are displayed in the IMS Results window. In addition, using the
Command Editor, you can issue both type-1 and type-2 IMS commands.

The IMS Control Center uses IMS Connect as a communication vehicle between the client
and IMS Operations manager (OM). Before you can use the IMS Control Center, make sure
that you have the correct software at the correct levels installed. The software requirements
for the IMS Control Center are:

� For IMS Version 8:

– APAR PQ69527 to enable IMS Control Center support.
– IMS Connect Version 1.2 or later with APARs PQ62379 and PQ70216.

Chapter 3. IMS Connect overview 41

� For IMS Version 9:

– Integrated IMS Connect function configured on your system with APAR PQ92398
installed.

For configuring IMS Connect for the IMS Control Center, refer to 4.4, “IMS Control Center
support” on page 54.

42 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 4. Configuring IMS Connect

IMS Connect can be configured to meet your availability, capacity, security, and performance
requirements:

� One IMS Connect can connect to multiple IMS control regions in multiple XCF groups.
� One IMS Connect can have multiple connections to the same IMS copy.
� One IMS Connect connection can have multiple Tpipes.
� One IMS control region can connect to multiple IMS Connects.
� IMS Connect and IMS can be on different LPARs in the same sysplex.

This chapter discusses the configuration and customization processes of IMS Connect,
including a section dedicated to the new IMS Control Center support. It also provides a Java
sample to verify the IMS Connect installation.

4

© Copyright IBM Corp. 2006. All rights reserved. 43

4.1 Introduction
IMS Connect runs as an z/OS job or started task and is controlled by two input files:

� BPECFGxx

Defines parameters for the Base Primitive Environment (BPE). These parameters are
used to control common services such as dispatching, waiting, and tracing.

� HWSCFGxx

Specifies the environment for IMS Connect. This information is used to define the
characteristics of the communication between IMS and TCP/IP.

The TCP/IP client application requests a connection by specifying the host DNS name
(resolves to the IP address of the target host), the IMS Connect port number, and the
target IMS subsystem name. In an IMS Connect environment, it is called datastore ID,
which is the name by which the remote application requests a connection to a specific
IMS. The datastore ID is the name that identifies a specific statement in the IMS Connect
configuration file, which directs the requests to a specific IMS system. In the HWSCFG
file, IMS Connect also has the information related to the OTMA XCF group.

Figure 4-1 shows how IMS Connect uses the HWSCFG file to route the messages.

Figure 4-1 IMS configuration HWSCFG member

The other main point of IMS Connect configuration is the installation of the supplied exits and
the customization of the user exits. The following sections cover the installation and
configuration of IMS Connect.

4.2 Installing IMS Connect
The IMS Connect installation is managed by normal SMP/E RECEIVE, APPLY, and ACCEPT
services, and it is the same as other software products that run under a z/OS environment.
The IMS Connect software distribution contains sample job control language (JCL) for the
installation, which you can modify to meet the requirements of your environment. With IMS

44 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Version 9, the IMS Connect feature is installed as a part of the IMS installation because it
comes with the base IMS FMID HMK9900.

If you use IMS Connect Version 2.2, refer to Program Directory for IBM IMS Connect for
z/OS, GI10-8506, for more information about the IMS Connect installation.

If you use IMS Version 9 integrated IMS Connect, refer Program Directory for IBM
Information Management System Transaction and Database Servers, GI10-8594, for more
information about the IMS Connect installation.

4.3 Configuring IMS Connect
This section describes how to prepare the environment for IMS Connect. To use the
information provided in this section, you need a working knowledge of IMS transaction
processing, RACF, IMS OTMA, and TCP/IP.

IMS Connect supports communication between one or more TCP/IP clients and IMS
systems. IMS Connect uses TCP/IP for communication with clients and IMS OTMA for
communication with IMS. It also provides a mechanism to start or stop TCP/IP clients or
datastores through the use of commands.

You can configure multiple IMSs on multiple z/OS systems and distribute the client request to
the datastores (IMSs). To configure IMS Connect, perform the following actions:

1. Create an IMS Connect job or started task.

2. Authorize the IMS Connect load library with the authorized program facility (APF).

3. Update the program properties table (PPT) in SYS1.PARMLIB. Updating the PPT allows
IMS Connect to run in authorized supervisor state and in key 7.

4. Create an IMS Connect configuration member to hold the configuration statements that
IMS Connect uses during initialization.

5. Define the IMS Connect security.

6. Install the default user exits into the IMS Connect resident library.

4.3.1 IMS Connect start procedure
You can use the sample JCL in Example 4-1 for the IMS Connect started task procedure. You
can also run the IMS Connect as an z/OS job.

Example 4-1 IMS Connect startup JCL

//HWS PROC RGN=4096K,SOUT=A,
// BPECFG=BPECFGHT,
// HWSCFG=HWSCFG00
//*
//***
//* BRING UP AN IMS CONNECT *
//***
//STEP1 EXEC PGM=HWSHWS00,REGION=&RGN,TIME=1440,
// PARM=’BPECFG=&BPECFG,HWSCFG=&HWSCFG’
//STEPLIB DD DSN=HWS.SHWSRESL,DISP=SHR
// DD DSN=IMS.SDFSRESL,DISP=SHR
// DD DSN=CEE.SCEERUN,UNIT=SYSDA,DISP=SHR
// DD DSN=SYS1.CSSLIB,UNIT=SYSDA,DISP=SHR
// DD DSN=GSK.SGSKLOAD,UNIT=SYSDA,DISP=SHR
//PROCLIB DD DSN=USER.PROCLIB,DISP=SHR

Chapter 4. Configuring IMS Connect 45

//SYSPRINT DD SYSOUT=&SOUT
//SYSUDUMP DD SYSOUT=&SOUT
//HWSRCORD DD DSN=HWSRCDR,DISP=SHR

If you are using the IMS Connect Version 9 integrated function, the IMS Connect modules
reside in the IMS.SDFSRESL library, which is the IMS execution library, and then
HWS.SHWSRESL does not exist. If you are using IMS Connect Version 2.2, the IMS Connect
modules reside in the HWS.SHWSRESL library, and then the IMS.SDFSRESL library is
required only when IMSplex support is used.

IMS Connect requires the CEE.SCEERUN, SYS1.CSSLIB, and GSK.SGSKLOAD libraries
(which are the C execution and z/OS system SSL libraries) only when SSL support is used.
Many installations that use these libraries place them in the LINKLST concatenation, in which
case, they are not needed in the JCL.

The HWSRCORD data set is the line trace data set. Refer to Chapter 10, “IMS Connect
diagnostics” on page 141 for more information.

4.3.2 Authorizing IMS Connect and BPE to the APF
The library in which the IMS Connect modules reside (SDFSRESL or SHWSRESL) must be
authorized to the APF. This can be done by editing the appropriate PROGxx member in the
SYS1.PARMLIB and issuing the SET PROG=xx command. Coordinate with your z/OS
systems programmer to ensure that these libraries are correctly authorized.

4.3.3 Updating the program properties table
Because IMS Connect is executed in supervisor state and key 7, add an entry for it in the
z/OS program properties table (PPT) as follows:

1. Add the entry shown in Example 4-2 in the z/OS PPT by editing the SCHEDxx member of
the SYS1.PARMLIB data set.

Example 4-2 PPT entry required for IMS Connect

PPT PGMNAME(HWSHWS00) /*PROGRAM NAME =HWSHWS00 */
 CANCEL /*PROGRAM CAN BE CANCELED */
 KEY(7) /*PROTECT KEY ASSIGNED IS 7 */
 SWAP /*PROGRAM IS SWAPPABLE */
 NOPRIV /*PROGRAM IS NOT PRIVILEGED */
 DSI /*REQUIRES DATA SET INTEGRITY */
 PASS /*CANNOT BYPASS PASSWORD PROTECTION */
 SYST /*PROGRAM IS A SYSTEM TASK */
 AFF(NONE) /*NO CPU AFFINITY */
 NOPREF /*NO PREFERRED STORAGE FRAMES */

2. To make the changes effective, do either of the following actions:

– Re-IPL your z/OS system.
– Issue the z/OS SET SCH= command.

Note: Use SWAP only if you are using only TCP/IP communications. If you are using
the local option for client communications either by itself or with TCP/IP
communications, you have to use NOSWAP.

46 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

4.3.4 Creating the IMS Connect configuration member
You have to create a configuration member in your PROCLIB data set for specifying the
environment for IMS Connect. IMS Connect uses the information it retrieves from the member
to establish communication with IMS and TCP/IP. You can define several configuration
members in the partition data set (PDS) to select from during the IMS Connect startup.
Specify the member name to be used in the HWSCFG= parameter of the IMS Connect
startup JCL (see Example 4-1 on page 45).

IMS Connect configuration statement parameters
You have to specify values for some of the parameters that define the way in which IMS
Connect is to communicate with TCP/IP and IMS OTMA in the IMS Connect configuration
member. The IMS Connect configuration member contains four types of configuration
statements: HWS, TCPIP, DATASTORE, and IMSPLEX. Descriptions of the configuration
statements are as follows:

� HWS

The HWS statement specifies one IMS Connect. It includes the following keyword
parameters:

– ID

The IMS Connect name. It consists of alphanumeric character data, begins with an
alphabetic character, and has a length between 1 and 8 characters.

– RACF

Y (yes), or N (no). Determines whether or not the password and user ID (provided by
either the client application or a user exit routine) are passed to RACF for
authentication.

This setting can also be changed using the IMS Connect SETRACF command.

If this is set to N, no RACF validation of the user ID is done, and the user ID (if
provided) is simply passed to IMS. If this is set to Y, IMS Connect calls RACF to
validate the user ID and password combination before passing the request through to
IMS. N is the default.

Even if the value is Y, the IMS Connect user exit can set the trusted user flag and tell
IMS Connect not to issue the RACF call.

– RRS

Y (yes), or N (no). Defines if RRS should be enabled. This enables two-phase commit.
N is the default.

– XIBAREA

Specifies the number of full words allocated for the XIB user area. Both the user
initialization exit routine and the user message exit routines can access and modify the
XIB user area.

The default value is 20; the maximum value is 500. If you do not specify value for this
parameter, or you specify a value outside of the 20 to 500 range, the system uses the
default value of 20.

Important: Performance problems might occur if RACF statistics are kept for a
user ID.

Chapter 4. Configuring IMS Connect 47

� TCPIP

The TCP/IP statement defines to IMS Connect the communication with one TCP/IP. Its
keyword parameters are as follows:

– HOSTNAME

Name of the TCP/IP host. This is usually the jobname of the TCP/IP z/OS address
space.

– ECB

Y (yes), or N (no). Specifies whether to use the TCP/IP exit or event control block
(ECB) processing. ECB processing enhances IMS Connect performance by increasing
throughput.

When ECB=N is specified (or left blank), IMS Connect executes with TCP/IP driving an
IMS Connect exit.

When ECB=Y is specified, IMS Connect executes with TCP/IP driving IMS Connect
with the posting of an ECB.

– EXIT

Name of the TCP/IP user message exit that receives control for messages received
from and sent to TCP/IP clients. More than one exit can be defined as
EXIT=(EZAEXIT,EZBEXIT,EZCEXIT) to a maximum of 254.

This includes the IMS Connect sample exits and the user-written exits.

These user message exits support users other than IMS Connector for Java for OTMA
linkage through IMS Connect to IMS. You do not have to include HWSJAVA0 in the
EXIT= list. IMS Connect automatically loads the HWSJAVA0 exit, which is shipped
with IMS Connect to enable IMS to support the IMS Connector for Java applications.

The user message exits for IMSplex support are HWSCSLO0 and HWSCSLO1 and
must be specified here to ensure the activation of the IMS Control Center.

HWSUINIT is an IMS Connect exit but is not a user message exit; you must not add it
to the EXIT= parameter. If you add HWSUINIT to the EXIT= parameter, IMS Connect
will abend.

– IPV6

Y (yes), or N (no). At IMS Connect startup time, determines whether or not Internet
Protocol Version 6 (IPV6) is enabled.

When N is specified or defaulted, IPV4 is used.

If you use IPV6, z/OS Version 1.4 or later is required.

– MAXSOC

A decimal field set to the maximum number of sockets per IMS Connect that an IMS
Connect can open. This value must be a number between 50 and 65535. The default
value is 50.

Recommendation: Set ECB=Y for the best performance.

Recommendation: If you are on z/OS Version 1.4 or later, set IPV6=Y even if you
are not on IPV6 for better performance.

48 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

The value specified will result in one socket dedicated to a listen state per port and the
remainder available for connections. Therefore, if you specify 80 and have five ports,
75 physical connections can be made. The other five are used for the listen state
sockets.

At this point, you have to consider that there are two parameters in the BPXPRMxx
member of the SYS1.PROCLIB related to the allowed number of sockets.
MAXSOCKETS sets a limit for the total number on sockets in a system, and
MAXFILEPROC sets the maximum number of sockets for any job.

– PORTID

A 1-character to 8-character field to define the TCP/IP ports, or a 5-character field with
the value of LOCAL to define the local option connection. For TCP/IP port
communications, it specifies the port number or numbers that will bind to the socket
(port for IMS Connect on which to listen).

You can define more than one port as PORTID=(9999,8888,7777) to a maximum of 50.
Port numbers must be within the range 1 to 65535 and must be selected so that they
do not conflict with other ports in the TCP/IP domain.

– RACFID

Default RACF ID for exits. Exits pass this ID to OTMA for security checking if the
RACFID has not explicitly been set in the incoming message or by the user exit.

– SSLENVAR

The member name of the SSL initialization file.

– SSLPORT

A 1-numeric character to 8-numeric character decimal field to define Secure Sockets
Layer (SSL) ports. For SSL port communication, it specifies the port number that will
bind to the socket (port for IMS Connect on which to listen with SSL).

You can define up to 50 ports, which must be numbered within the range of 1 to 65535.
These ports must not conflict with any other ports selected in the TCP/IP domain or
those selected under the PORTID parameter as basic TCP/IP ports.

– TIMEOUT

Time interval in hundredths of seconds after which IMS Connect disconnects the client
if there is no response from IMS. The maximum value of the timeout is 2147483647
(X'7FFFFFFF') and the default is 0 (which means no timeout).

IMS Connect uses the timeout value to determine the amount of time to wait for a
response from IMS that is being sent to the client.

IMS Connect also uses this timeout to disconnect a client socket connection that does
not send messages. This timeout value on an IMS Connect read of the client only
applies to the wait time between the socket connection and the first input from the
client application. The timeout function is not activated between reads but only
between the connection and the first IMS Connect read of the client application input.

The client sets a second timeout value in the IMS Request Message (IRM) header field
irm_timer for use with a read to OTMA following a resume_tpipe command and the
ACK following the read for a resume_tpipe.

Important: At the time of writing this book, there is an open issue with IMS Connect
architecture and only one SSL port is currently supported. APAR PQ90146 is
opened to resolve this problem.

Chapter 4. Configuring IMS Connect 49

� DATASTORE

The DATASTORE statement specifies each datastore with which the IMS Connect
communicates through IMS OTMA. You can define multiple DATASTORE cards; each
one is an OTMA client.

IMS Connect uses this information to translate the logical datastore name passed by the
TCP/IP client into the IMS XCF member name and thus the IMS control region.

The DATASTORE statement keyword parameters are:

– ID

The datastore name.

This consists of alphanumeric character data, begins with an alphabetic character, and
has a length between 1 and 8 bytes. This ID name cannot be the same as the tmember
on the IMSPLEX statement.

The IMS Connect client passes to IMS Connect a datastore ID to identify the IMS to
receive the message. The datastore ID supplied by the client must match with a
datastore name defined to IMS Connect.

For IMS Connector for Java clients, this ID must match the name that is specified in the
IMS InteractionSpec for IMS Connector for Java. For non-IMS Connector for Java
clients, the ID must match the datastore ID that is placed in the IMS Request Message
(IRM) that is sent to IMS Connect.

The IMS Connect user exit can override the datastore ID supplied by the client.

– GROUP

The XCF group name for the IMS OTMA. IMS Connect uses this value to join the
appropriate XCF groups. This group name must match the XCF group name that you
define to the GRNAME in the IMS startup JCL or DFSPBxxx member, because IMS
Connect and IMS must be in the same XCF group in order to communicate. Each IMS
Connect can join any number of groups.

– MEMBER

The XCF member name that identifies IMS Connect in the XCF group specified by the
group parameter. This name is the XCF name that IMS uses to communicate with IMS
Connect in that XCF group. This XCF member name for IMS Connect must be unique
in the datastore definitions for all datastores that are members of the same XCF group.

– TMEMBER

The XCF member name for IMS that IMS Connect uses in order to communicate with
an IMS in its XCF group. This target member name must match the member name IMS
uses when it joins the XCF group. The XCF member name for IMS is specified in the
IMS startup JCL by the OTMANM parameter in the IMS startup JCL or DFSPBxxx
member. Each datastore definition within an IMS Connect configuration member must
contain a unique tmember name.

– RRNAME

The name of an alternate destination specified in a client reroute request. If this string
is not provided, IMS Connect uses HWS$DEF as the default name.

It must a string of 1 to 8 uppercase alphanumeric (A through Z, 0 to 9) or special
characters (@, #, $), left-aligned, and padded with blanks. IMS Connect translates
lowercase characters to uppercase characters.

The string is terminated by any blank or invalid character. The reroute name is
truncated at any invalid character.

50 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

– APPL

TCP/IP APPL name defined to RACF in the PTKTDATA statement.

This parameter is optional and will default to blanks. If you are using PassTicket and
user message exits, HWSIMSO0, HWSIMSO1, or both, you must specify the APPL on
the DATASTORE statement.

– DRU

A 1 to 8 alphanumeric character field. The DRU keyword enables you to specify your
own OTMA destination resolution user exit name that is to be passed to OTMA. The
DRU exit is required to support asynchronous output to IMS Connect clients. The
default is DFSYDRU0, but you can write your own exit.

IMS Connect also provides the sample DRU exit routine (HWSYDRU0).

� IMSPLEX

The IMSPLEX statement specifies each IMS Operations Manager (OM) with which IMS
Connect communicates through the IMS Structure Call Interface (SCI). You can have
multiple IMSPLEX statements. It is needed if you use the IMS Command Center.

The IMSPLEX statement keyword parameters are as follows:

– MEMBER

This name is passed to the SCI as the name of the IMS Connect that is communicating
with the IMS OM through the SCI.

– TMEMBER

Name of the SCI to which IMS Connect communicates. The tmember name consists of
alphanumeric character data, begins with an alphabetic character, and has a length
between 1 and 5 bytes.

This name must be equal to the name specified in the SCI initialization PROCLIB
member IMSPLEX in the parameter NAME.

The tmember name cannot be the same name as the ID name on the DATASTORE
statement.

– RUNOPTS

A 1 to 255 character string field that specifies the Language Environment® runtime
options to be used to override the IMS Connect default runtime options in support of
SSL.

This parameter is optional. It is applicable only to the Language Environment
environment for SSL support. IMS Connect passes the default values
POSIX(ON),TRAP(OFF,NOSPIE), unless overridden by the RUNOPTS parameter.

Example 4-2 on page 52 shows an example of IMS Connect configuration file for a simple
configuration.

Chapter 4. Configuring IMS Connect 51

Figure 4-2 Example of a simple configuration HWSCFG member

In this IMS Connect configuration member, the IMS Connect ID is defined as HWS. This IMS
Connect is configured to include the ports defined for TCP/IP communications and the IMS
Connect group and member names for communication with IMS.

The TCP/IP configuration defines the HOSTNAME as MVSTCPIP, the RACFID as RACFID,
the PORTID as 9999, and the EXIT as HWSSMPL0.

The datastore configuration defines the ID as IMS, the GROUP as XCFGROUP, the
MEMBER as HWSMEM, and the TMEMBER as IMSMEM.

IMS Connect Base Primitive Environment configuration
The IMS Connect address space is built on top of the IMS Connect Base Primitive
Environment (BPE). Generally, you do not need to work with the IMS Connect BPE.
However, you might need to change the default settings for certain IMS Connect BPE
functions, such as storage management, internal tracing, dispatching, and other system
service functions. IMS Connect supplies a configuration data set member for IMS Connect
BPE system service functions that you can modify.

The IMS Connect BPE configuration parameter PROCLIB member defines the IMS Connect
BPE execution environment settings for the IMS Connect address space. You specify the
PROCLIB member name by coding BPECFG=member name on the EXEC PARM=
statement in the IMS Connect address space startup JCL (see the IMS Connect startup JCL
in Example 4-1 on page 45). Example 4-3 on page 53 shows a sample IMS Connect BPE
configuration file. For more information about the BPE environment configuration member
and the parameters, refer to IMS Version 9: IMS Connect Guide and Reference, SC18-9287.

52 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 4-3 Example of a configuration file for IMS Connect BPE

**
* CONFIGURATION FILE FOR IMS CONNECT BPE *
**
LANG=ENU /*LANGUAGE FOR MESSAGES */
 /*(ENU =U.S.ENGLISH)*/

#
#DEFINITIONS FOR IMS CONNECT BPE SYSTEM TRACES
#

TRCLEV=(*,LOW,BPE) /*DEFAULT TRACES TO LOW */
TRCLEV=(AWE,HIGH,BPE) /*AWE SERVER TRACE ON HIGH */
TRCLEV=(CBS,MEDIUM,BPE) /*CTRL BLK SRVCS TRC ON MED */
TRCLEV=(DISP,HIGH,BPE,PAGES=12) /*DISPATCHER TRACE ON HIGH */
 /*WITH 12 PAGES (48K BYTES)*/
#
#DEFINITIONS FOR IMS CONNECT TRACES
#

TRCLEV=(*,HIGH,HWS) /*DEFAULT ALL IMS CONNECT TRACES TO HIGH */
TRCLEV=(HWSI,HIGH,HWS) /*BUT RUN IMS CONNECT TO IMS OTMA TRACE...*/
TRCLEV=(HWSW,HIGH,HWS) /*AND SERVER TO IMS CONNECT TRACE AT MEDIUM */

4.3.5 Defining IMS Connect security
You can start IMS Connect as a job or as a procedure. If IMS is RACF protected, you have to
start IMS Connect as a job with the JOB card specifying a valid user ID in order to make the
connection from IMS Connect to IMS, or you can use the RACF started procedure table.

You use the USERID=user ID parameter specified in JOB card of the IMS Connect job JCL
as the security vehicle to ensure IMS Connect access to IMS. The user ID must have READ
access to IMSXCF.group.member. IMS OTMA provides security for the IMS XCF connection
by defining and permitting IMSXCF.group.member in the RACF FACILITY class. For more
information about security, see Chapter 2, “Open Transaction Manager Access” on page 7
and Chapter 8, “IMS Connect security” on page 109.

4.3.6 Installing the default user exits into IMS Connect resource library
You have to install the following two exits into your IMS Connect resource library
(SHWSRESL) regardless of whether you intend to customize them, because IMS Connect
automatically loads these exits when it executes:

� HWSJAVA0

User message exit for IMS Connector for Java clients

� HWSUINIT

User initialization exit

You must compile and bind these exits before you execute IMS Connect; otherwise, IMS
Connect will not run. If you do not need to customize either of these two exits, you do not
need to do anything else with them.

Chapter 4. Configuring IMS Connect 53

Example 4-4 shows a sample JCL to bind these exits. It uses the following data sets and
member names:

� IMSHWS.SHWSMAC

IMS Connect macro library. If you have IMS Version 9, use the IMS.SDFSMAC library.

� IMSHWS.SHWSSRC

IMS Connect source library. If you have IMS Version 9, use the IMS.SDFSSRC library.

� IMSHWS.HWSRESL

IMS Connect resource library. If you have IMS Version 9, use the IMS.SDFSRESL library.

� Exit name

User exit routine name (HWSJAVA0 or HWSUINIT).

Example 4-4 Sample JCL to install the default user exits

//HWSEXIT JOB (ACTINF01),’PGMRNAME’,
// CLASS=A,MSGCLASS=Z,MSGLEVEL=(1,1),REGION=4M
//EXIT01 EXEC PGM=ASMA90,REGION=32M,
// PARM=’DECK,NOOBJECT,SIZE(MAX,ABOVE)’
//SYSLIB DD DSN=SYS1.SDFSMAC,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
// DD DSN=IMSHWS.SHWSMAC,DISP=SHR
//SYSPUNCH DD UNIT=SYSVIO,DISP=(,PASS),SPACE=(TRK,(1,1,1)),
// DSN=&&TEXT(exitname)
//SYSPRINT DD SYSOUT=*,
// DCB=(BLKSIZE=605),
// SPACE=(605,(100,50),RLSE,,ROUND)
//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),
// DCB=BLKSIZE=13024,
// SPACE=(CYL,(16,15))
//SYSIN DD DSN=IMSHWS.SHWSSRC(exitname),DISP=SHR
//EXIT02 EXEC PGM=IEWL,
// PARM=’SIZE=(880K,64K),RENT,REFR,NCAL,LET,XREF,LIST,TEST’
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMSHWS.HWSRESL,DISP=SHR
//SYSUT1 DD UNIT=SYSVIO,DISP=(,DELETE),SPACE=(CYL,(10,1),RLSE)
//TEXT DD UNIT=SYSVIO,DISP=(OLD,DELETE),DSN=&&TEXT
//SYSLIN DD *
 INCLUDE TEXT(exitname)
 ENTRY exitname
 NAME exitname(R)
//

When you install IMS Connect, the only exits installed to your system are the HWSIMSO0,
HWSIMS01, HWSCSLO0, and HWSCSLO1 user message exits. To customize any of the
other exits, modify the exit and then install it into your IMS Connect resource library. Refer to
Chapter 9, “IMS Connect user exit support” on page 115 for more information about exits.

4.4 IMS Control Center support
This section describes the steps needed to use the new IMS Control Center support.

54 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

4.4.1 IMS Connect configuration for IMS Control Center support
To customize IMS Connect for IMSplex support, perform the following actions:

1. Modify the IMS Connect JCL startup.

If you use IMS Connect Version 2.2, you need to have the IMS.SDFSRESL library in the
STEPLIB. If you use the IMS Version 9 IMS Connect integrated function, it is already in the
STEPLIB. Example 4-1 on page 45 gives an example of a JCL startup.

2. Customize the IMS Connect configuration member.

You have to modify your HWSCFGxx member to add these new parameters:

– In the parameter EXIT of the TCPIP statement, add the new user message exits for
IMSPLEX support, HWSCSLO0, and HWSCSLO1.

– The new IMSPLEX statement specifies each IMSPLEX that IMS Connect
communicates with through SCI. This statement defines the access to IMS OM.

Example 4-5 shows an IMS Connect configuration member with IMSPLEX support. IMS
Connect in this example connects to IMS Operations Manager (OM) using IMSPLEXG as the
member name and PLEXG as the SCI name. PLEXG is the name specified in the SCI
initialization PROCLIB member.

Example 4-5 HWSCFG member with IMSPLEX support

HWS (ID=IMSGCONN,RACF=N,XIBAREA=20)
TCPIP (HOSTNAME=TCPIP,PORTID=(7003,LOCAL),MAXSOC=2000,TIMEOUT=8800,
EXIT=(HWSSMPL0,HWSCSLO0,HWSCSLO1),IPV6=Y)
DATASTORE (ID=IMSG,GROUP=IMS9EXCF,MEMBER=HWS910G,TMEMBER=SCSIM9G)
IMSPLEX (MEMBER=IMSPLEXG,TMEMBER=PLEXG)

4.4.2 IMS Control Center configuration
In your IMS Control Center, define a new system with the parameters of your IMS Connect.
Figure 4-3 shows how to configure an IMS system to connect to IMSG using the IMS Connect
of Example 4-5.

Figure 4-3 Configuring the IMS system in the IMS Control Center

Chapter 4. Configuring IMS Connect 55

After these steps, you can issue commands to IMSG through the IMS Control Center.
Figure 4-4 on page 56 shows the IMS system defined in the previous example, IMSG in
PLEXG.

Figure 4-4 IMS system defined in the IMS Control Center

4.5 Confirming IMS Connect install with the sample Java client
You can download the IMS Client for Java program from the following IBM Redbook Web site
(see Appendix C, “Additional material” on page 507):

ftp://www.redbooks.ibm.com/redbooks/SG246794

You can also download sample client code from the IMS home page and then go to IMS
Connect:

http://www.ibm.com/ims

The program is shipped with IMS TCP/IP OTMA Connection (ITOC) through the Web, and its
purpose is installation verification by sending a transaction to the IMS through ITOC and
receiving the message that was returned from the IMS application. This program is designed
to use the HWSSMPL0 user exit; therefore, if you install the HWSSMPL0 to IMS Connect,
you can also use it for IMS Connect installation verification. However, this program does not
support any new functions of IMS Connect (for example, persistent socket connection and
asynchronous output support). If you want to verify these functions, you must modify the
sample program. Refer to Chapter 7, “IMS Connect programming model” on page 91 for more
information about the client programming.

56 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

ftp://www.redbooks.ibm.com/redbooks/SG246794
http://www.ibm.com/ims

The following steps identify what you need to install and implement to use the Java sample
program to confirm your IMS Connect operations.

Installing the IMS Connect sample Java program
This IMS client for Java sample program can be installed on any platform where a
Sun™-compatible Java Virtual Machine has been installed. Perform the following steps:

1. Move the JAVASAMP.exe file from the current directory (the directory from where it was
extracted) to a directory on an OS/2® or Microsoft® Windows® system where the sample
client will be installed or to another temporary directory.

Expand the file JAVASAMP.exe. The expanded files will be placed in the current directory
where JAVASAMP.exe is executed.

2. Modify the source code to match your environment.

You must modify the FrameInput.java file to construct input data that matches your
environment (host name, port number, transaction, and so on). You need to consider
changing the following statements:

– Port IDs: The default files come with port IDs 9999 and 9998. You need to change all
occurrences of these in the file to valid port IDs and possibly add options of more (if
you require more than two) by adding extra entries, similar to those found in
Example 4-6.

Example 4-6 Java sample: FrameInput.java changes for port number

groupPort = new CheckboxGroup();
 radioButtonPort1 = new Checkbox("9999", groupPort, true);
 radioButtonPort1.setBounds(getInsets().left + 312,getInsets().top + 36,100,40);
 add(radioButtonPort1);

 radioButtonPort2 = new Checkbox("9998", groupPort, false);
 radioButtonPort2.setBounds(getInsets().left + 312,getInsets().top + 66,100,40);
 add(radioButtonPort2);

– RACFUser: The default list of user IDs come as USER01-4, and the select(0)
statement, indicating the first one is brought up by default. You need modify this to
reflect valid user IDs for use. Refer to Example 4-7 for an example.

Example 4-7 Java sample FrameInput.java changes for RACF user ID

choiceSAFID = new Choice();
 choiceSAFID.addItem("SAFUsrID");
 choiceSAFID.addItem("USER01");
 choiceSAFID.addItem("USER02");
 choiceSAFID.addItem("USER03");
 choiceSAFID.addItem("USER04");

Note: This directory (to which you move the JAVASAMP.exe file) must be located on
an OS/2 or Windows drive that supports the long file names used for the Java files.

Optionally, you can enter JAVASAMP[.exe] -t at an OS/2 or Windows command prompt.
This causes an integrity check of the JAVASAMP.exe ZIP file to execute without
extracting any of the files from the ZIP file. If the IMS client for Java sample program
needs to be installed on a platform other than on the one where it was expanded, copy
the files for it to the platform where the sample program will be installed.

Chapter 4. Configuring IMS Connect 57

– Similar changes to those identified for the RACFUser are also needed for Tran, DS
(datastore ID), GRP (RACF user ID group), Client name (clientID), and HostName (IP
address).

The HWSSMPL0 program does not impose any limitations on the number of input and
output message segments. The Java client uses multisegment input and output text
areas. IMS Connect requires that all active clients have a unique client ID that, for the
IMS Client for Java, are taken from the clientID field defined in the FrameInput.java file.
Therefore, if you intend to allow multiple IMS Clients for Java to run simultaneously,
which is usually the case, you must either modify the FrameInput.java file so that the
clientID will be unique for each active client at any given time, or ensure in some other
way that the clientID for each active client is unique. For test purposes, be sure that you
use a unique clientID for each Java client when you click Submit.

3. Go to the command prompt and the directory containing all these expanded Java client
source files for the sample program. Enter the javac *.java command.

This creates the IMS Client for Java class files in the same directory.

Install the HWSSMPL0 user exit to your IMS Connect resource library. Compile and
link-edit HWSSMPL0, and then modify the IMS Connect configuration file to include the
HWSSMPL0 user exit in the TCP/IP statement as follows:

TCPIP=(...,EXIT=(HWSSMPL0,..),..)

After the IMS Client for Java sample program source code has been compiled, you can run
the IMS Client for Java program as a stand-alone Java application by entering the following
command at a command line prompt:

java ClientLauncher

You can also run the IMS Client for Java sample program as an applet, either locally or
remotely. If you want to run the applet as a local applet, open ClientLauncher.html as a local
file from a Java-enabled Web browser, which allows an applet to execute socket calls.

If you want to run the applet as a remote applet, copy all .class, .gif, and .html files to your
Web server's HTML directory and open the Client Launcher (ClientLauncher.html) in a
Java-enabled Web browser.

You then receive the panel shown in Figure 4-5 on page 59.

58 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 4-5 Sample Java Client Launcher window

The Client Launcher starts a new transaction input client frame (see Figure 4-6 on page 60)
every time you click the Start A Client button. If you start more than one client window, the
newer windows hide the existing client window. All of these client frame windows run
independently, so you must close each window individually if you are running the IMS Client
for Java as an applet. If you are running the IMS Client for Java as a Java application, you
can either close the client frame windows individually (as you must do if IMS Client for Java is
running as an applet) or all at the same time by closing the original window (the Client
Launcher running as an application). When you close the Client Launcher application, all
client frame windows that were generated by that application close automatically.

Chapter 4. Configuring IMS Connect 59

Figure 4-6 Java transaction input client frame

The IMS Client for Java program provides pull-down lists and a text area for supplying the
information for a transaction request message that will be used to contract a message to be
sent to IMS Connect. The values associated with the list items can be changed. The functions
of the eight buttons at the bottom of the IMS Client for Java window are:

� Send

Connects to IMS Connect if the TCP/IP socket connection does not exist, and sends a
transaction request message.

� Receive

Requests output from the current transaction request.

� Ack

Sends a message acknowledging (accepting) the transaction output that was just
received.

� Nack

Sends a message rejecting the transaction output that was just received, and then
automatically receives and displays the abnormal termination message from IMS
Connect.

� Resume Tpipe

Reconnects to IMS Connect to receive asynchronous output only.

� Send Only

Connects to IMS Connect if the TCP/IP socket connection does not exist, and sends a
message containing a non-response transaction request to IMS Connect.

� Disconnect

Sends requests to deallocate TCP/IP socket connection to IMS Connect, and then
automatically receives and displays abnormal termination messages from IMS Connect.

60 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� Close

Closes the IMS Client for the Java program window.

The IMS Client for Java program is intended to enable users to manually execute simple
transactions such as those that are part of the IMS INSTALL/IVP sample application. The
program is designed to enable you to manually start multiple clients if wanted. However, when
using multiple clients simultaneously, you must ensure that each client uses a unique clientID.
Otherwise, if you try to send messages to IMS from two clients, both of which use the same
clientID, you will get a duplicate client error for the second client, assuming that the first client
is still active when the second client attempts to connect (sends a message) to IMS Connect.

To run the PART transaction, type the transaction code and data in the input text window.
Figure 4-6 on page 60 shows the input for a PART transaction and the output received from
IMS.

Note: The IMS Client for Java program is sample code and is not intended to represent a
robust program suitable for production environments. As a result, it is relatively easy to put
the IMS Client for Java program into states where, for example, it cannot continue a
conversation. Another specific example is when a conversation using one of the IMS
INSTALL/IVP transactions has ended, and the sample program does not have the ability to
recognize that the conversation has ended. As a result, it attempts to process the Send
button event as the next iteration of the already ended conversation. Because the
conversation has ended, a Java exception is thrown. In this case, and in other similar
cases, it is usually sufficient to click the Disconnect button and start over. In other cases,
it might be necessary to close the client that is not responding correctly and start a new
client in its place.

Chapter 4. Configuring IMS Connect 61

62 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 5. IMS Connect operations

You can interact with IMS Connect using two types of commands:

� Commands entered as system replies against the IMS Connect started task

� Commands entered as MODIFY instructions against the IMS Connect started task (new
with IMS Connect Version 2.2 and the integrated IMS Connect function of IMS Version 9)

Reply and modify command families are functionally equivalent. You can choose the set that
is more appropriate for your environment and needs. In addition, you can also issue IMS
commands and BPE commands related to the functions of IMS Connect. In this chapter, we
cover all these types of commands.

5

© Copyright IBM Corp. 2006. All rights reserved. 63

5.1 IMS Connect REPLY commands
You can issue the following commands using a REPLY against the IMS Connect started task:

� CLOSEHWS
� OPENDS or STARTDS
� OPENIP or STARTIP
� OPENPORT or STARTPT
� RECORDER
� SETRACF
� SETRRS
� STOPCLNT
� STOPDS
� STOPIP
� STOPPORT
� VIEWDS
� VIEWHWS
� VIEWIP
� VIEWPORT
� VIEWUOR

All of these IMS Connect commands must be immediately preceded on the command line of
the z/OS system console according to the reply number of the outstanding IMS Connect reply
message. IMS Version 9: IMS Connect Guide and Reference, SC18-9287, fully documents
these commands.

The following sections list all the commands with their parameters and an example of the
output from each. All the following examples are based on the IMS Connect configuration file
in Example 5-1.

Example 5-1 Example of IMS Connect configuration file

HWS (ID=IMSGCONN,RACF=N,XIBAREA=20)
TCPIP (HOSTNAME=TCPIP,PORTID=(7003,LOCAL),MAXSOC=2000,TIMEOUT=8800,
EXIT=(HWSSMPL0,HWSCSLO0,HWSCSLO1),IPV6=Y)
DATASTORE (ID=IMSG,GROUP=IMS9EXCF,MEMBER=HWS910G,TMEMBER=SCSIM9G)

5.1.1 CLOSEHWS
The CLOSEHWS command terminates IMS Connect. The parameters for this command are:

� QUIESCE

Specifies that termination is to end all client and datastore connections in a controlled
manner. If no parameter is specified for CLOSEHWS, this parameter is used by default.

All work that is currently in progress, or that is queued for processing, is completed before
IMS Connect is terminated.

� FORCE

Specifies that termination is to end all client and datastore connections immediately, which
forces any IMS applications that are executing for the connected clients to abnormally
terminate.

Example 5-2 on page 65 shows the output of this command.

64 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 5-2 An example of the CLOSEHWS command

R074,CLOSEHWS
*075 HWSC0000I *IMS CONNECT READY* IMSGCONN
 HWSS0770I LISTENING ON PORT=LOCAL TERMINATED; M=PSCH
 HWSP1415I TCP/IP SOCKET FUNCTION CALL FAILED; F=ACCEPT4 , R=-1, E=1152, M=SDCO
 HWSS0770I LISTENING ON PORT=7003 TERMINATED; M=SSCH
 HWSS0781I TCPIP COMMUNICATION FUNCTION CLOSED; M=SOCC
 HWSD0260I DS=IMSG TRANSMIT THREAD TERMINATED; M=DXMT
 HWSD0260I DS=IMSG RECEIVE THREAD TERMINATED; M=DREC
 HWSM0560I IMSPLEX=PLEXG TRANSMIT THREAD TERMINATED; M=OXMT
 HWSM0560I IMSPLEX=PLEXG RECEIVE THREAD TERMINATED; M=OREC
 HWSD0282I COMMUNICATION WITH DS=IMSG CLOSED; M=DSCL
 HWSM0582I COMMUNICATION WITH IMSPLEX=PLEXG CLOSED; M=DSCL
 HWSM0580I IMSPLEX COMMUNICATION FUNCTION CLOSED; M=DOC3
 HWSC0020I IMS CONNECT IN TERMINATION
 BPE0007I HWS BEGINNING PHASE 1 OF SHUTDOWN
 BPE0008I HWS BEGINNING PHASE 2 OF SHUTDOWN
 BPE0009I HWS SHUTDOWN COMPLETE
 HWSL0101I HWS CLEANUP SUCCESSFUL

5.1.2 OPENDS or STARTDS
The OPENDS and STARTDS commands are equivalent and can be used to start the
communication between IMS Connect and a datastore. The parameter for this command is:

� datastore_id

Specifies the name of the datastore, as defined in the HWSCFGxx configuration member.

Example 5-3 shows the output of this command.

Example 5-3 An example of the OPENDS command

R 79, OPENDS IMSG
*080 HWSC0000I *IMS CONNECT READY* IMSGCONN
 HWSD0290I CONNECTED TO DATASTORE=IMSG ; M=DSC1

5.1.3 OPENIP or STARTIP
The OPENIP or STARTIP commands can be used to start or reestablish the communication
between IMS Connect and the IMSplex that contains the Operations Manager (OM) instance
that is connected to SCI and will be used to issue commands using the IMS Control Center.

The parameter for this command is:

� imsplex_id

Identifies the IMSplex. This name must be defined to IMS Connect through the
configuration member HWSCFGxx and must match the TMEMBER that is defined in the
IMSplex configuration statement.

Example 5-4 shows the output of the STARTIP command.

Example 5-4 An example of the STARTIP command

 R 102, STARTIP PLEXG
*103 HWSC0000I *IMS CONNECT READY* IMSGCONN
 HWSM0590I CONNECTED TO IMSPLEX=PLEXG ; M=OSC1

Chapter 5. IMS Connect operations 65

5.1.4 OPENPORT or STARTP
The OPENPORT and STARTP commands can be used to reestablish IMS Connect
communication with TCP/IP to enable listening on TCP/IP ports. The parameter for this
command is:

� portid

Identifies the number of the port to be opened. For the local option port, specify a port ID
value of LOCAL.

Example 5-5 shows the output of this command.

Example 5-5 An example of the OPENPORT command

R 82, OPENPORT 7003
*083 HWSC0000I *IMS CONNECT READY* IMSGCONN
 HWSS0790I LISTENING ON PORT=7003 STARTED; M=SOC2

5.1.5 RECORDER
The RECORDER command can either open or close the recorder trace file. This file is a
reusable file and requires an IDCAMS VSAM REPRO utility to dump the contents for
analysis. It is used primarily to diagnose problems with the IMS Connect user exits. The
parameters for this command are:

� OPEN

Opens the recorder trace.

� CLOSE

Closes the recorder trace.

Example 5-6 shows the output of this command.

Example 5-6 An example of the RECORDER command

R 83, RECORDER OPEN
*084 HWSC0000I *IMS CONNECT READY* IMSGCONN
 HWSR0880I RECORDER OPENED; M=RCDR
 R 84, RECORDER CLOSE
*085 HWSC0000I *IMS CONNECT READY* IMSGCONN
 HWSR0890I RECORDER CLOSED; M=RCDR

5.1.6 SETRACF
The SETRACF command can turn the RACF flag and any subsequent RACF user ID
checking on or off. The RACF= parameter in the HWS startup parameter sets this at IMS
Connect startup. The parameters for this command are:

� ON

Turns on RACF security.

� OFF

Turns off RACF security.

Example 5-7 on page 67 shows the output of this command.

66 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 5-7 An example of the SETRACF command

R 85, SETRACF ON
*086 HWSC0000I *IMS CONNECT READY* IMSGCONN
 R 86, SETRACF OFF
*087 HWSC0000I *IMS CONNECT READY* IMSGCONN

5.1.7 SETRRS
The SETRRS command enables or disables communication between IMS Connect and RRS.

The parameters for this command are:

� ON

Turns on communication with RRS.

� OFF

Turns off communication with RRS.

Example 5-8 shows the output of the SETRRS command.

Example 5-8 An example of the SETRRS command

 R 323, SETRRS OFF
*324 HWSC0000I *IMS CONNECT READY* IMSGCONN
 R 324, SETRRS ON
*325 HWSC0000I *IMS CONNECT READY* IMSGCONN

5.1.8 STOPCLNT
The STOPCLNT command terminates communication with a client using a specific TCP/IP
port. The parameters for this command are:

� portid

Identifies the number of the port whose client communication is to be stopped.

� clientid

Identifies the name of the client, obtained from the VIEWHWS command.

Example 5-9 shows the output of this command (HWS8PBTM is the client name, in this case
automatically generated by IMS Connector for Java).

Example 5-9 An example of the STOPCLNT command

R 88, STOPCLNT 7003 HWS8PBTM
*089 HWSC0000I *IMS CONNECT READY* IMSGCONN
 HWSS0761I TCPIP COMMUNICATION WITH CLIENT=7003 _HWS8PBTM STOPPED;
 M=SCCM

5.1.9 STOPDS
The STOPDS command immediately terminates communication between IMS Connect and
the datastore. The parameter for this command is:

� datastore_id

Specifies the name of the datastore, as defined in the HWSCFGxx configuration member.

Chapter 5. IMS Connect operations 67

Example 5-10 shows the output of this command.

Example 5-10 An example of the STOPDS command

R 078, STOPDS IMSG
 HWSD0260I DS=IMSG TRANSMIT THREAD TERMINATED; M=DXMT
 HWSD0260I DS=IMSG RECEIVE THREAD TERMINATED; M=DREC
 HWSD0202W FWE FUNCTION=COMMERR , FAILED FOR DS=IMSG , COMMAND=STOPDS IN PROGRESS;
M=DSCM
 HWSD0284I COMMUNICATION WITH DS=IMSG STOPPED;
 M=DSCM

5.1.10 STOPIP
The STOPIP command stops communication between IMS Connect and the IMSplex that
contains the OM that is connected to SCI and used to send commands entered through the
IMS Control Center. The parameter for this command is:

� imsplex_id

Specifies the name of the IMSplex. This name must be defined to IMS Connect through
the configuration member HWSCFGxx.

Example 5-11 shows the output of the STOPIP command.

Example 5-11 An example of the STOPIP command

 R 99, STOPIP PLEXG
 HWSM0560I IMSPLEX=PLEXG TRANSMIT THREAD TERMINATED; M=OXMT
*102 HWSC0000I *IMS CONNECT READY* IMSGCONN
 HWSM0560I IMSPLEX=PLEXG RECEIVE THREAD TERMINATED; M=OREC
 HWSM0502W FWE FUNCTION=COMMERR , FAILED FOR IMSPLEX=PLEXG ,
 HWSM0584I COMMUNICATION WITH IMSPLEX=PLEXG STOPPED;
 M=DSCM

5.1.11 STOPPORT
The STOPPORT command immediately terminates listening on a TCP/IP port. The
parameter for this command is:

� portid

Identifies the number of the port to be stopped.

Example 5-12 shows the output of this command.

Example 5-12 An example of the STOPPORT command

R 81, STOPPORT 7003
 HWSP1415E TCP/IP SOCKET FUNCTION CALL FAILED; F=ACCEPT4 , R=-1, E=1152, M=SDCO
*082 HWSC0000I *IMS CONNECT READY* IMSGCONN
 HWSS0770I LISTENING ON PORT=7003 TERMINATED; M=SSCH

68 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

5.1.12 VIEWDS
The VIEWDS command displays the current status of the specified IMS system (datastore).
The parameter for this command is:

� datastore_id

Specifies the name of the datastore, as defined in the HWSCFGxx configuration member.

Figure 5-13 shows an example of the output of this command.

Example 5-13 An example of the VIEWDS command

R 89, VIEWDS IMSG
 HWSC0001I DATASTORE=IMSG STATUS=ACTIVE
 HWSC0001I GROUP=IMS9EXCF MEMBER=HWS910G
 HWSC0001I TARGET MEMBER=SCSIM9G
 HWSC0001I RACF APPL NAME=

This display shows the following information:

� The datastore name of IMSG (it also happens to be the IMSID).

� IMS9EXCF is the name of the XCF group, which must be the same group of which the
IMS system is a member.

� HWS910G is the XCF member name of IMS Connect within the XCF group.

� SCSIM9G is the XCF member name of the target IMS system within the XCF group. This
is the same as the OTMANM parameter in the IMS startup parameters.

5.1.13 VIEWHWS
The VIEWHWS command displays the current status of the OTMA connection. Example 5-14
shows an example of the output of this command.

Example 5-14 An example of the VIEWHWS command

R 91, VIEWHWS
 HWSC0001I HWS ID=IMSGCONN RACF=N
*092 HWSC0000I *IMS CONNECT READY* IMSGCONN
 HWSC0001I MAXSOC=2000 TIMEOUT=8800
 HWSC0001I RRS=N STATUS=REGISTERED
 HWSC0001I VERSION=910 IP-ADDRESS=009.012.006.077
 HWSC0001I DATASTORE=IMSG STATUS=ACTIVE
 HWSC0001I GROUP=IMS9EXCF MEMBER=HWS910G
 HWSC0001I TARGET MEMBER=SCSIM9G
 HWSC0001I RACF APPL NAME=
 HWSC0001I IMSPLEX=PLEXG STATUS=ACTIVE
 HWSC0001I MEMBER=IMSPLEXG TARGET=PLEXG
 HWSC0001I PORT=7003 STATUS=ACTIVE
 HWSC0001I CLIENTID USERID TRANCODE STATUS SECOND CLNTPORT IP-ADDRESS
 HWSC0001I HWS9MBBI USER01 PART RECV 6 3116 009.001.039.119
 HWSC0001I TOTAL CLIENTS=1 RECV=1 CONN=0 XMIT=0 OTHER=0
 HWSC0001I PORT=LOCAL STATUS=ACTIVE
 HWSC0001I NO ACTIVE CLIENTS

This display shows the following characteristics:

� This IMS Connect is known as HWS910G.

� RACF security within IMS Connect is turned off.

Chapter 5. IMS Connect operations 69

� The datastore name is IMSG (it also happens to be the IMSID).

� IMS9EXCF is the name of the XCF group, which must be the same group of which the
IMS system is a member.

� HWS910G is the XCF member name of the IMS Connect within the XCF group.

� SCSIM9G is the XCF member name of the target IMS system within the XCF group. This
is the same as the OTMANM parameter in the IMS startup parameters.

� PLEXG is the XCF member name of the IMSplex that this IMS Connect will send
commands on behalf of the IMS Control Center.

� The port number is 7003, as defined to IMS Connect.

� The following information concerns the client that is connecting to the IMS Connect:

– Client
HWS9MBBI is the client name, which is set in the IRM header (IRM_CLIENTID field)
by the client (this client name has been generated automatically by IMS Connector for
Java).

– USERID
USER01 is USERID, which is set in the IRM header (IRM_RACF_USERID field) by the
client.

– Tran Code
PART is the transaction code, which is submitted by the client.

– Status
RECV (waiting for input from client) and WFCM (waiting for confirmation from IMS) is
the status of the client’s thread. In this case, IMS Connect is waiting for an ACK/NAK
message from the client for a send-then-commit (confirm) message confirmation.

– Seconds
The number of seconds (6) that the client has been in the specified status.

– Client port
3116 is a random number that TCP/IP generates to represent a connection from the
client.

– IP address
009.001.039.119 is the IP address used by the connection of the client to IMS
Connect.

5.1.14 VIEWIP
The VIEWIP command displays the current activity for the IMSplex.

This command parameter is:

� imsplex_id

Species the name of the IMSplex for which information is to be displayed. This is an
optional parameter, and if specified, it must match the ID parameter of the IMSplex
configuration statement in the HWSCFGxx member.

Example 5-15 shows the output of the VIEWIP command.

Example 5-15 An example of the VIEWIP command

9.18.22 STC27345 R 104, VIEWIP PLEXG
19.18.22 STC27345 HWSC0001I IMSPLEX=PLEXG STATUS=ACTIVE
19.18.22 STC27345 HWSC0001I MEMBER=IMSPLEXG TARGET=PLEXG

70 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

This displays shows:

� PLEXG is the name of the IMSplex defined in the ID parameter of the IMSplex
configuration statement in the HWSCFGxx member.

� The status of the IMSplex is ACTIVE. It can also be NOT ACTIVE or DISCONNECT.

� IMSPLEXG is the name of the member as defined in the MEMBER parameter of the
IMSplex configuration statement in HWSCFGxx.

� PLEXG is the target member name, that is, the member of the IMSplex to which IMS
Connect has connected. It is defined in the TMEMBER parameter of the IMSplex
configuration statement in HWSCFGxx.

5.1.15 VIEWPORT
The VIEWPORT command displays the current status of communication between IMS
Connect and the specified port. The parameter for this command is:

� portid

Identifies the number of the port to be displayed.

Example 5-16 shows the output of this command.

Example 5-16 An example of the VIEWPORT command

 R 162, VIEWPORT 7003
 HWSC0001I PORT=7003 STATUS=ACTIVE
*163 HWSC0000I *IMS CONNECT READY* IMSGCONN
 HWSC0001I NO ACTIVE CLIENTS

This display shows the following characteristics:

� The port number is 6001, as defined to IMS Connect.
� There are no currently active clients, but the connection is active.

5.1.16 VIEWUOR
The VIEWUOR command displays the current status of a specific unit of recovery identifier
(URID) or all the URIDs in IMS Connect.

This command expects to get one parameter:

� UORID

Specifies the 16-byte character identifier of a specific unit of recovery, or the keyword ALL
to request to display all UORs.

Example 5-17 shows the output of the VIEWUOR command.

Example 5-17 An example of the VIEWUOR command

 R 320, VIEWUOR ALL
 HWSC0050I URID=BD293FE57E5FAA5C0000000601060000
*321 HWSC0000I *IMS CONNECT READY* IMSGCONN
 HWSC0050I STATE=IN_FLIGHT FMID=57415344
 HWSC0050I GTRID_L=39 BQUAL_L=28
 HWSC0050I XID=00000000000000B700000004F5B61706
 HWSC0050I XID=253293601DBA22945AEF45D538B7931A
 HWSC0050I XID=73657276657231F5B61706253293601D
 HWSC0050I XID=BA22945AEF45D538B7931A000000049D
 HWSC0050I XID=569D5600000000000000000000000000

Chapter 5. IMS Connect operations 71

 HWSC0050I XID=00000000000000000000000000000000
 HWSC0050I XID=00000000000000000000000000000000
 HWSC0050I XID=00000000000000000000000000000000
 HWSC0050I TOTAL UOR=1 INDOUBT=0 INBACKOUT=0 INCOMMIT=0 OTHER=1

The display shows:

� URID

The 16-byte character identifier of a specific unit of recovery.

� STATE

State of the UR. It can be one of the following values:

– IN_RESET
– IN_FLIGHT
– IN_STATE_CHECK
– IN_PREPARE
– IN_DOUBT
– IN_COMMIT
– IN_BACKOUT
– IN_END
– IN_ONLY_AGENT
– IN_COMPLETION
– IN_FORGET
– FORGOTTEN

Refer to IMS Version 9: IMS Connect Guide and Reference, SC18-9287.

� XID

The X/open identifier identifies the distributed transaction, used by the X/Open
architecture.

� TOTAL UOR

The total number of UORs in any state.

� INDOUBT

The total number of UORs in IN_DOUBT state.

� INBACKOUT

The total number of UORs in IN_BACKOUT state.

� INCOMMIT

The total number of UORs in IN_COMMIT state.

� OTHER

The total number of UORs in any other state.

5.2 IMS Connect MODIFY commands
Starting with IMS Connect Version 2.2 and with the integrated IMS Connect function of IMS
Version 9, you can issue commands to IMS Connect using the operating system MODIFY
interface. The syntax of the MODIFY command is:

F jobname,command

Where jobname is the name of the IMS Connect started task, and command is the string of
characters you want IMS Connect to execute.

72 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

This interface supports the use of wildcard characters:

� * matches zero or more characters.

� % matches exactly one character.

This wildcard characters are the same ones that you use in TSO and PDF when you specify a
member or data set names.

The commands you can issue using the MODIFY interface are functionally equivalent to the
ones you can issue using REPLY. The commands responses are also the same.

Table 5-1 shows the equivalence between the REPLY syntax and the MODIFY commands.

Table 5-1 Equivalence between REPLY and MODIFY commands

5.3 IMS Connect BPE commands
You can use IMS Connect Base Primitive Environment (BPE) commands for internal tracing.
You can only invoke IMS Connect BPE commands through the z/OS MODIFY command.
Refer to IMS Version 9: IMS Connect Guide and Reference, SC18-9287, for information
about IMS Connect BPE commands.

REPLY command MODIFY command

CLOSEHWS SHUTDOWN MEMBER OPTION({QUIESCE | FORCE})

OPENDS/STARTDS UPDATE DATASTORE (name1,name2,...) START(COMM)

OPENIP/STARTIP No equivalent command

OPENPORT/STARTPT UPDATE PORT(name1,name2...) START(COMM)

RECORDER OPEN
RECORDER CLOSE

UPDATE MEMBER TYPE(IMSCON) START(TRACE)
UPDATE MEMBER TYPE (IMSCON) STOP(TRACE)

SETRACF ON
SETRACF OFF

UPDATE MEMBER TYPE(IMSCON) SET (RACF(ON))
UPDATE MEMBER TYPE(IMSCON) SET (RACF(OFF))

SETRRS No equivalent command

STOPCLNT DELETE PORT NAME(port) CLIENT(client1,client2,...)

STOPDS UPDATE DATASTORE (name1,name2,...) STOP(COMM)

STOPIP No equivalent command

STOPPORT UPDATE PORT(name1,name2...) STOP(COMM)

VIEWDS QUERY DATASTORE NAME(name1,name2,...) [SHOW(ALL)]

VIEWHWS QUERY MEMBER TYPE(IMSCON) [SHOW(ALL)]

VIEWIP No equivalent command

VIEWPORT QUERY PORT NAME(port1,port2,...) [SHOW(ALL)]

VIEWUOR QUERY UOR NAME(urid1,urid2,...) [SHOW(ALL)]

Chapter 5. IMS Connect operations 73

5.4 IMS command support for IMS Connect and OTMA
This section describes the IMS commands that can be used to check the status of IMS
Connect.

5.4.1 /DISPLAY OTMA
The /DISPLAY OTMA command displays the XCF information, status, and security level.
Example 5-18 shows an example of the output of this command.

Example 5-18 An example of the /DIS OTMA command

R 328, /DIS OTMA
DFS000I GROUP/MEMBER XCF-STATUS USER-STATUS SECURITY IMSG
DFS000I IMS9EXCF IMSG
DFS000I -SCSIM9G ACTIVE SERVER FULL IMSG
DFS000I -HWS910G ACTIVE ACCEPT TRAFFIC IMSG
DFS000I *05165/133257* IMSG

This example shows the OTMA XCF group name of IMS9EXCF, with a number of members
of this group. SCSIM9G is the IMS system itself, and HWS910G is the XCF member name of
the IMS Connect, which is connecting to SCSIM9G.

5.4.2 /DISPLAY TMEMBER tmember_name TPIPE tpipe_ID
The /DISPLAY TMEMBER command can be used to display the status of the current
transaction member status for OTMA clients and servers.

The first example (Example 5-19) simply shows all the members in the XCF group, which is
very similar to the /DIS OTMA command output.

Example 5-19 An example of the /DIS TMEMBER ALL command

R 329, /DIS TMEMBER ALL
DFS000I GROUP/MEMBER XCF-STATUS USER-STATUS SECURITY IMSG
DFS000I SCSIM9G ACTIVE SERVER FULL IMSG
DFS000I HWS910G ACTIVE ACCEPT TRAFFIC IMSG
DFS000I *05165/133605* IMSG

Next, this command (Example 5-20) also shows all the Tpipe connections and queue count
statistics for a particular OTMA XCF member (HWS910G). If IMS Connect sends transactions
using the send-then-commit protocol, the port number (in this case, 7003) is used as the
Tpipe name. If IMS Connect sends messages using the commit-then-send protocol, the client
name (in this case, CLIENT01/CLIENT02) is used as the Tpipe name. You can also see one
Tpipe name (HWSDLMT7) generated automatically by an IMS Connector for Java shareable
connection and another one (10913924) generated automatically by the HWSSMPL0 exit.

Example 5-20 An example of the /DIS TMEMBER tmember_name TPIPE ALL command

R 330, /DIS TMEMBER HWS910G TPIPE ALL
DFS000I MEMBER/TPIPE ENQCT DEQCT QCT STATUS IMSG
DFS000I HWS910G IMSG
DFS000I -HWSDLMT7 3 2 1 IMSG
DFS000I -CLIENT01 6 0 6 IMSG
DFS000I -7003 0 0 0 IMSG
DFS000I -CLIENT02 140 138 2 IMSG
DFS000I -10913924 7 4 3 IMSG
DFS000I *05165/133835* IMSG

74 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Note: ENQCT/DEQCT fields show the output message’s enqueue and dequeue counts.
Therefore, the Tpipe for the send-then-commit message shows zero in these fields,
because with the send-then-commit message flow, the output message is not enqueued.
The QCT field shows the messages waiting to be retrieved in the hold asynchronous
queue of each Tpipe.

Chapter 5. IMS Connect operations 75

76 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 6. Accessing IMS Connect

After the e-business application is developed and deployed, the next area to consider is the
requirement to support growth and availability and the concept of a single point-of-presence
to the Internet on behalf of multiple back-end servers. There are a number of mechanisms
that can be used to balance workloads across servers and provide fail-over capabilities.
When implementing these solutions, however, it is important to determine which IMS Connect
and associated IMS systems are part of this configuration and, if there are several, whether
any of the IMS systems accessible by these methods can accept or subsequently process or
route any transaction requested.

This chapter describes different ways to access IMS Connect and balance the workload in
the sysplex or Parallel Sysplex environment. The mechanisms presented in this chapter are
focused on those that are applicable to the use of TCP/IP sockets and IMS Connect.
Specifically, the topics include IP load balancing and high availability using functions such as
the Load Balancer of the IBM WebSphere Edge Components, virtual IP address (VIPA), and
the Sysplex Distributor. Additionally, we include a topic that describes the capability of IMS
Connect to route/reroute and receive messages to and from different IMS systems.

6

© Copyright IBM Corp. 2006 77

6.1 IMS Connect in Parallel Sysplex environment
You can have a number of IMS Connect systems available, any of which can be connected to
one or more IMS systems. Figure 6-1 shows an example of such a configuration.

Figure 6-1 The connections between IMS Connect and IMS systems in Parallel Sysplex

Note that IMS Connect can either reside on the same z/OS image as its target IMS or can
cross a system boundary assuming that the environment is sysplex-enabled. The assumption
in this discussion is that the servers that participate in load balancing and fail-over
mechanisms are part of a cluster of servers that together provide sufficient processing power
and capability to support the growing demands of the client base. Furthermore, because the
environment on which IMS executes is a mainframe host, the term cluster in this document
specifically refers to a sysplex that is defined as a group of loosely coupled z/OS images. For
example, a sysplex can be multiple physical hosts connected by ESCON® channels or it can
be several LPARS within a physical host. The sysplex can be either a base sysplex that uses
CTC links or a Parallel Sysplex that uses a coupling facility to send data between the images.
The cluster, therefore, from a connectivity perspective is a set of servers that run the same
application and can provide the same contents to its clients.

6.2 Load Balancer
Connection requests to IMS Connect can be short-lived, as is the case for transaction
sockets and non-persistent sockets, or they can be long-lived, as is the case for persistent
sockets. This is important to understand because the decision for load balancing, or picking a
specific server instance to process the work, occurs during the upfront connection phase and
not during the data transfer of individual messages.

The Load Balancer is a function delivered with IBM WebSphere Edge Components and
consists of five functions that can be used separately or together. These are the Dispatcher,
content-based routing (CBR) for HTTP and HTTPS, the Site Selector, the Cisco CSS
Controller, and the Nortel Alteon Controller. The Dispatcher component distributes the load it
receives to servers contained in a cluster. More specifically, for IMS Connect, the Dispatcher
support in the Load Balancer can be used to intercept connection requests and attempt to
balance traffic by choosing and then forwarding the request to a specific server, for example,
a specific instance of IMS Connect, in the sysplex. This mechanism, commonly known as IP
spraying, also allows for scalability and failover. The use of the Load Balancer Dispatcher

T C P / I P I M S C o n n e c t A I M S 1

T C P / I P I M S C o n n e c t B I M S 2

T C P / I P I M S C o n n e c t C I M S 3

S y s p l e x

M V S A

M V S B

M V S C

Chapter 6. Accessing IMS Connect 78

helps maximize the potential of a sysplex because it provides a solution that can
automatically find new servers as they are enabled and added to the sysplex. It can also
detect a failed server and route new connection requests only to the available servers. This
type of capability was originally implemented and delivered as the Network Dispatcher in IBM
networking hardware such as the 2216 and the 3745 MAE. It evolved into the Network
Dispatcher capability of WebSphere Edge Server, which can be implemented on platforms
such as IBM AIX® 5L™, Microsoft Windows, Sun Solaris™, and Linux and is now the
delivered as the Load Balancer of the WebSphere Edge Components.

Figure 6-2 Communication flow using the Load Balancer Dispatcher function

In this environment, clients send their connection requests and data to a special IP address
that is defined as a cluster address to the Load Balancer Dispatcher. This same address is
further defined as a loopback alias address on all the sysplex IP stacks that contain copies of
the target application server, IMS Connect in this case. When a request resolves to this
special address, the Load Balancer selects one of the back-end servers and forwards the
packet to the appropriate port and server.

The selection of a server, or load balancing of requests, can be controlled through several
mechanisms. It can be based on simple round-robin scheduling to available servers, or it can
use more sophisticated techniques. These can be based on the type of request (HTTP, FTP,
Telnet, and so on), or an analysis of the load on the servers, or even through an algorithm
based on weights assigned to each server.

After a server is selected, the connection request and all subsequent data packets on that
connection are routed to that server. Because IP packets contain the originating IP address of
the requesting client, the server can reply directly to the client without sending the output back
through the Load Balancer. This is where the loopback alias address is required. Because the
original connection request and all inbound packets specify the special IP cluster address of
the Load Balancer, by protocol, all reply packets must also be sent by the same IP address.
The definition of the loopback alias on the back-end servers allow the reply packets to carry
this same address.

To support high availability and to prevent a single point of failure, the Load Balancer function
also supports a backup capability and redundancy. Two Load Balancers can be configured
with connectivity to each other, the same clients, and a cluster of servers. A heartbeat
function exists that enables each to detect the failure of the other along with a synchronization
mechanism for the applicable databases (connectivity tables, reachability tables, and so on)

Internet

9.28.32.4 is the address of the Load
Balancer (WebSphere Edge Components)

9.28.32.4

Loopback aliases

9.28.32.4 9.28.32.4

Client obtains IP
address for
server,
e.g., 9.28.32.4

Sysplex of TCP
servers

Chosen server
responds
directly to
client

Backup

IMS Connect
 PORT 5000

IMS Connect
 PORT 5000

IMS Connect
 PORT 5000

Chapter 6. Accessing IMS Connect 79

along with logic to elect the active Load Balancer and a mechanism to perform fast IP
takeover to switch from the active to the standby.

For more information about the Load Balancer and the WebSphere Edge Components, see
the IBM Redbook WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392, or the document Concepts, Planning, and Installation for Edge Components
Version 6.0, GC31-6855, which is available from the Edge Components Information Center
at:

http://www.ibm.com/software/webservers/appserv/ecinfocenter.html

In addition to providing a load balancing capability through the Load Balancer’s Dispatcher
function, IBM has also collaborated with other network technology partners to provide robust
load balancing solutions for sysplex. An example of this is the Cisco System MultiNode Load
Balancing (MNLB) capability, which provides similar functionality. For information, see:

http://www.ibm.com/servers/eserver/zseries/networking/technology.html

6.3 Virtual IP address (VIPA)
The next area to consider is high availability. In TCP/IP networks, a primary area of concern is
the outage of an IP network interface, more commonly known as an IP address. This is the
network access point to the TCP/IP stack. By default, the failure of an interface prevents
access to and from applications using that IP address. When the interface that fails is that of
a client TCP/IP stack, the impact is the isolation of the client application from the network.
However, if the interface that fails is that of a server, the impact is greater, because it affects
access to all server applications on that stack.

A solution to the larger impact of a server IP interface failure is a concept called virtual IP
address or VIPA, which eliminates the host server applications’ dependence on a specific
network interface. VIPA allows for the definition of a virtual IP address that does not
correspond to any physical interface, but instead it is associated with the stack as a whole.
The VIPA appears to be on a separate subnetwork with the stack itself as a gateway to that
subnetwork. The use of VIPA presumes that a TCP/IP stack has multiple physical links or
interfaces. Client packets that are targeted to the VIPA are routed to one of the available
physical interfaces. If that interface fails, the connection continues to remain intact, and
subsequent packets continue to be routed to the VIPA address using one of the other active
interfaces.

The implementation of VIPA can address the failure of a specific interface on a single TCP/IP
stack (static VIPA), the failure of the entire stack and all its interfaces (dynamic VIPA
takeover/takeback), or the failure of the server application on a specific host
(application-specific dynamic VIPA).

Chapter 6. Accessing IMS Connect 80

http://www.ibm.com/servers/eserver/zseries/networking/technology.html
http://www.ibm.com/software/webservers/appserv/ecinfocenter.html
http://www.ibm.com/software/webservers/appserv/ecinfocenter.html

6.4 Static VIPA
Static VIPA is the term used to refer to the first and simplest implementation of VIPA. It
supports failover from one network interface to another on a single stack, as shown in the
Figure 6-3.

Figure 6-3 Static VIPA

Note that the client application references the target server using the VIPA or a host name
that resolves to the VIPA. In this example, it is 10.0.3.5. The real network interfaces 10.0.1.1
and 10.0.1.2 appear to be intermediate hops. When the connection request is made, one of
the network interfaces, such as 10.0.1.1, is chosen for the connection and all subsequent
data transfer. Only in the event of a physical interface failure associated with 10.0.1.1 will the
traffic be routed to 10.0.1.2. This rerouting will be done non-disruptively without the client
application receiving any notification of a connection failure.

The definition and activation of VIPA is done through configuration statements in the
hlq.profile.tcpip file. IMS Connect is unaware of VIPA. It simply connects to a TCP/IP stack
and relies on the stack to perform the appropriate network function.

Static VIPA only addresses nondisruptive fault tolerance in the case of a specific network
interface failure on a stack. If the stack itself fails, VIPA fails. To move the VIPA to a different
stack a manual, issue the vary obey command.

6.5 Dynamic VIPA takeover
To support recovery of a failed TCP/IP stack and to automate the movement of the VIPA to a
surviving backup stack, the VIPA support was enhanced to include a function called dynamic
VIPA takeover. The use of this capability presumes that server application instances and IMS
Connect instances exist on the backup stack and can serve the clients formerly connected to
the failed stack.

In the example shown in Figure 6-4 on page 82, the dynamic VIPA IP address 10.0.3.5 is
defined as having a home stack on TCPIPA and a backup on TCPIPB.

TCP/IP

IMS
Connect

Port 5000

10.0.1.1

10.0.1.2

10.0.3.5

OS/390

routers with
dynamic route
updating

remote host

Connect to
port 5000
at 10.0.3.5

Chapter 6. Accessing IMS Connect 81

Figure 6-4 Dynamic VIPA takeover

Likewise, TCPIPB is defined as the primary for 10.0.3.10 and TCPIPA as the backup. Both
stacks share information regarding the dynamic VIPAs through the use of XCF messaging
services. Therefore, each TCP/IP stack is aware of all the dynamic VIPA addresses and the
associated primary and backup order.

If a stack or its underlying z/OS system fails, all other stacks in the sysplex are informed of
the failure. The VIPA is automatically moved to the backup stack, which receives information
regarding the connections from the original stack. All new connection requests to the VIPA
are processed by the backup, which becomes the new active. Instances of the server
applications, such as IMS Connect systems, listening on the same ports are automatically
started if they are not already active on the backup. Additionally, the network routers are
informed about the change. From a client application perspective, a connection failure is
received when the primary stack fails but the client can immediately resubmit a new
connection request that will be processed by the backup (new active) stack.

6.6 Dynamic VIPA takeback
The corollary to VIPA takeover support is VIPA takeback, which is the ability of a reactivated
primary or home stack to reestablish ownership of the VIPA. There are two choices for the
takeback support that can be defined, as shown in Table 6-1.

Table 6-1 Dynamic VIPA takeback

By default, after the primary is reactivated, the VIPA is reacquired and new connection
requests are immediately routed to it. Connections that are still active on the backup remain
there, and the backup sends information about these still active connections to the primary.
Because subsequent data packets associated with all connections using the VIPA flow to the
primary, the primary has the responsibility to detect where the data should be sent. If the data
is associated with a connection owned by the primary, it is sent to the appropriate server
application on its stack. If, however, the data is associated with an old connection that is still
associated with the backup, the primary sends the data to the backup stack.

routers with
dynamic route
updating

remote
host

Connect to
port 5000
at 10.0.3.5

10.0.1.1
10.0.1.2

10.0.1.3
10.0.1.4

TCPIPA

IMS
Connect
Port 5000

10.0.3.5

VipaDynamic
VipaDefine 255.255.255.0
10.0.3.5
VipaBackup 1 10.0.3.10
EndVipaDynamic

TCPIPB

IMS
Connect
Port 5000

10.0.3.10
VipaDynamic
VipaDefine 255.255.255.0
10.0.3.10
VipaBackup 1 10.0.3.5
EndVipaDynamic

10.0.3.10

10.0.3.5

SYSA

SYSB

VIPADEFine ---MOVEable --- IMMEDiate---- address_mask ------- IP address

VIPADEFine ---MOVEable --- WHENIDLE---- address_mask ------- IP address

Chapter 6. Accessing IMS Connect 82

6.7 Application-specific dynamic VIPA
Up to this point, references to a VIPA have implied a direct association with and an ownership
by a TCP/IP stack. Access to a specific server application using the VIPA requires that
processes be in place to either start the application after the VIPA is activated on that stack,
or to have an active instance of the same application (same port) on each stack.

Another VIPA capability is a function called application-specific dynamic VIPA. This enables a
server application to register its own unique VIPA with the TCP/IP stack and establish its
ownership of the address. The application server can then be moved around the sysplex
without affecting the clients that know it by name or address. The name and address do not
change even when the specific application server instance physical location changes.
Because the application instance is active on only one image of the sysplex, and therefore
one TCP/IP stack at a time, the other images and TCP/IP stacks provide a cold standby of the
service. This is of value for environments that do not need or require multiple concurrent
instances of the same application server, but still need the high-availability profile that can be
provided with dynamic VIPA.

To support this capability, the configuration statements in hlq.profile.tcpip must permit
activation of the specific dynamic VIPA within a subnet range that is defined to ensure that
unwanted IP addresses are not created. This is done through the specification of a viparange
statement, as shown in Figure 6-5 on page 84.

Additionally, the application server must request the initiation of this special IP address. This
can be done in one of three ways:

� Code in the application itself that issues a bind() to that specific IP address.

This is not applicable to IMS Connect because the existing code is written to bind to any IP
address (non-specific) that is provided by the stack itself.

� Specification of the BIND keyword in the PORT statement of the TCPIP profile.

This option is the preferred method for IMS Connect. This method invokes the TCP/IP
Server Bind Control function that intercepts the IMS Connect non-specific bind() request
and converts it to a specific bind request to the IP address specified in the PORT
statement. Figure 6-5 on page 84 shows this option.

� Invocation of an authorized program that issues the SIOCSVIPA IOCTL() command.

This is an alternative to the previous solution if the PORT statement cannot be modified.
To use this alternative, add a step in the IMS Connect startup JCL to invoke a special
TCP/IP utility called MODDVIPA. The utility is in the TCPIP.SEZALINK library.

Chapter 6. Accessing IMS Connect 83

Figure 6-5 Application-specific dynamic VIPA

In the example in Figure 6-5, when IMS Connect is activated on SYSA, its unique VIPA
10.0.9.9 is activated on TCPIPA as defined by the configuration statements in the TCPIP
profile. Remote programs that request a connection to port 5000 and IP address 10.0.9.9 are
routed to IMS Connect on SYSA. In the event of a failure, such as failure of the entire SYSA
image, IMS Connect can be restarted on SYSB. When this new instance of IMS Connect
opens port 5000 on TCPIPB, the dynamic VIPA is automatically moved. Remote applications
that again issue the same connection requests to port 5000 and IP address 10.0.9.9 are
transparently routed to the IMS Connect instance on SYSB. For more information, refer to the
IBM Redbook Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume
5: Availability, Scalability, and Performance, SG24-6517, and the following Web site:

http://www.ibm.com/servers/eserver/zseries/networking/vipa.html

The previous example assumes that there is a procedure in place to automatically restart IMS
Connect on SYSB. This restart can be done with automated operator procedures or through
manual operator intervention. The z/OS environment provides a recovery function, called the
Automatic Restart Manager (ARM), that can automatically restart applications that have failed
on either the same or a different LPAR. To take advantage of this capability, the application
must be coded to issue the ARM API (IXCARM). IMS Connect does not issue the ARM API
and does not provide the capability to do so.

To resolve the issue of having to modify applications to take advantage of ARM, IBM
developed a program called ARMWRAP that issues the ARM calls on behalf of the
application. After this code is downloaded from the Web, the IMS Connect JCL can be
modified to call the function. Figure 6-6 on page 85 shows how this is done.

TCPIPB
IMS Connect
Port 5000

routers with
dynamic route
updating

remote
host

Connect to
port 5000
at 10.0.9.9

TCPIPA

IMS Connect
Port 5000

PORT
 5000 TCP IMSCONN
 BIND 10.0.9.9

SYSA

SYSB

PORT
 5000 TCP IMSCONN
 BIND 10.0.9.9

hlq.PROFILE.TCPIP

...
VIPADYNAMIC
 VIPARANGE DEFINE MOVEABLE NONDISRUPT 255.255.255.0 10.0.9.9
ENDVIPADYNAMIC
...
PORT
5000 TCP IMSCONN BIND 10.0.9.9

10.0.1.3
10.0.1.4

10.0.1.1
10.0.1.2

Chapter 6. Accessing IMS Connect 84

http://www.ibm.com/servers/eserver/zseries/networking/vipa.html

Figure 6-6 Implementing ARMWRAP with IMS Connect

This example shows that the IMS Connect procedure is wrapped in a step ahead of the actual
invocation of IMS Connect to register the process to ARM and a step after IMS Connect
terminates to unregister. If IMS Connect fails during execution, the ARM definitions are
invoked and automatically restart IMS Connect based on the policy defined.

For more information about ARMWRAP, see:

http://www.redbooks.ibm.com/redpapers/pdfs/redp0173.pdf

To download the ARMWRAP code, access the following site:

ftp://www.redbooks.ibm.com/redbooks/REDP0173/

Figure 6-7 show the combination of ARMWRAP and application-specific dynamic VIPA from a
definition perspective.

Figure 6-7 IMS Connect JCL with ARMWRAP and application-specific dynamic VIPA support

6.8 Sysplex Distributor
The Sysplex Distributor is an enhancement to sysplex IP support and is a function that
resides on a sysplex host. It answers the requirement for a single network-visible or single
point-of-presence IP address for the sysplex cluster and also provides a complete solution to
workload balancing and high availability. In terms of the concepts that have just been
discussed, Sysplex Distributor provides a load balancing type of function with the benefits of
dynamic VIPA all rolled up into a single host-based solution.

//IMSCONN PROC ..
//* invoke armwrap to register IMS Connect with ARM
//REGSTEP EXEC PGM=ARMWRAP,
// PARM=('REQUEST=REGISTER'...
//......
//* invoke IMS Connect
//CONNSTP EXEC PGM=HWSHWS00 ...
//......
//UNREG EXEC PGM=ARMWRAP,
PARM=('REQUEST=UNREGISTER)

ARM

IMS Connect IMS Connect

//IMSCONN PROC ..
//...
//* invoke armwrap to register IMS Connect with ARM
//* Register element 'EXAMPLE' using element type of
//* 'XAMP'with ARM. Restart on all types of terminations.
//REGSTEP EXEC PGM=ARMWRAP, PARM=('REQUEST=REGISTER'...
// 'TERMTYPE=ALLTERM,ELEMENT=EXAMPLE,',
// 'ELEMTYPE=XAMP,READYBYMSG=N')
//......
//
//.....
//* invoke IMS Connect
//CONNSTP EXEC PGM=HWSHWS00 ...
//
//
//......
//* unregister with ARM
//UNREG EXEC PGM=ARMWRAP, PARM=('REQUEST=UNREGISTER)

To invoke application-initiated DVIPA, add a PORT
definition in hlq.TCPIP.PROFILE

PORT xxx TCP startedtaskname BIND ipaddr

This will be activated when IMS Connect
initializes - this is the recommended approach

As an alternative to the above hlq.TCPIP.PROFILE
specification, IMS Connect JCL can include the
following step:
//TCPDVP EXEC PGM=MODDVIPA,....
// PARM='-p TCPIP -c 10.0.9.9'
//....

Chapter 6. Accessing IMS Connect 85

http://www.redbooks.ibm.com/redpapers/pdfs/redp0173.pdf
ftp://www.redbooks.ibm.com/redbooks/REDP0173/

As a sysplex function, it removes the configuration limitations associated with the Load
Balancer of the WebSphere Edge Components (XCF links, rather than LAN connections, are
used between the distributing stack and the target servers) and further removes the
requirement of specific hardware in the WAN. It also enhances the dynamic VIPA capability
and takes advantage of the takeover/takeback support for its own distributing and backup
stacks. Figure 6-8 demonstrates the concept.

Figure 6-8 The Sysplex Distributor environment

As part of the implementation, the Sysplex Distributor is configured with a distributing stack
on one of the sysplex images (H1) and a backup stack on another image (H2). The other
images (H3-H5) can be configured as secondary backups. Only the active distributing stack
takes the responsibility of advertising the dynamic VIPA (DVIPA) outside the sysplex.

The stacks in the sysplex communicate with each other using XCF services. H1 detects
which stacks in the sysplex have active listening ports (5000 for IMS Connect) that are
defined as part of the DVIPA environment. The distributing stack builds a table to keep track
of server information and also tracks all connection requests associated with the DVIPA.

When an inbound connection request arrives, the distributing stack selects an available target
sever with a listening socket and uses XCF services to send the connection to the selected
stack. The connection is established between the remote client and the target server, in this
case H3. The distributing stack on H1 updates its connection table with the information. This
allows H1 to know where to route subsequent data packets that are sent on that connection.
When the connection terminates, H3 notifies H1 that the connection no longer exists so that
H1 can update its table.

If H1 fails, all participating stacks in the sysplex are notified of the failure. Dynamic VIPA
takeover is activated, and H2 defines itself as the new distributing stack. All other
participating stacks H3-H5 send their connection information regarding the DVIPA to H2 to
facilitate the rebuilding of the connection table. Existing connections between remote clients
and IMS Connect systems on H3-H5 are not affected. Data flows are simply rerouted through
H2.

remote host

Connect to
port 5000
at 10.1.9.9

ESCON
CF

Sysplex

Target TCP/IP stack

DVIPA "HIDDEN"
 10.1.9.9

IMS Connect
Port 5000

Distributing TCP/IP
stack

DVIPA PRIMARY
 10.1.9.9

Sysplex Distributor

Backup TCP/IP stack

DVIPA BACKUP
 10.1.9.9

Sysplex Distributor

Target TCP/IP stack

DVIPA "HIDDEN"
 10.1.9.9

IMS Connect
Port 5000

Target TCP/IP stack

DVIPA "HIDDEN"
 10.1.9.9

IMS Connect
Port 5000

Sysplex distributor
- keeps track of connections
- keeps track of target stacks and
applications
- invokes Workload Manager H1

H2

H3

H4

H5

hlq.profile.tcpip for H1
IPCONFIG
 DATGRAMFWD
 DYNAMICXCF
 SYSPLEXROUTING
...
VIPADYNAMIC
 VIPADEFINE MOVE IMMED 255.255.255.0 10.1.9.9
 VIPADISTRIBUTE 10.1.9.9 PORT 5000 DESTIP ALL
ENDVIPADYNAMIC

Chapter 6. Accessing IMS Connect 86

After H1 is reactivated, dynamic VIPA takeback begins. Again, this is nondisruptive to existing
connections. H2 sends its connection information to H1 so that it can rebuild its table and
resume its activities.

In this environment, the only time that remote clients see a connection failure is when the
back-end host running IMS Connect fails. This is because that host is the terminating point of
the failure. Failures of other hosts or stacks, including the distributing stack, are transparent.
When a connection failure is received, the remote client can immediately resend a new
connection request. As long as an IMS Connect is active on a listening port, the request can
be satisfied.

6.9 IMS Connect load balancing and failover
After a message destination has been resolved to a particular host system and IMS Connect,
the next set of configuration decisions deals with connectivity between IMS Connect and the
IMS systems in the sysplex. IMS Connect can be partnered with a single IMS, or it can be
given access to several as shown previously in Figure 6-1 on page 78.

When provided with access to multiple IMS systems, code can be added to the IMS Connect
user message exits to perform load balancing and failover. The code to do this has to be
user-written unless the environment includes a product such as IMS Connect Extensions
(5655-K48) that provides an interface that facilitates this capability. Regardless of whether
code has to be written or a product is used, IMS Connect provides a datastore table that
keeps track of the status, active or inactive, of all the IMS systems that are defined in the
HWSCFG file. The table is updated as events occur, such as whenever a member of the
group, IMS, or IMS Connect joins or leaves. When a message reaches IMS Connect, the
appropriate user message exit is invoked. All user message exits have access to the
datastore table and can take action based on the information. Figure 6-9 describes two
possibilities.

Figure 6-9 Using the datastore table

Be aware that the examples in Figure 6-9 assume that the input messages can be accepted
by any of the IMS systems. In other words, the systems are cloned and data sharing is
implemented; or an IMS routing mechanism such as Multiple Systems Coupling (MSC) has

can take action to reroute
m essage to an active IM S
on the list

HW S (ID=IMSCONN,RACF=Y)
TCPIP (HOSTNAME=TCPIP,RACFID=IDX,PORTID=(5000),EXIT=(HW SIMSO0,HW SSM PL0)
DATASTORE (ID=IM SA,GROUP=IMSXCF,MEMBER=ICONN1,TMEMBER=IM SA)
DATASTORE (ID=IM SB,GROUP=IMSXCF,MEMBER=ICONN2,MEMBER=IM SB)
DATASTORE (ID=IM SC,GROUP=IM SXCF,MEM BER=ICONN3,TMEMBER=IMSC)

IM S Connect
Message exits

input m sg for IMSA

IMSA - inactive
IMSB - active
IMSC - active

Datastore table IM SA

IM SB

IM SC

1.

input m sg for a
generic nam e IMS

IMSA - active
IMSB - active
IMSC - active

action is to
round-robin requests
across the active IMSs

IM SA

IM SB

IM SCIM SA - 5 , IMSB - 8, IMSC - 2
optional table to
keep track of usage

2.

HW SCGF00

action is to send the
request to the next
IM S in the list

IMS Connect
Extensions
(5655-K48)

OR

Chapter 6. Accessing IMS Connect 87

been configured to send the message to the appropriate IMS; or IMS shared message queue
support has been enabled. The examples are only two of several possibilities that can be
explored:

1. In the first example, the IMS Connect user message exit is enhanced to verify that the IMS
system, as defined by the datastore ID, is available. If the target IMS is available the exit
makes no changes to the destination. If not, the exit can implement a fail-over solution by
routing the message to another IMS system with an active status.

2. If an IMS Connect system can reach multiple IMSs, it is up to the client program to specify
a target datastore ID. This can be an unwieldy requirement to impose on client
applications. This example provides a generic resource capability. The client programs
are written to specify a generic datastore ID, IMS, that is intercepted by a user message
exit and then changed to a valid value that is marked active in the datastore table.
Additionally, the exit can implement a load balancing algorithm such as a round-robin of
the requests.

The IMS Connect user message exits, therefore, provide an interface that enables a creative
programmer the opportunity to code a solution that answers both failover and load balancing
needs. Refer to IMS Version 9: IMS Connect Guide and Reference, SC18-9287, for more
information about the datastore table and the user message exits.

6.10 Retrieving output messages
The next area of consideration for IMS Connect is the retrieval of output messages. There are
two supported application commit protocols that a remote application can use when
communicating with IMS Connect that control not only the interaction with IMS but also
impact how output messages are to be treated:

� Send-then-commit (CM1)

Remote applications that specify the use of this protocol in the IRM_F2 flag are written to
send an input message and wait for the output reply on the same connection. The IOPCB
reply messages using the CM1 protocol are sent prior to sync point processing. This type
of interaction is easily incorporated into the load balancing, sysplex distribution, and so on,
environment. IMS Connect simply delivers the output message to the waiting remote
application using the same connection that was established on the inbound request.

� Commit-then-send (CM0)

Remote applications can also use the alternative CM0 protocol to send and receive
messages. If the remote application chooses to wait for a reply, the IOPCB message is
delivered as a result of the completion of IMS sync point processing on the same
connection that was used for the input message. However, as documented in Chapter 2,
“Open Transaction Manager Access” on page 7, IMS Connect also supports
asynchronous or unsolicited output from IMS using the CM0 application protocol. The
output messages, either those resulting from ALTPCB calls or any IOPCB replies that
were not delivered to a waiting application, are maintained in a special hold queue in IMS
until a remote TCP/IP application sends a special RESUME TPIPE request to IMS
Connect to retrieve the message.

The CM0 output messages in IMS are queued to a message queue construct that is
identified by Tmember and Tpipe and, therefore, associated with a specific IMS Connect
instance. As a result, there is a potential consideration when using any of the load
balancing or sysplex distribution mechanisms. To retrieve the message, the remote
program will need to establish a connection through the appropriate IMS Connect to the
actual IMS system that queued the message. This can be a challenge because there is no
easy mechanism for a remote program to discover the required connection path, that is, a

Chapter 6. Accessing IMS Connect 88

specific IMS Connect to a specific IMS. Additionally, the remote programs might not want
to know specific connection paths to IMS because that would negate the value of using
load balancing and distribution mechanisms. Figure 6-10 illustrates this point.

Figure 6-10 RESUME TPIPE using load balancing or distribution mechanisms

The OTMA super member function resolves this issue. Refer to 2.6, “Super member
support for IMS Connect” on page 23 for more information about prerequisites and
implementation information. The super member capability allows a RESUME TPIPE
request to retrieve CM0 output across all combinations of IMS Connect and IMS systems.
If multiple IMS systems are involved, those IMS systems must also have IMS shared
queues implemented. If there is only one IMS system but multiple IMS Connects, shared
queues support is not required. See Figure 6-11.

Figure 6-11 RESUME TPIPE with super member support

As shown in Figure 6-11, a RESUME TPIPE request for clientx can be routed through any
load balancing or distribution mechanism to either IMS Connect A or IMS Connect B. Both
systems are identified to IMS1 and IMS2 as their unique XCF member names and the
global super member name of SMEM1. The request to retrieve the output message for
Tpipe clientx can be sent to either IMS1 or IMS2 because both have access to the shared

IMS Connect A IMS1

TCP/IP
Load balancing
or distribution
mechanisms
can pick either
IMS Connect (A
or B) IMS Connect B

IMS2

Sysplex

MSGx for
Clientx and
IMS Connect B

Resume Tpipe for clientx
Through
IMS Connect (generic)
and IMS (generic)

Will only retrieve MSGx
If the connection is
correctly established with
IMS Connect B and IMS1

If a connection is
established through any
other path, this program will
either disconnect or timeout
at some point

Load balancing
mechanisms can
Pic k either IMS

Possible connections:
IMS Connect A to IMS1
IMS Connect A to IMS2
IMS Connect B to IMS1
IMS Connect B to IMS2

IMS Connect A IMS1

TCP/IP
Load balancing
or distribution
mechanisms
can pick either
IMS Connect (A
or B) IMS Connect B

IMS2

Sysplex

MSGx for
Clientx and
IMS Connect B

Resume Tpipe for clientx
Through
IMS Connect (generic)
and IMS (generic)

Will only retrieve MSGx
If the connection is
correctly established with
IMS Connect B and IMS1

If a connection is
established through any
other path, this program will
either disconnect or timeout
at some point

Load balancing
mechanisms can
Pic k either IMS

Possible connections:
IMS Connect A to IMS1
IMS Connect A to IMS2
IMS Connect B to IMS1
IMS Connect B to IMS2

IMS Connect A
(supermember
SMEM1)

IMS1

TCP/IP
Load balancing
or distribution
mechanisms
can pick either
IMS Connect (A
or B) IMS Connect B

(supermember
SMEM1) IMS2

Sysplex

Resume Tpipe for clientx
through
IMS Connect for a
message in IMS

Regardless of which IMS
Connect is used, the SMEM1
name is passed to either IMS
with a request for messages for
clientx and SMEM1.

MSGx for
clientx and
SMEM1

Shared msg
queues

IMS Connect A
(supermember
SMEM1)

IMS1

TCP/IP
Load balancing
or distribution
mechanisms
can pick either
IMS Connect (A
or B) IMS Connect B

(supermember
SMEM1) IMS2

Sysplex

Resume Tpipe for clientx
through
IMS Connect for a
message in IMS

Regardless of which IMS
Connect is used, the SMEM1
name is passed to either IMS
with a request for messages for
clientx and SMEM1.

MSGx for
clientx and
SMEM1

Shared msg
queues

MSGx for
clientx and
SMEM1

Shared msg
queues

Chapter 6. Accessing IMS Connect 89

queues and, more specifically, to all the messages under the shared queues construct for
SMEM1 and Tpipe clientx.

6.11 The whole picture
The use of all the capabilities mentioned in the previous sections is what enables IMS
Connect and IMS to be configured in a single point-of-presence environment to the Internet.
More importantly, this type of configuration allows the flexibility required for workload growth
without requiring modifications to the remote applications to discover new instances of the
back-end servers. Figure 6-12 shows the environment from the remote host all the way to
IMS.

Figure 6-12 End-to-end options

rem o te ho st

C onn ect to
port 5000
a t 10 .0 .9 .9
IM S - tran a

S end
R ece ive

routing and w ork load
ba lanc ing m echan ism :
- W ebS phere E dge
 C om ponen ts
- C isco, e tc .
- S ysp lex D is tribu to r

10 .0 .1 .2

10.0 .2 .2

 T C P /IP

 P R IM A R Y
 10.1 .9 .9

IM S A TR A N A

IM S C o nn ect
P ort 5000

C heck
D a tas to re
tab le and rou te
m essage to
IM S A or IM S B

 TC P /IP

B AC KU P
 10.1.9 .9 IM S B TR A N A

IM S C on nect
P ort 5000

C heck
D atasto re
tab le and route
m essage to
IM S A or IM S B

 fa ilover m echan ism :
 - A R M
 - D ynam ic V IPA
 - S ysp lex D is tribu to r

M S G x for
c lientx and
S M E M 1

S hared m sg
queues

M S G x for
c lientx and
S M E M 1

S hared m sg
queues

Superm em ber
 S M E M 1

Superm em ber
 S M E M 1

C onnect to
po rt 5000
a t 10 .0 .9 .9
R esu m e Tp ipe
for c lien tx

C onnect to
port 5000
a t 10.0 .9 .9
IM S - tranB

S e nd
D isco nnect

TR A N B

TR A N B

Chapter 6. Accessing IMS Connect 90

Chapter 7. IMS Connect programming
model

IMS Connect receives data from a TCP/IP client, performs basic editing and translation,
invokes security, and prepares the message in the OTMA format. Response messages from
IMS are also prepared into a format that the TCP/IP client understands. Before you start
coding the your own TCP/IP client programs, you must know the following information:

� The message structures that are allowed by IMS Connect and user exits

� The relationship between the client application and IMS application, OTMA commit mode,
and IMS transaction mode

� The socket types supported by IMS Connect

� The asynchronous output function supported by IMS Connect

This chapter describes how a TCP/IP to IMS connection is established and how the client and
server exchange application data. The descriptions in this chapter are generic. If you are
interested about how to program an IMS Connect client, refer to Chapter 12, “IMS Connector
for Java” on page 221 if you are using IMS Connector for Java, or to Chapter 14, “Building roll
your own clients” on page 265 if you are writing your own client.

7

© Copyright IBM Corp. 2006. All rights reserved. 91

7.1 IMS Connect message structures
IMS Connect communicates with OTMA through an XCF session using the OTMA message
headers. See Figure 7-1. Clients that use TCP/IP socket calls as their communication vehicle
can design a user exit routine that runs with IMS Connect to convert messages between the
following formats:

� Convert the client message format to OTMA message format
� Convert the IMS response, in an OTMA message format, to a client message format

Figure 7-1 Message flow between TCP/IP client and IMS (OTMA)

These conversions enable the client to retrieve IMS data through a TCP/IP connection.
Therefore, clients that communicate with IMS Connect must follow the message structure that
is predefined by the user exit routine. The message structures consists of the standard IMS
messages (LLZZData) and the TCP/IP message structures.

7.1.1 IMS Request Message (IRM)
IMS Connect expects all client messages that it receives to start with a 4-byte total length
field, followed by an IMS Request Message (IRM) prefix. The TCP/IP client communicates
with IMS by sending an IRM as the first message segment to IMS Connect. The input data
stream consists of the IRM, immediately followed by all segments of application data.

7.1.2 Request Status Message (RSM)
IMS Connect returns the Request Status Message (RSM™) as the structure of an output
message if IMS Connect or the message exit determines that an error occurred. The RSM
contains a return and reason code indicating the type of status.

7.1.3 Complete Status Message (CSM)
IMS Connect returns the Complete Status Message (CSM) as the last structure of an output
message if the input message is processed successfully. It does not generate an
end-of-message (EOM) segment.

OTMA

IMS Connect

TCP/IP Client

OTMA Prefix LLZZData

User Exit

IRM LLZZData
(1) TCP/IP Client -- > IMS Connect

(2) IMS Connect -- > IMS OTMA

OTMA Prefix LLZZData

(3) IMS OTMA -- > IMS Connect

(4) IMS Connect -- > TCP/IP Client

LLZZData

When MOD name requested

RMM CSM

LLZZData

When MOD name not requested

CSM

When notifying information to client

RSM

92 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

7.1.4 Request Mod Message (RMM)
IMS Connect returns the Request Mod Message (RMM) as the first structure of an output
message, if the Message Format Service (MFS) message output descriptor (MOD) name is
requested and the data output is present.

Refer to Chapter 9, “IMS Connect user exit support” on page 115 and Chapter 14, “Building
roll your own clients” on page 265 for more information about IMS Connect message
structures.

7.2 IMS Connect sample message flows
This section describes several sample IMS Connect message flows, including the client calls
and IMS Connect actions, for conversational and non-conversational transactions. The
sample flows use the following OTMA protocols:

� Commit-then-send (commit mode 0) and sync level=confirm with ACK
� Send-then-commit (commit mode 1) and sync level=none
� Send-then-commit (commit mode 1) and sync level=confirm with ACK

Refer to 2.3, “Commit processing message flows” on page 12 for more information about
OTMA protocols.

7.2.1 Non-conversational transaction, CM=0, sync level=confirm
Figure 7-2 shows a sample message flow under the following conditions:

� The transaction is non-conversational.
� Commit mode is commit-then-send (confirm).
� Client sends ACK after it receives the message.

Figure 7-2 Commit-then-send message flow for non-conversational protocols

The sample flow shown assumes the following items:

� Commit-then-send is specified in the IRM_F2 field of the IRM header.
� The synchronization level is specified as confirm in the IRM_F3 header.
� The Tpipe is not synchronized.
� Both input and output messages are enqueued.

Client IMSIMS Connect Application

(1)Send

(3)GU Call
 ...
 ISRT to IOPCB
(4)Sync Start
(5)Sync End

(7)Transaction
 completes

(2)Transaction
 Inserted to SMBReceive

OTMA Prefix DATA

DATATRANOTMA Prefix TRAN DATA

MSGQ

DATA

MSGQ

(6)Output sent

(1)Send Receive

(8)Receive Send

(9)Send Receive
OTMA Prefix ACK

(10)Output dequeued

Send

Receive

Send

IRM DATATRANLLLL

CSMDATALLLL*

*HWSIMSO0 and
 HWSSMPL1 Only

IRM ACKLLLL

Chapter 7. IMS Connect programming model 93

7.2.2 Non-conversational transaction, CM=1, sync level=none
Figure 7-3 shows a sample message flow under the following conditions:

� The transaction is non-conversational.
� Commit mode is send-then-commit (none).

Figure 7-3 Send-then-commit (none) message flow for non-conversational transaction

The sample flow shown assumes the following items:

� Send-then-commit is specified in the IRM_F2 field of the IRM header.

� The synchronization level is specified as none in the IRM_F3 header. Therefore, IMS does
not request a response (ACK/NAK) when sending output.

� The Tpipe is not synchronized.

� The output message is not enqueued; it is sent directly to the client before data is
committed.

7.2.3 Non-conversational transaction, CM=1, sync level=confirm
Figure 7-4 on page 95 shows a sample message flow under the following conditions:

� The transaction is non-conversational.
� Commit mode is send-then-commit (confirm).
� Client sends ACK after it receives the message.

Client IMSIMS Connect Application

(1)Send

(3)GU Call
 ...
 ISRT to IOPCB
(4)Sync Start

(7)Sync End

 Transaction
 completes

(2)Transaction
 Inserted to SMBReceive

OTMA Prefix DATA

DATATRANOTMA Prefix TRAN DATA

MSGQ

DATA
(5)Output sent

(1)Send Receive

(6)Receive Send

Send

Receive

Receive
OTMA Prefix Commit Confirmed

*HWSIMSO0 and
 HWSSMPL1 Only

IRM DATATRANLLLL

CSMDATALLLL*

94 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 7-4 Send-then-commit (confirm) message flow for non-conversational transaction

The sample flow shown assumes the following items:

� Send-then-commit is specified in the IRM_F2 field of the IRM header.

� The synchronization level is specified as confirm in the IRM_F3 field of the IRM header.
Therefore, IMS requests a response (ACK/NAK) when sending output.

� The Tpipe is not synchronized.

� The output message is not enqueued; it is sent directly to the client before data is
committed.

7.2.4 Conversational transaction, CM=1, sync level=confirm
Figure 7-5 on page 96 shows a sample message flow under the following conditions:

� The transaction is conversational and terminated from the program successfully.
� Commit mode is send-then-commit (confirm) with ACK.

Client IMSIMS Connect Application

(1)Send

(3)GU Call
 ...
 ISRT to IOPCB
(4)Sync Start

(8)Sync End

 Transaction
 completes

(2)Transaction
 Inserted to SMB

CSMDATA

Receive

OTMA Prefix DATA

IRM DATATRAN DATATRANOTMA Prefix TRAN DATA

MSGQ

DATA
(5)Output sent

(1)Send Receive

(6)Receive Send

Send

Receive

Receive
OTMA Prefix Commit Confirmed

IRM ACK OTMA Prefix ACK
(7)Send Receive Send

(9)Commit confirmed
RSM Commit Confirmed

(10)Receive Send

*HWSIMSO0 and
 HWSSMPL1 Only

LLLL

LLLL*

LLLL

LLLL*

Chapter 7. IMS Connect programming model 95

Figure 7-5 Send-then-commit (confirm) message flow for conversational transaction

The sample flow shown assumes the following items:

� Send-then-commit is specified in the IRM_F2 field of the IRM header.

� The synchronization level is specified as confirm in the IRM_F3 field of the IRM header.
Therefore, IMS requests a response (ACK/NAK) when sending output.

� The Tpipe is not synchronized.

� The output message is not enqueued; it is sent directly to the client before data is
committed.

7.2.5 Send-only transaction, CM=0, sync level=confirm
Figure 7-6 on page 97 shows a sample message flow under the following conditions:

� The transaction is in non-response mode and terminated successfully without an output
message.

� Commit mode is commit-then-send (confirm) with ACK.

Client IMSIMS Connect Application

(4)GU Call
 ...
 ISRT to IOPCB
(5)Sync Start

(9)Sync End

(20)Receive Receive
OTMA Prefix Commit Confirmed

(19)Commit confirmedSend

(2)Transaction
 Inserted to SMBReceive

DATATRANOTMA Prefix TRAN DATA

MSGQ

DATA
(6)Output sent

Receive

(7)Receive Send

Send

Receive

OTMA Prefix ACK
(8)Send Receive Send

Receive (3)ACK

(10)Send

(11)Insert message
 to transactionReceive

OTMA Prefix DATA

MSGQ

(15)Output sent

Receive

(16)Receive Send

Send

Receive

OTMA Prefix ACK
(17)Send Receive Send

Receive (12)ACK (13)GU Call
 ...
 ISRT to IOPCB
(14)Sync Start

(18)Sync End
 Transaction is
 completed

OTMA Prefix DATA

OTMA Prefix ACK

OTMA Prefix DATA DATA

OTMA Prefix DATA

DATA

RSM Commit ConfirmedLLLL*

(1)Send(1)Send
IRM DATATRANLLLL

CSMDATALLLL*

IRM ACKLLLL

IRM DATALLLL

CSMDATALLLL*

IRM ACKLLLL

96 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 7-6 Commit-then-send message flow for send-only transaction

The sample flow shown assumes the following items:

� Commit-then-send is specified in the IRM_F2 field of the IRM header.

� The synchronization level is specified as confirm in the IRM_F3 field of the IRM header.

� The message type is specified as a send-only transaction in the IRM_F4 field of the IRM
header. Therefore, the client does not expect any output from IMS.

� The Tpipe is not synchronized.

7.2.6 The CANCEL TIMER request
You can find yourself in a situation in which you are waiting for an IMS Connect response and,
for some reason, the RECEIVE function fails. One such case is if a socket timeout is in effect,
and the socket timeout value is less than the IMS Connect execution timeout specified using
IRM_TIMER. Another case is an interrupted RECEIVE call due to an I/O error.

In both cases, if you are using specific clientIDs and you try to send another message to IMS
Connect, you will get an OTMA error because that the clientID is still active on IMS Connect.
IMS Connect will refuse to use the same clientID until the original interaction completes or
times out.

If you need to free that clientID so that you can continue using it without waiting for the
timeout to occur, you can send an IRM with a value of C in IRM_F4 and no transaction data.
This enables you to send transactions using that clientID again. If the first interrupted
interaction completes after that, its output will be considered not deliverable, and so:

� If the interrupted interaction was uses commit mode 1 and a synchronization level other
than none, IMS abends the transaction with U0119, and the output message is discarded.
If the synchronization level is none, the transaction is committed and its output is
discarded.

� If the interrupted transaction uses commit mode 0, IMS queues the output in the
asynchronous hold queue associated with Tpipe named after the clientID.

Client IMSIMS Connect Application

(1)Send

(3)GU Call
 ...
 Process
(4)Sync Start
(5)Sync End

 Transaction
 completes

(2)Transaction
 Inserted to SMBReceive

DATATRANOTMA Prefix TRAN DATA

MSGQ

(1)Send Receive Send
IRM DATATRANLLLL

Chapter 7. IMS Connect programming model 97

7.3 Socket connections and settings
IMS Connect provides three kinds of client connection protocols, which are called sockets.
Sockets define how IMS Connect manages client connections and when IMS Connect sends
a disconnect. The three socket types are:

� Persistent
� Transaction
� Non-persistent

The client program controls the socket settings, and the IMS Connect user message exits
and the user initialization exit enforce socket settings. The client selects the socket
connection type by setting a flag in IRM in the IRM_SOCT field.

Table 7-1 shows the relationship between OTMA the commit mode/user exit and the socket
connection type. Notice that the provided exits (HWSSMPL0/1, HWSIMSO0/1, and
HWSJAVA0) do not support non-persistent sockets. In IMS Connect Version 2.2 and later,
IMS Connector for Java uses only persistent sockets.

Table 7-1 Socket mode

The user message exits determine the socket type and then move the socket type
information to the OMUSR_FLAG1 field of OTMA header user data section.

7.3.1 Persistent sockets
A persistent socket is a connection between the client and IMS Connect that remains
connected until either the client or IMS Connect specifically makes a disconnect request. A
persistent socket can exist across multiple transactions.

There are two ways that the client can force a termination:

� By sending IMS Connect a disconnect request.

� By changing the socket type to transaction socket for the last transaction entered, such as
a log-off transaction.

Persistent Transaction Non-persistent

IRM_SOCT value X'10' X'00' X'40'

Send-then-commit Available Available Available

Commit-then-send Available Available Not available

HWSIMSO0/HWSIMSO1 Available Available Not available

HWSSMPL0/HWSSMPL1 Available Available Not available

HWSJAVA0 Available Not available Not available

Note: The IRM_SOCT flag must be set for each message that is sent to IMS Connect and
must be set for all messages that are associated with a single transaction to the same
socket type. If you do not, unexpected results can occur.

98 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

IMS Connect can also terminate the connection when an error occurs. IMS Connect user
message exits HWSIMSO0, HWSIMSO1, HWSSMPL0, HWSSMPL1, and HWSJAVA0
support the use of persistent sockets. IMS Connector for Java also supports the use of
persistent sockets. Both the send-then-commit and commit-then-send messages can use this
protocol. Figure 7-7 shows a sample message flow of a persistent socket connection
(send-then-commit, sync level=confirm with ACK, non-conversational transaction).

Figure 7-7 A sample message flow of persistent socket (CM=1, sync level=confirm)

7.3.2 Transaction sockets
A transaction socket is a connection between the client and IMS Connect that remains
connected for a single transaction or IMS conversation. The connection can be terminated
only by IMS Connect, either when IMS itself terminates, or when an error occurs. Figure 7-8
on page 100 shows a sample message flow of a transaction socket connection
(send-then-commit, sync level=confirm with ACK, non-conversational transaction).

Client IMSIMS Connect

Send Transaction

Response

DB Committed

Receive

Application

...
ISRT IOPCB
Sync Start

Sync End
Transaction
Completes

GU IOPCB

Send
ACK

Send
Transaction

Response

DB Committed

Receive

...
ISRT IOPCB
Sync Start

Sync End
Transaction
Completes

GU IOPCB

Send
ACK

Commit Confirmed
Receive

Commit Confirmed
Receive

OPEN Socket

Connection remains

1st
Transaction

2nd
Transaction

Chapter 7. IMS Connect programming model 99

Figure 7-8 A sample message flow of transaction socket (CM=1, sync level=confirm)

7.3.3 Non-persistent sockets
A non-persistent socket maintains a connection for a single input-and-output pair to IMS
Connect. IMS Connect terminates the connection after sending the output to the client for
non-conversational and conversational transactions. If three exchanges of input and output
occur, a disconnect is issued three times, one for each output from IMS Connect. None of the
IBM-supplied user message exits or IMS Connector for Java support non-persistent sockets.

7.4 Asynchronous output support
IMS Connect can manage asynchronous output by not allowing it to flow while a transaction is
being processed. This section describes the IMS Connect asynchronous output support for
IMS Version 9 or later.

7.4.1 What is asynchronous output?
There are several types of asynchronous output:

� Output that is sent to a client from an IMS application using the ALTPCB.

� Output that is sent to a client from an IMS application using a second or posterior output to
the IOPCB.

� Any commit-then-send (commit mode 0) output that is sent to the client for which the client
or IMS Connect sends a NAK in response to the output message.

Client IMSIMS Connect

Send Transaction

Response

DB Committed

Receive

Application

...
ISRT IOPCB
Sync Start

Sync End
Transaction
Completes

GU IOPCB

Send
ACK

Send
Transaction

Response

DB Committed

Receive

...
ISRT IOPCB
Sync Start

Synd End
Transactoin
Completes

GU IOPCB

Send
ACK

Commit Confirmed
Receive

Commit Confirmed
Receive

OPEN Socket

1st
Transaction

2nd
Transaction

Close Socket

OPEN Socket

Close Socket

100 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

OTMA inserts these messages to the special queue, which is used to hold commit-then-send
output that is commit-then-send output or alternate program communication block (PCB)
output for an OTMA client. Output messages in the queue are not delivered until the client
makes a request. IMS Connect can send the RESUME TPIPE command to tell IMS to deliver
one or all queued messages on the special queue for Tpipe. However, the option specified in
the command can be used to request how IMS can hold and deliver the message.

IMS Connect communicates the presence of asynchronous output to the client in one of the
following ways:

� By returning the flag CSM_AMSG (binary '10000000') in the CSM_FLG1 field in the
Complete Status Message (CSM).

� By returning the flag RSM_AMSG (binary '10000000') in the RSM_FLG1 field in the
Request Status Message (RSM).

7.4.2 Implementing asynchronous output support
When you receive the asynchronous output message, you must implement the following
actions to your client application:

1. Issue a CONNECT command.

2. Issue a TCP/IP SEND of an OTMA RESUME TPIPE command, immediately followed by a
TCP/IP READ function from the primary client application.

3. Issue a TCP/IP SEND of an ACK or NAK response on the receipt of the output message.

4. Repeat steps 2 and 3 until either all messages have been received, or until the end user
has received all of the messages that they want.

5. Issue a DISCONNECT command.

Asynchronous output message functions are controlled by information that is passed in the
IRM and then set in OTMA header by the user message exit. There are three types of
asynchronous output message controls: single, noauto, and auto. These control functions are
supported by IMS V7 or later. To choose the type of message control, the client code sets the
IRM field IRM_FLG5 to be one of the following values:

� IRM_F5_ONE, which retrieves a single message (single).

� IRM_F5_NOAUTO, which retrieves all messages that have been queued (noauto). After
all messages are received, a DISCONNECT and CONNECT, RESUME TPIPE must be
issued to reactivate the asynchronous output retrieve function.

� IRM_F5_AUTO, which retrieves all messages that have been queued, then retrieves any
additional messages that are queued later (auto).

HWSSMPL0 and HWSIMSO0 user message exits default to the NOAUTO type of
asynchronous output message management. The code that activates the selection from the
IRM_F5 field is commented out of the HWSSMPL0 user message exit.

For RESUME TPIPE requests, you must set values shown in Table 7-2 on page 102.

Restriction: Asynchronous output is only supported in IMS V7 and later releases. It is not
operational when IMS Connect is communicating with IMS V6.

Chapter 7. IMS Connect programming model 101

Table 7-2 IRM header value for RESUME TPIPE request

Timer value (IRM_TIMER) setting
The IRM_TIMER value is the wait value to wait for a RECEIVE issued from the client
following a RESUME TPIPE, or an ACK to the RECEIVEs following the RESUME TPIPE. The
IRM_TIMER value is set on the RECEIVE call, not on the RESUME TPIPE call. You can set
the IRM_TIMER field to be either a label or a decimal value, as shown in the Table 7-3.

Table 7-3 IRM header value for IRM_TIMER

7.4.3 SINGLE message control
Figure 7-9 on page 103 shows a sample message flow of the SINGLE message control
option. When using this option (by setting the IRM_F5 to IRM_F5_ONE field), the client can
receive only a single message.

Using the SINGLE message control option forces the following sequence of events to occur:

1. Client issues the CONNECT function.
2. Client issues the RESUME TPIPE function.
3. Client issues the RECEIVE function.
4. Client sends an ACK to IMS Connect.
5. IMS Connect disconnects the socket from the host end.
6. Client issues the DISCONNECT function.

If the client responds with a NAK rather than an ACK, the message that has been NAKed is
put back on the OTMA asynchronous hold queue and can be retrieved again later. IMS
Connect terminates the socket as described in event 5.

Function IRM field For SINGLE For NOAUTO For AUTO

Retrieval type IRM_F5 Binary '.... 0001' Binary '.... 0000' Binary '.... 0010'

Socket type IRM_SOCT Transaction socket (X'00') or persistent socket (X'10')

Commit mode IRM_F2 Commit-then-send (X'40')

Sync level IRM_F3 Confirm (X'01')

Message type IRM_F4 RESUME TPIPE (Character 'R')

Timer setting IRM_TIMER See the following description

IRM_TIMER value Wait value

IRM_TIME_QS (X'00') 0.25 second (default value)

IRM_TIME_ZERO (X'E9') No wait

IRM_TIME_FF (X'FF') Wait indefinitely

X'01' through X'19' A range of 0.01 second to 0.25 second

Recommendations: Use IRM_TIME_FF only with the auto asynchronous output message
management type (IRM_F5_AUTO). Because of the wait indefinitely condition, use
IRM_TIMER_FF and IRM_F5_AUTO together only when a dedicated output device is
available. Using these two IRM options together causes the client to act as though it were
a persistent socket (even though it is not), or to act like a never-ending transaction.

102 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 7-9 A sample message flow of the SINGLE message control option

If there is no message waiting to be retrieved, IMS Connect waits for the timeout set using
IRM_TIMER and sends the client an RSM with the timeout return code. Because IMS
Connect does not send any message to the client not present in the queue at the time the first
Receive() call is issued, you should specify a small timeout value to avoid the client being
blocked waiting for the timeout. Compare this behavior of the SINGLE option against the
SINGLE WAIT, described in the following section.

7.4.4 SINGLE WAIT message control
The flow for the SINGLE WAIT option is similar to the one for the SINGLE option. The
difference is that if you issue a RESUME TPIPE with the SINGLE WAIT option and there is no
message waiting to be retrieved, IMS Connect waits until the time set by IRM_TIMER before
sending a timeout response. Therefore, you can make your client wait for a message to arrive
without the need of polling the Tpipe.

Specify a reasonably high timeout value when you use this option, or even X'FF' (wait
forever), if you are writing a specialized client to process the asynchronous messages.

7.4.5 NOAUTO message control
Figure 7-10 on page 104 shows a sample message flow of the NOAUTO message control
option. When using this option (by setting the IRM_F5 to IRM_F5_NOAUTO field), the client
can receive all of the messages on the OTMA asynchronous queue.

Using the NOAUTO message control option forces the following sequence of events to occur:

1. Client issues the CONNECT function.
2. Client issues the RESUME TPIPE function.
3. Client issues the RECEIVE function.

Client IMSIMS Connect

Send Resume Tpipe

ResponseReceive

Send
ACK

DEQ

OPEN Socket

Close Socket

Connect

Disconnect

Chapter 7. IMS Connect programming model 103

4. Client sends an ACK to IMS Connect.
5. Client repeats events 3 and 4 until event 6 occurs.
6. IMS Connect disconnects the socket from the host end.
7. Client issues the DISCONNECT function.

Using the NOAUTO message control option, the client can always terminate by issuing a
DISCONNECT function after sending an ACK to IMS Connect. If the client responds with a
NAK rather than an ACK, the message that has been NAKed is put back on the OTMA
asynchronous hold queue and can be retrieved again later. IMS Connect terminates the
socket as described in event 6.

Figure 7-10 A sample message flow of the NOAUTO message control option

7.4.6 AUTO message control
Figure 7-11 on page 105 shows a sample message flow of the AUTO message control option.
When using the AUTO message control option (by setting the IRM_F5 to IRM_F5_AUTO
field), the client can receive all of the messages on the OTMA asynchronous queue, and any
messages that are placed on the OTMA asynchronous queue after the current messages are
all removed.

Using the AUTO message control option forces the following sequence of events to occur:

1. Client issues the CONNECT function.
2. Client issues the RESUME TPIPE function.
3. Client issues the RECEIVE function.
4. Client sends an ACK to IMS Connect.
5. Client repeats events 3 and 4.

If all the messages have been removed from the queue, event 3 remains active (that is, in a
receive state) until the user-specified timer supplied in the IRM has expired. IMS Connect
then terminates the socket.

Client IMS Connect IMS

Send Resume Tpipe

ResponseReceive

Send
ACK

DEQ

Response
Receive

Send ACK
DEQ

ResponseReceive

Send
ACK

DEQ

OPEN Socket

Asynchronous
Messages
in the queue

Last
Asynchronous
Message
in the queue

Close Socket

Connect

Disconnect

104 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Using the AUTO message control option, the client can always terminate by issuing a
DISCONNECT function after sending an ACK to IMS Connect.

If the client responds with a NAK rather than an ACK in events 3 or 5, the message that has
been NAKed is put back on the OTMA asynchronous hold queue, IMS Connect terminates
the socket, and then those messages can be retrieved again later.

Figure 7-11 A sample message flow of the AUTO message control option

7.4.7 Purge not deliverable
There are situations in which you will not be interested in the retrieval of the asynchronous
output messages. If you do not retrieve those messages, they add up in the queues and,
finally, you will need to purge those queues to get rid of the unwanted messages.

To avoid this situation, if you know from the beginning that you will not retrieve any
asynchronous output for a specific interaction, you can enable the purge not deliverable
output feature, using the X'04' value of the IRM_F3 parameter, or the equivalent attribute of
the IMS Connector for Java connection object.

If you set the purge not deliverable option for a commit mode 1 transaction that does a
program switch to a second transaction and the first transaction does an ISRT to the IOPCB,

Recommendation: If event 3 or event 5 receives a disconnect of the socket, the client
should disconnect and then wait for a time interval before repeating events 1-5.

Client IMSIMS Connect

Send Resume Tpipe

ResponseReceive

Send
ACK

DEQ

Response
Receive

Send ACK
DEQ

ResponseReceive

Send
ACK

DEQ

OPEN Socket

Asynchronous
Messages
in the queue

Last
Asynchronous
Message
in the queue

(Receive)*

Connection remains
until user- timer supplied in

IRM_TIMER value has expired

*Client can wait in RECEIVE status, and can receive any
 messages that are placed on the asynchronous queue.

Connect

Chapter 7. IMS Connect programming model 105

the purge not deliverable option applies to any ulterior ISRTs to IOPCB made by the second
or subsequent transactions.

If a commit mode 0 transaction sent with this option active does a program-to-program switch
to another transaction and inserts to the IOPCB, the IOPCB output from the second and
subsequent transactions will be discarded.

If purge not deliverable is set in the inputting message, and if IMS Connect can send the
response to the client and gets a NAK, the output is not purged.

Purge not deliverable is not supported for commit mode 1 output (notice that the output from
second or posterior transactions in a program to program switch chain when the first
transaction has responded is commit mode 0 output), SENDONLY transactions, or RESUME
TPIPE interactions. It is not supported for commit mode 1 because there is no queuing of
commit mode 1 responses. It does not make sense for SENDONLY because there is no
response to purge, and it is not applicable to RESUME TPIPE by its own definition.

7.4.8 Reroute request
If a client application sends a commit mode 0 transaction that generates output that is not
deliverable, and purge not deliverable is not in effect, that output gets enqueued in the
asynchronous hold queue of the client Tpipe.

This default behavior might not be convenient for several reasons:

� The client might be using the IMS Connector for Java shareable persistent connections
feature, which implies that the clientIDs are automatically generated at random.

� You might want to use a centralized procedure to retrieve and process all the
asynchronous output.

In the first case, there are strong restrictions if you need to issue a RESUME TPIPE to a
clientID that is generated automatically by IMS Connector for Java. Briefly, you can only do a
RESUME TPIPE if you use the same connection object that sent the transaction that
originated that asynchronous output. That means that you must associate RESUME TPIPE
interactions with normal SEND interactions, and it is possible that you do not or cannot do
that.

In second first case, if you are using several application-managed clientIDs, you must take the
appropriate measures to be sure that a specific clientID is not being used twice at the same
time, including the case when SEND and RESUME TPIPE interactions are being issued
simultaneously by the regular client activity and the specialized RESUME TPIPE process.
That means that you must design a serialization procedure, which can become quite
sophisticated when you take into account the possibility of running more than one client
server or several server clones (if using WebSphere Application Server for z/OS in scalable
mode).

IMS Connect lets you request that any undelivered asynchronous output request be routed to
a different clientID, which can be processed, if you want, by a specialized process. To use
this feature, you must:

� Specify the value X'08' for IRM_F3. This enables the reroute request.

Note: If you specify both X'04' and X'08' values, meaning purge not deliverable output
and reroute request, purge not deliverable supersedes reroute request. That means
that you will lose your asynchronous output.

106 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� Optionally, specify an alternate client name using the IRM_ARCH value to X'01' and
moving the name to IRM_REROUT_NM.

� If you do not specify an alternate client name, IMS Connect tries to use the value specified
for the RRNAME parameter in the IMS Connect configuration member.

� If you did not set a value for RRNAME, IMS Connect uses the default value “HWS$DEF”.

Note: Even beginning with HWS, you can use IMS Connector for Java to retrieve the
messages queued under HWS$DEF using a dedicated persistent connection. That is
an exception to the rule, which states that the HWSxxxxx TIPES can only be queried
using the same shareable persisted connection that was used to create the
asynchronous output.

Chapter 7. IMS Connect programming model 107

108 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 8. IMS Connect security

Security deserves increased focus and attention when your IMS systems are Web enabled.
Prior to IMS Version 5, the extent of the IMS security domain primarily involved only the IMS
systems and their related SNA connections. An exception to this was Advanced
Program-to-Program Communication (APPC), which opened up direct connectivity to IMS
from remote SNA clients. For these connections, the security environment had to be
enhanced to consider the remote client programs and the associated access to those
programs.

In IMS Version 5, the introduction of OTMA opened up another area of connectivity from a
variety of non-SNA clients, including IMS Connect. With the explosive growth in the
requirement to access established mainframe data through the Internet, IMS Connect has
moved into the forefront of providing connectivity into IMS from the TCP/IP environment.
Therefore, security administration can no longer just reside at the mainframe host level, but
also encompasses other platforms and levels of computing.

TCP/IP connectivity offers multiple solutions to connect to a host system. No matter what type
of TCP/IP client tries to connect to IMS, each client must do the following actions:

� Prove their right origin.
� Declare who they are.

This chapter primarily focuses on the security aspects of IMS Connect itself, but also touches
on security measures that are currently available in OTMA and IMS.

8

© Copyright IBM Corp. 2006. All rights reserved. 109

8.1 General security overview
A security system must provide the following features:

� Authentication

The security system must be able to determine if a client or a person is who or what it
declares to be.

� Authorization

The security system must be able to determine if a client or person has the right to perform
an action or to access specific information.

� Secure communication

The security system must be able to ensure that the transmitted information can only be
seen by the correct destination.

When we take a look at an IMS Connect-based application, we can see that there are
different components that can provide one or more of these features to the overall system.
The specific components and the assignment of the different security tasks to them will
depend on each development, but as a general rule, we can identify the components and
possible security responsibilities shown in Table 8-1.

Table 8-1 Components of an IMS Connect application and security roles

Component Possible security roles Notes

Stand-alone
(RYO) client

Anyone. Because this is your code,
you can put in anything.

� Try to do as much authentication as possible at the
client level. Because you will not have an application
server doing authentication for you, if you do not
authenticate at the client level, you have to do it at IMS
Connect level, which is expensive in terms of
resources.

� Perhaps you will want to try to implement SSL support
in your client so that you will be able to establish a
secure, trusted communication with IMS Connect. If
you do not do that, you must be sure that your client
systems are trusted.

J2EE client Anyone. Because this is your code,
you can put in anything.

� Follow the J2EE guidelines regarding security, using
the container-provided security features whenever
possible.

� If you need fine-grained authorization controls beyond
the J2EE role-based model, you need to perform some
programmatic security checking in your EJB or servlet
code.

WebSphere
Application
Server

� User authentication, using JAAS
and SSLv3 at client level.

� Client system authentication,
using SSLv3.

� Authorization, using the J2EE
role-based security model.

� Secure communication, using
SSL, both between WebSphere
Application Server and its clients
and between WebSphere
Application Server and IMS
Connect.

� You should authenticate your users using JAAS.
� If you need to authenticate your client machines, you

can use the client authentication mechanism provided
by SSLv3 and TLSv1.

110 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 8-1 on page 112 shows an example of end-to-end security using the components
described in Table 8-1 on page 110. In this case, the different elements take the following
actions (roles):

1. The user logs on the application using a browser, invoking a secure (SSL) page that
prompts the user for the user ID and password.

2. WebSphere Application Server authenticates the user ID and password using the Java
Authentication and Authorization Service (JAAS) services.

3. The user, when logged on, sends a request to the application.

4. The server checks if the user, previously authenticated, is authorized to perform the
requested action, using the intrinsic, server-based J2EE authorization services, which are
also based on JAAS.

5. The application uses the JCA adapter provided by IMS Connector for Java to send a
transaction to IMS Connect.

6. The adapter establishes communication with the IMS Connect server, using SSLv3. Both
the server and client machines authenticate each other using their respective server and
client certificates, so a secure, enciphered communication pipeline is established between
WebSphere Application Server and IMS Connect.

7. The adapter sends the transaction through this secure pipeline, including the previously
authenticated user ID, but not the password (which is unknown, because the server has
not saved it after authenticating the user).

IMS Connect � User authentication, enabling
RACF support.

� Client system authentication,
using SSLv3 and TLSv1.

� Authorization, using the IMS
Connect security exit.

� Secure communication between
IMS Connect and the client
systems, using SSL.

� Enabling RACF is expensive in terms of resources,
because each incoming message generates a RACF
call.

� IMS Connect Extensions provide a security token
caching mechanism that alleviate the resource
consumption caused by enabling RACF support.

� SSLv3 can be used to authenticate the client systems,
so you can avoid the risk of having a trojan client in
your network.

� You can also set up an internal firewall to protect the
IMS Connect ports, so only specific IP-identified clients
can connect to these ports.

IMS Transaction-level authorization,
enabling OTMA security. Note that
IMS does not do authentication,
because it will not verify any
passwords.

� Notice that IMS does not perform authentication. It
ignores any password that you provide. If you rely on
RACF-based authorization at the IMS level, ensure
that you can trust the user ID that the client sends in
the input messages.

IMS application Anyone. Because this is your code,
you can put in anything, based on
any part of the input message or the
transaction attributes.

� Under an OTMA environment, the client can set any
attribute of a transaction. For example, if you wrote
transactions that LTERM name-based restrictions, you
should be aware that the LTERM can be set to any
value unless you have restricted it at the user exit level.
This means that if you have LTERM-based restrictions,
you are implicitly trusting the client application to send
the appropriate LTERM name for each “real” user.

� There is no IMS sign-on for OTMA-originated
transactions. The user ID will be the one sent by the
client.

Component Possible security roles Notes

Chapter 8. IMS Connect security 111

8. IMS Connect does not check the user ID against RACF. Because the pipeline with the
JCA adapter is secure and has been authenticated, it trusts the user ID sent by the
application and passes it to OTMA.

9. IMS uses RACF to check if the user ID is authorized to run the transaction. If the
authorization is correct, it queues the transaction and, eventually, schedules the
application program to execute it.

Figure 8-1 End-to-end security using IMS Connector for Java, IMS Connect, and OTMA

If you do not want to enable SSL for performance reasons, you can get nearly as much
security (but not privacy) using a firewall between WebSphere Application Server and IMS
Connect, making sure that only the designated IP addresses can open a connection to the
IMS Connect ports.

8.2 IMS Connect security
IMS Connect allows security support by checking RACF. Security information is passed from
clients in the IRM header or OTMA header, and IMS Connect calls the RACROUTE
REQUEST=VERIFY macro to verify the user ID and password. In this section, we discuss the
IMS Connect security function.

8.2.1 Connecting IMS Connect to OTMA
Before IMS Connect can send any messages to IMS through OTMA for processing, IMS
Connect has to identify itself as an OTMA client. This is achieved by issuing an OTMA
command of the type client bid, passing the required security data to OTMA for verification. If
your IMS is RACF protected, the user ID passed by IMS Connect in the client bid must have
READ access to the FACILITIES class entry IMSXCF.xcf_group_name.xcf_member_name
(client) in RACF. If rejected by RACF, the client bid is denied and IMS Connect cannot connect
to IMS as an OTMA client.

`Logon(userid,pwd)

request(action)

WebSphere Application ServerWebSphere Application Server

JAAS

Client
application

SSL
Certificate

authorize(action)

SSL
Certificate

mutual
authentication

IC4J
 Adapter

send(tx)

OTMA
driver

IMS ConnectIMS Connect IMSIMS

RACF=N /SEC OTMA CHECK

IMS
application

OTMA

RACFRACF

authorize(userid,tx)

ciphered
send(userid,tx)

send(userid,tx)
execute(tx)

IC4J = IMS Connector for Java

112 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

8.2.2 User verification
After IMS Connect has successfully joined the XCF group and connected as an OTMA client
to IMS, you have the option to let IMS Connect do RACF user ID and password verification of
each client on a per-message basis. This facility is driven by the RACF=Y | N parameter, as
specified in the HWSCFG configuration file. See 4.3.4, “Creating the IMS Connect
configuration member” on page 47 for an example.

You can modify the RACF status by using the IMS Connect command SETRACF=ON |
OFF. See 5.1.6, “SETRACF” on page 66 for an example. The user ID and password can
be set up in one of two places:

� The originating client can build and send the security data as part of the message that is
sent to IMS Connect through TCP/IP.

� The user message exit that gets driven after IMS Connect received the complete message
from the TCP/IP client.

After IMS Connect receives control back from the user message exit and the RACF= option is
set to Y, IMS Connect issues the RACF call to verify the user ID and password. If not
authorized, the message is rejected and sent back to the originating client.

8.2.3 User exit security
The last option available with IMS Connect security is available in the user exit that is driven
by IMS Connect after the complete message has been received from the TCP/IP client. This
option is really open ended to such a degree that the user exit can perform any data
manipulation, or checking that it wants to do, which can include RACF verification or any other
security verification that the author of the exit wants to implement and execute. This is totally
separate from the optional user ID and password verification performed by IMS Connect, as
discussed previously in this chapter.

8.2.4 Local option security
To configure security for the local option using RACF, you must add HWS.IMSConnect_name
as the SAF FACILITY class name (whether you configured security with the IMS Connect
configuration member or the SETRACF command). IMSConnect_name is how IMS Connect
is defined in the ID parameter of the HWS statement in the IMS Connect configuration
member. The resource that must access IMS Connect is WebSphere Application Server, and
UPDATE authority is required to update the RACF profile.

8.3 OTMA security
OTMA provides various levels of security checking that can be implemented, which is
independent of the optional RACF verification that can be performed by IMS Connect. OTMA
verifies security in two instances:

1. When a client bids to connect
2. When an input message from a client is processed

Note: IMS Connect Extensions provide RACF identification and authorization caching.
This can dramatically improve IMS Connect performance. See Chapter 11, “IMS Connect
Extensions” on page 155 for details.

Chapter 8. IMS Connect security 113

Client bids to connect
When a client (in our case, IMS Connect) sends a client bid command to OTMA (to connect),
OTMA has to verify that the client is sufficiently authorized to connect to OTMA. The data
passed in the security-data section of the client bid message is used by RACF to verify the
client’s authorization. The IMSXCF.xcf_group_name.xcf_member_name (client) must be
defined to RACF in the FACILITY class. IMS Connect adheres to this protocol, as
discussed previously (see 8.2.1, “Connecting IMS Connect to OTMA” on page 112).

Processing an input message from the client
When OTMA processes an input message, whether it is command or transaction input,
security is driven by the:

� Status as set by the OTMASE= parameter in DFSPBxxx member
� Status as set by the IMS /SECURE OTMA command
� Security data in the OTMA header

If the OTMA security status is PROFILE, security verification can vary on a
transaction-by-transaction basis, driven by the settings in the security section of the OTMA
header. We recommend using security at the PROFILE, because security requirements can
vary on a per-transaction basis. This provides the flexibility for an installation to implement
customized security profiles for each transaction or command separately.

If OTMA security status is CHECK, security checking of commands and transactions is
performed subject to the appropriate definitions of the commands and transactions in the
security profile. If RACF is used for security, commands and transactions that must be verified
have to be defined to the appropriate CIMS and TIMS classes. Failure to state these
definitions causes the command or transaction to be allowed by default.

If OTMA security status is FULL, the same security checking as in CHECK is performed, but
additional RACF calls are used internally by IMS to build and maintain the security
environment on dependent regions.

If OTMA security status is NONE, it causes OTMA security checking to be bypassed,
irrespective of what is set up in the security data section of the OTMA header, whether
security data is present or not.

Refer to the 2.5, “OTMA security issues” on page 21 for further information about OTMA
security.

Note: The user exits, DFSCCMD0 and DFSCTRN0, if present, will still be invoked,
irrespective of the status of the /SECURE OTMA command. This provides the facility to
drive any user-written security from the appropriate exits if wanted.

114 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 9. IMS Connect user exit support

IMS Connect is essentially middleware or a gateway that acts as an intermediate
communication vehicle between the TCP/IP client-initiated messages and the datastore at
the host (IMS, through OTMA). Because each client message can be unique in design,
format, processing, and security requirements, data manipulation of such messages into a
minimum level of IMS Connect-recognizable format is essential for the ability of IMS Connect
to act as the go between for both the client and the datastore.

To achieve this minimum level of recognizable format, IMS Connect provides support for user
exits to receive and manipulate messages from both the originating client and the IMS server.
These exits can be customized to perform various functions such as reformatting, translation,
and security verification. They can be regarded as plug-ins to IMS Connect, so the central or
kernel of the IMS Connect logic is isolated from the message manipulation exits.

IBM delivers prewritten clients and their associated user exits for simplified development.
However, customers are also able to create and develop their own TCP/IP clients, with their
associated user exits, according to their installation requirements and needs.

9

© Copyright IBM Corp. 2006. All rights reserved. 115

9.1 IMS Connect components and user exits
IMS Connect itself has many functions to perform and is broken down into various
components (see Figure 9-1). The compartmentalization of the different functions provides
the platform to divide IMS Connect into the different components and keep the functions
isolated and modular. Because IMS Connect performs several distinct communication
functions, TCP/IP client communication, IMS OTMA communication, and IMSplex
communication, the exits are involved in all instances, because message manipulation is a
factor in both directions.

Figure 9-1 User exits are invoked on incoming and outgoing messages

9.2 IMS Connect communication with user exits
The purpose of the user exits in IMS Connect is to format and possibly modify the incoming or
outgoing messages.

Commonalities among all user exits
Any user exit that is associated with an input message and needs to be invoked by IMS
Connect to process the message must be defined in the EXIT= parameter in the HWSCFG
configuration file. A maximum of 254 exits can be defined here.

USER MESSAGE EXITS

116 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

With the exception of HWSCSLO0 and HWSCSLO1, which are used to support the IMS
Control Center, IMS Connect invokes the defined user exits in the following instances:

� During IMS Connect initialization time.

� After receiving the complete message from the client and prior to passing it to OTMA.

� After receiving control back from the user exit during the input phase and if IMS Connect
detects an error in the output buffer setup by the user exit.

� After receiving the IMS response from OTMA and prior to passing the output message to
the client.

� During IMS Connect termination.

IMS Connect does not invoke a different exit for each of the previous instances, but expects
an exit to be able to process each of these phases. This is dictated by an option specified in
the parameter list passed to the exit. These options are:

� INIT (initialization)
� READ (input phase)
� EXER (error on input phase)
� XMIT (output phase)
� TERM (termination)

HWSCSLO0 and HWSCSLO1 are a bit different, because they deal with IMSplex
communication. These two exits are provided by IBM as object code only (OCO) and cannot
be customized, so we do not provide more information about these exits in this chapter.

All exits are expected to function in a reentered environment and are given control in key 7
and in the addressing mode with which the exit was linked. The parameter list passed to the
exit is always in storage located above the 16 MB virtual storage line, so all exits should be
able to perform 31-bit addressing at the minimum, even if the author of such an exit wants to
restrict the exits location to RMODE 24.

IMS Connect provides a 1 KB buffer work area with each invocation of an exit. The purpose of
the work buffer is to ensure that the reentered environment is maintained and to provide a
unique storage area where registers can be saved. Although the general purpose register 13
points to an IMS Connect save area at entry to an exit, an automatically pre-allocated
follow-on save area is not provided. This means that the exit must provide its own save area
in the 1 KB work buffer and backchain this unique save area to the IMS Connect save area.
The exit can, on entry to the exit, save the status of the general purpose registers in the IMS
Connect save area, as pointed to by general purpose register 13, and subsequently restore
them from there when the exit returns control to IMS Connect. IMS Connect supports
assembler-written user exits only. Table 9-1 shows the common register contents on entry to
all user exits.

Table 9-1 Register contents on entry to user exits (all options)

Restriction: Do not define the IBM-supplied exits (HWSUINIT and HWSJAVA0) in the
HWSCFG configuration file. IMS Connect automatically loads the HWSJAVA0 exit, and
HWSUINIT is an IMS Connect exit but is not a user message exit.

Register Contents on entry

1 Pointer to parmlist, as mapped by HWSEXPRM.

13 IMS Connect save area.

14 Return address of IMS Connect.

Chapter 9. IMS Connect user exit support 117

Table 9-2 shows the common register contents at exit to all user exits.

Table 9-2 Register contents on return from user exit (all options)

For more information about the communication between user exits and IMS Connect, refer to
IMS Version 9: IMS Connect Guide and Reference, SC18-9287.

9.3 User exits supported
IBM currently delivers 10 supported user exits. Six of these exits are message exits, which
are also associated with predefined IRM_ID identifiers in IRM header. IBM provides source
code for three of these exits, and object code only for the others. Table 9-3 summarizes all of
the user exits.

Table 9-3 User exits summary

15 Entry point address of user exit. The entry point name and the load module name, as
described in the HWSCFG configuration file, must be the same.

Register Contents on return

1 Pointer to parmlist, as mapped by HWSEXPRM, which includes the return code

13 IMS Connect save area

14 Return address of IMS Connect

15 Not used

Register Contents on entry

User exit name IRM_ID Purpose

HWSIMSO0 *IRMREQ* IBM-delivered user exit in support of any TCP/IP client that
conforms to the message format dictated by this exit.
Format=OCO only. IMS Version 9 is the last version that
supports this exit. We recommend that you migrate to
HWSSMPL1.

HWSIMSO1 *IRMRE1* IBM-delivered user exit in support of any TCP/IP client that
conforms to the message format dictated by this exit. It has a
full word length field proceeding the message.
Format=OCO only. IMS Version 9 is the last version that
supports this exit. We recommend that you migrate to
HWSSMPL1.

HWSSMPL0 *SAMPLE* IBM-delivered sample user exit for user modification. This exit
is based on HWSIMSO0. Format=Object and source. We
recommend that you migrate to HWSSMPL1 because the new
function will no longer be added to HWSSMPL0.

HWSSMPL1 *SAMPL1* IBM-delivered sample user exit for user modification. This exit
is based on HWSIMSO0. It has a full word length field
proceeding the message.
Format=Object and source.

HWSJAVA0 *HWSJAV* IBM-delivered sample user exit in support of the IMS Connector
for Java client.
Format=Object and source.

118 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

9.3.1 IMS Connect TCP/IP user message exit (HWSIMSO0 and HWSIMSO1)
HWSIMSO0 and HWSIMSO1 exits are generic exits to process messages from any TCP/IP
client. These TCP/IP exits are shipped with IMS Connect and they should be bound into the
IMS Connect load library (SDFSRESL/SHWSRESL). You must use these TCP/IP exits
instead of the one shipped by TCP/IP. The installation must place the IMS Connect load
library that contains the IMS Connect supplied exit (HWSIMSO0 and HWSIMSO1) in front of
the TCP/IP load library. The HWSIMSO0 and HWSIMSO1 exits are shipped as object code
only (OCO).

The IMS Connect version bundled with IMS Version 9 is the last one that will provide the
HWSIMSO0 and HWSIMSO1 exit routines. You should not use these exits. We recommend
that you migrate to HWSSMPL1 as soon as you can. For details, see the description of
HWSSMPL0 and HWSSMPL1 exits in the following section.

9.3.2 Sample user message exit (HWSSMPL0 and HWSSMPL1)
HWSSMPL0 and HWSSMPL1 are generic exits to process messages from any TCP/IP client.
These sample user message exits perform the same functions as the IMS Connect
HWSIMSO0 and HWSIMSO1 exits, which cannot be modified and are considered
deprecated. You can modify the source code for the HWSSMPL0 or HWSSMPL1 exit, which
are supplied with the IMS Connect installation.

Details
These exits have the following characteristics:

� Commit mode

Default=send-then-commit (can be overridden in IRM header extension).

� Sync level

Default=none (can be overridden in IRM header extension).

IMSLSECX N/A Security exit. IBM supplied with TCP/IP for z/OS.
Format=OCO only.

HWSUINIT N/A Enables you to perform your own processing during IMS
Connect initialization and termination. This exit receives control
at initialization and termination time.
Format=Object and source.

HWSTECL0 N/A Enables you to customize IMS Connect to support event
recording.
Format=Object and source.

HWSCSLO0 N/A IMSplex support exit. Enables the IMS Connect capability to
communicate with IMS Operations Manager (OM). This is
necessary to use the IMS Control Center.
Format=OCO only.

HWSCSLO1 N/A Same as HWSCSLO0.

Note: 'HWSxxxxx' exit name is reserved as the prefix for IRM_ID.

User exit name IRM_ID Purpose

Chapter 9. IMS Connect user exit support 119

� Translation

Exit performs the translation from ASCII to EBCDIC (input phase) and from EBCDIC to
ASCII (output phase). For Unicode support, refer to 14.3, “IMS Connect Unicode support”
on page 275.

� OTMA header

Builds OTMA header structures (input phase) and strips them off (output phase).

� Input message structure passed to HWSSMPL0 and HWSSMPL1 exits

Refer to Table 9-9 on page 128. See also Table 14-1 on page 269.

� Input message structure returned from HWSSMPL0 and HWSSMPL1 exits

Refer to Table 9-10 on page 130.

� Output message structure passed to HWSSMPL0 and HWSSMPL1 exits

Refer to Table 9-12 on page 132.

� Output message structure returned from HWSSMPL0 and HWSSMPL1 exits

Refer to Table 9-16 on page 134, Table 9-17 on page 135, and Table 9-18 on page 135.
See also 14.2.2, “The IMS Connect output message” on page 274.

9.3.3 Difference between HWSIMSO0/SMPL0 and HWSIMSO1/SMPL1
The HWSSMPL1 message exit (and its predecessor, HWSIMSO1) sends a full word length
field preceding the output message sent to the client. We recommend that any customer
using HWSIMSO0 and HWSSMPL0 migrate to this new user message exit, which includes
the total message length header (LLLL) preceding the output message to the client.

This is the only difference between exits HWSIMSO0 and HWSSMPL0 and HWSIMSO1 and
HWSSMPL1. Providing different message ID values in the IRM field IRM_ID of *SAMPL1*
and *IRMRE1* enables all four user message exits to be present at the same time and allows
for an easier migration to the user message exit HWSSMPL1.

HWSSMPL0 and HWSIMSO0 currently are capable of sending the following three message
structures to the client, one of the three at a time:

LLZZDATA1 LLZZDATA2 ... CSM
RMM LLZZDATA1 LLZZDATA2 ... CSM
RSM

HWSSMPL1 and HWSIMSO1 are capable of sending the following three structures to the
client, one of the three at a time:

LLLL LLZZDATA1 LLZZDATA2 ... CSM
LLLL RMM LLZZDATA1 LLZZDATA2 ... CSM
LLLL RSM

Migrating to HWSSMPL1 considerations
If you have modified HWSSMPL0, there will be few, if any, changes required to move to the
new user message exit HWSSMPL1. You can also move the changes from HWSSMPL1 to
your modified copy of HWSSMPL0.

Basically, the following actions are required to use the new exit:

� Add HWSSMPL1 to EXIT= in the IMS Connect configuration file.

Note: LLLL is the total length of the output messages.

120 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� Modify the client application code to send the value of”*SAMPL1*' for HWSSMPL1 rather
than '*IRMREQ*' or '*SAMPLE*' in the IRM field 'IRM_ID'.

� Modify the client application code to handle the LLLL (total length field) that is now being
sent to the client application.

9.3.4 IMS Connector for Java user message exit (HWSJAVA0)
The purpose of the HWSJAVA0 exit is to process input from the IMS Connector for Java
client. This IMS Connector for Java client exit is shipped with IMS Connect, and it should be
bound into the installation load library (SDFSRESL/SHWSRESL). This exit does not perform
a translation or build to the OTMA headers. Both the translation and insertion or deletion of
the OTMA header is done by the IMS Connector for Java client server. HWSJAVA0 is
supplied as source code and can be modified.

Details
The HWSJAVA0 exit has the following characteristics:

� Commit mode

Default=send-then-commit (using the appropriate methods of the IMSConnectionSpec
object, which translates into different IRM header settings).

� Sync level

Default=CONFIRM for CM0 and NONE for CM1 (cannot be overridden in the IRM header
extension).

� Translation

None.

� OTMA header

It does not build the OTMA header structures. The OTMA header structures are built by
the IMS Connector for Java client library.

� Input message structure passed to HWSJAVA0 exits

Refer to Table 9-8 on page 127.

� Input message structure returned from HWSJAVA0 exits

The IMS Connector for Java exit returned message format is the same message format of
the passed message format.

� Output message structure passed to and returned from HWSJAVA0 exits

IMS Connector for Java output messages are not passed to the exit. Refer to Table 9-11
on page 131.

9.3.5 IMS Connect IMSplex message exits (HWSCSLO0 and HWSCSLO1)
The purpose of the HWSCSLO0 and HWSCSLO1 exits is to provide IMSplex support to
enable the IMS Control Center. These routines are provided in object code, and you cannot
modify or replace them.

Note: The sample code provided in Appendix A, “Sample code: Non-IMS Connector for
Java client code” on page 469 and described in 14.5, “Detailed code examples” on
page 282 uses the HWSSMPL0 user message exit.

Chapter 9. IMS Connect user exit support 121

Details
These exits have the following characteristics:

� Commit mode

Default=send-then-commit (can be overridden in IRM header extension).

� Sync level

Default=none (can be overridden in IRM header extension).

� Translation

The exits translate ASCII to EBCDIC and build the required message structure containing
the required internal headers for messages received from the client. HWSSCLO0
performs EBCDIC to ASCII translation and removes the internal headers from messages
transmitted to the client. HWSSCLO1 does not perform any translation but it does remove
the headers.

� Input message structure passed to HWSSCLO0 and HWSSCLO1 exits

Refer to Table 9-9 on page 128.

� Output message structure returned from HWSSCLO0 and HWSSCLO1 exits

Refer to Table 9-16 on page 134, Table 9-17 on page 135, and Table 9-18 on page 135.

9.3.6 Security exit (IMSLSECX)
The purpose of this exit is to perform user authentication for the other user exits. You must
provide a security exit (or use the TCP/IP exit, IMSLSECX) if any security checking is to be
done by the message exit. Due to the many options available for security, and because most
installations have their own specific security method, no sample security exit is provided. The
call to RACF is performed by IMS Connect if RACF parameters are provided in the OTMA
header when the message exit returns the message.

The name of the security exit called by HWSSMPL0, HWSSMPL1, HWSIMSO0, or
HWSIMSO1 is IMSLSECX. You can change the name of the security exit called by
HWSSMPL0 or HWSSMPL1 and supply and define it in the HWSSMPL0 and HWSSMPL1
message exit by changing the EXTRN IMSLSECX to a name of your choice. If you require a
different security exit in HWSSMPL0 or HWSSMPL1, you must provide the new security exit
name.

You must also provide the name of the security exit called by HWSJAVA0 and define it in the
HWSJAVA0 message exit.

The parameter list for user security exit
The following is the list and order of parameters being passed to the security exit,
IMSLSECX. The order of the parameters is fixed for the exits supplied by IMS Connect
(HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1).

� Address of full word client’s IP address
� Address of halfword client’s port
� Address of 8-character string IMS transaction
� Address of halfword data type (data type setting: 0=ASCII, 1=EBCDIC)
� Address of full word length of user data
� Address of user-supplied data
� Address of full word set by security exit
� Address of full word set by security exit

122 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� Address of RACF user ID
– If blanks are returned (in the field pointed to) from the security exit, the RACF fields in

the OTMA security header are not set.
– The address points to a field containing blanks.

� Address of RACF group ID
The address points to a field containing blanks.

9.3.7 User initialization exit routine (HWSUINIT)
IMS Connect provides a user initialization exit routine, HWSUINIT. This routine enables you
to perform customized initialization tasks during IMS Connect startup and customized
termination tasks during IMS Connect shutdown.

How IMS Connect communicates with HWSUINIT
HWSUINIT contains two subroutines: INIT and TERM. When IMS Connect starts, HWSUINIT
loads and gives control to the INIT subroutine. When IMS Connect shuts down, HWSUINIT
gives control to the TERM subroutine.

HWSUINIT contains two of its own user control blocks: XIB and XIBDS. The HWSXIB and
HWSXIBDS DSECTs map the XIB and XIBDS user control blocks. The message exit routines
in the INIT, READ, XMIT, TERM, and EXER subroutines can also use the XIB and XIBDS
user control blocks.

Example 9-1 shows the DSECT of the XIB control block user area (from the HWSXIB macro).

Example 9-1 The DSECT of XIB control block

HWSXIB DSECT Exit Interface Block

* XIB Header *

XIB_HEADER DS 0D
XIB_EYE DS CL4'XIB' EYECATCHER
XIB_DATASTORES DS A DataStore list address
XIB_UFLD_CNT DS F User field count
 DS 6F Reserved for ITOC
XIB_HDR_LEN EQU *-HWSXIB XIB header fixed length

* XIB User areas *
* The number of user area words is specified by the XIBAREA parameter *
* of the HWS statement in the configuration file. The default is 20 *
* fullwords if it is not specified. The number is also stored in *
* XIB_UFLD_CNT field in the XIB header above. *

XIB_USERAREA DS 0F Start of user area

The XIB user control block contains a fixed length header section and a variable length user
area. You cannot modify the fixed header section. You can only modify the user area.

You specify the size of the XIB control block user area, in full words, with the XIBAREA
parameter (in the HWS statement of the IMS Connect configuration file). Refer to 4.3.4,
“Creating the IMS Connect configuration member” on page 47 for more information about the
IMS Connect configuration file.

Important: The HWSUINIT user initialization exit routine shipped with IMS Connect does
not do any processing. Modify HWSUINIT only if you want to use it.

Chapter 9. IMS Connect user exit support 123

Example 9-2 shows the DSECT of the XIBDS control block user area (from the HWSXIBDS
macro).

Example 9-2 The DSECT of XIBDS control block

HWSXIBDS DSECT Exit Interface Block Data Store entry
XIBDS_NAME DS CL8 Data store name
XIBDS_STATUS DS X Data store status
XIBDS_INACTIVE EQU X'00' Data store not active
XIBDS_ACTIVE EQU X'01' Data store active
XIBDS_DISC EQU X'02' Data store disconnected @PQ77003
XIBDS_FLAG DS X Data store entry flags
XIBDS_LAST_ENTRY EQU X'80' Last entry in list
 DS XL2 Reserved
XIBDS_USER DS XL4 User field
XIBDS_LEN EQU *-HWSXIBDS XIB data store entry length
 MEND

The XIBDS user control block represents an entry in a list of datastores that are defined in the
configuration file. The second word in the fixed header area of the XIB user control block
points to the datastore list. The XIBDS user control block is 16 bytes long. Each datastore list
entry contains the datastore name, the datastore status (active or inactive), a flag byte, and a
4-byte field that you can use to store any kind of data. The last entry is indicated by a value of
x'80' (hexadecimal) in the flag byte. The number of entries in the list is equal to the number of
datastores defined in the IMS Connect configuration file.

HWSUINIT usage
You can modify the HWSUINIT routine to display a specific message when IMS Connect
starts up or shuts down.

In addition, because the XIBDS user control block keeps track of the IMS Connect datastore
status, you can enable any user message exit (HWSSMPL0, HWSSMPL1, or HWSJAVA0
and user written exit) to take action based on the status of one or more of the IMS Connect
datastores. Figure 9-2 on page 125 shows a sample of the HWSUINIT usage. For example,
before a user message exit passes a client message to an IMS Connect datastore for
processing, you can have the user message exit query the XIBDS control block area for the
status of the target datastore. If the target datastore is not active, you can enable the user
message exit to switch to an active datastore by modifying the datastore name in the
message header. Or, your client sends a generic datastore name in IRM header, and the user
message exit determines which IMS is most appropriate for processing and modifies the
datastore name to action round-robin requests across the active IMSs.

124 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 9-2 A sample of HWSUINIT usage

Table 9-4 shows the common register contents on entry to HWSUINIT.

Table 9-4 Register contents on HWSUINIT entry

Table 9-5 show the common register contents at exit to HWSUINIT.

Table 9-5 Register contents on HWSUINIT exit

9.3.8 Event recording user exit (HWSTECL0)
The purpose of the event recording user exit (HWSTECL0) is to support event recording. IMS
Connect can be customized to pass event data to this load module, which stores all trace and
event notifications through a recording routine and can be used by any event recording
function. Some examples of the events that can be recorded include:

� TCP/IP read/write

Register Contents on entry

1 Pointer to a parmlist:
� +0: XIB address
� +4: Function to perform (INIT or TERM)
� +8: 1 KB buffer for exit to use

14 Return address of IMS Connect

15 Entry point address to HWSUINIT

Register Contents on entry

0-14 Restored

15 � 0: Completed successfully
� 1 to 7: Warning, but IMS Connect initialization continues
� 8 or higher: Force IMS Connect termination

Input msg for IMSA
(using user exit A)

IMSA - inactive
IMSB - active
IMSC - active

XIBDS contrl block
(Datastore table)

IMSA

Input msg with a
generic name IMS
(using user exit B)

IMSB

IMSC

IMS Connect The action is to
reroute to first
active on the list

 user exit A

IMSADATA TRAN
IMSBDATA TRAN

Override the IMSID

IMSA - active
IMSB - active
IMSC - active

XIBDS contrl block
(Datastore table) IMSA

IMSB

IMSC

IMS Connect

 user exit B

IMSDATA TRAN
IMSCDATA TRAN

Override the IMSID

The action is to
round-robin requests
across the active IMSs

Optional table to
keep track of usage

IMSA - 5
IMSB - 8
IMSC - 2

Chapter 9. IMS Connect user exit support 125

� RACF calls
� OTMA send/receive
� User exit calls
� Session errors
� Two-phase commit events

Modifying the HWSTECL0 user exit
Although IMS Connect provides a sample HWSTECL0 user exit, you must modify it, using
standard user exit development guidelines, if you want to receive event data from IMS
Connect. The following steps describe how to customize, modify, and reinstall the
HWSTECL0 exit:

1. Insert your changes to the source code provided in the AHWSSRC source library.

2. Assemble the exit. The exit and its associated macro files are members of the partitioned
data set into which you receive the AHWSSRC data set.

3. Bind (link-edit) the output from the assembled job to create a load module named
HWSTECL0.

4. Bind (link-edit) HWSTECL0 into the IMS Connect resource library (SDFSRESL or
SHWSRESL). IMS Connect loads the module from the resource library during
initialization.

Table 9-6 shows the contents of the registers at entry of the event recording routine.

Table 9-6 Registers at event recording entry

Table 9-7 shows the expected contents of the registers at the return of the event record
routine.

Table 9-7 Registers at event recording exit

For more information about the event recording user exit, refer to IMS Version 9: IMS
Connect Guide and Reference, SC18-9287.

Register number Contents and meaning

R1 Address of the Event Recording Parameter List (ERPL).

R13 Address of one save area. The event recording routine must preserve the
integrity of this save area.

R14 Caller’s return address.

R15 Entry point of the event recording routine, taken from EICB after initialization
of the event recording interface.

Register number Contents and meaning

R0 Reason code associated with any non-zero return codes.

R1 When R1 is not equal to zero, it contains the address of a message providing
additional information about initialization of trace and event recording.

R15 Return code:
� 0=event recording was successful.
� 4=event recording is not active; event was not recorded.
� 16=event recording was not successful. See the reason code for

additional information. An error message is present if r1 is not zero.

126 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

9.4 Message structures between IMS Connect and user exits
The following tables show details of these different message structures.

9.4.1 Input message from client and passed to exit
Input messages from the client consist of IMS Connector for Java and non-IMS Connector for
Java message structures.

IMS Connector for Java message structure, type 1
Table 9-8 shows the input message format supported by IMS Connect from an IMS
Connector for Java client.

Table 9-8 IMS Connector for Java message structure, type 1

Field Length
(bytes)

Meaning

IIII 4 (binary) Length of entire message, including lll field.

The first 28 bytes represent the fixed IRM header.

IRM_LL 2 (binary) Length of IMS Connector for Java interface header,
including LLZZ field.

IRM_ARCH 1 (binary) Architectural level:
� X'00' Base support
� X'01' Required space for IRM_REROUT_NM field.

IRM_F0 1 (binary) Reserved (set to binary zeros).

IRM_ID 8 (character) Char value of *HWSJAV*.

Reserved 4 (binary) Reserved (set to binary zeros).

IRM_F5 1 (binary) Binary value for input message type. In case of HWSJAVA0,
set to X'11000000'.

IRM_TIMER 1 (character) N/A for HWSJAVA0.

IRM_SOCT 1 (binary) Socket connection type. The client can set this value as
follows:
� X'00' Transaction socket
� X'10' Persistent socket

IRM_RSV02 1 (binary) Reserved for future use. Set to binary zeros.

IRM_CLIENTID 8 (character) Char value of a unique clientID.

End of IRM header.

OTMA header 466 See OTMA DSECT member HWSOMPFX in
IMS.SDFSMAC library for a description.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

OTMA CTL headers 20 See OTMA DSECT member HWSOMPFX in
IMS.SDFSMAC library for a description.

LL 2 (binary) Length of data segment.

Chapter 9. IMS Connect user exit support 127

Non-IMS Connector for Java message structure, type 2
Table 9-9 shows the input message format supported by IMS Connect from a non-IMS
Connector for Java client. In this section, we provide a description of this structure from the
point of view of an IMS Connect systems programmer. If you are interested in a description
for a client applications programmer, refer to 14.2, “IMS Connect message structures” on
page 268.

Table 9-9 Non-IMS Connector for Java message structure, type 2

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

Repeat OTMA CTL header, LL, ZZ, DATA for all segments.

OTMA CTL headers 20 See OTMA DSECT member HWSOMPFX in
IMS.SDFSMAC library for a description.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

Field Length (bytes) Meaning

IIII 4 (binary) Length of entire message, including lll field.

The first 28 bytes represent the fixed IRM header.

IRM_LL 2 (binary) Length of IMS Connector for Java interface header,
including LLZZ field.

IRM_ARCH 1 (binary) Architectural level:
� X'00' Base support
� X'01' Required space for IRM_REROUT_NM field

IRM_F0 1 (binary) Reserved (set to binary zeros).

IRM_ID 8 (character) Char value of the identifier of the user exit:
� *IRMREQ* for HWSIMSO0
� *IRMRE1* for HWSIMSO1
� *SAMPLE* for HWSSMPL0
� *SAMPL1* for HWSSMPL1
� *HWSJAV* for HWSJAVA0

Reserved 4 (binary) Reserved for future use.

IRM_F5 1 (binary) Input message type and RESUME TPIPE processing:
1000 : OTMA headers built by client
0100 : Translation done by client
0000 : OTMA header built and translation done

by user exit (default)
.... 0000 : No auto flow of messages
.... 0001 : Single message
.... 0010 : Auto flow of messages
.... 0100 : No auto flow of messages

IRM_TIMER 1 (binary) Receive after ACK/RESUME TPIPE wait time.

Field Length
(bytes)

Meaning

128 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

IRM_SOCT 1 (binary) Socket connection type. The client can set this value as
follows:
� X'00' Transaction socket
� X'10' Persistent socket

IRM_RSV02 1 (binary) Reserved for future use. Set to binary zeros.

IRM_CLIENTID 8 (character) Char value of a unique clientID.

End of fixed IRM header.

The following definition is for use with the HWSIMSO0 and HWSSMPL0 exits. The user installation
can provide its own exit and structure the following items as required by the user exit. The following
items should be considered. This example lists only some of the items you can use. You might want
to include fields that are used only by the user exit, or other items that can be passed in the OTMA
headers, such as the MID name.

IRM_F1 1 (binary) Specify if the MFS MOD name is to be returned:
� X'00' User requests no MOD name to be returned.
� X'80' User requests MOD name to be returned.

IRM_F2 1 (binary) Commit mode flag:
� X'40' commit-then-send (commit mode 0)
� X'20' send-then-commit (commit mode 1)

IRM_F3 1 (binary) Sync level flag:
� X'00' Sync level=None
� X'01' Sync level=Confirm
� X'02' Sync level=Sync Point
� X'04' Purge not deliverable request
� X'08' Reroute not deliverable request

IRM_F4 1 (character) It specifies if the client is sending:
� A=ACK - Positive acknowledgment
� N=NAK - Negative acknowledgment
� D=DEALLOCATE - Deallocate connection
� R=RESUME - RESUME TPIPE
� S=SENDONLY - Send only
� C=CANCEL TIMER - Cancel pending timer
� Blank (X'40') - No request for acknowledgment or

deallocation

IRM_TRANCOD 8 (character) Character value of transaction code.

IRM_IMSDESTID 8 (character) Character value of datastore ID.

IRM_LTERM 8 (character) Character value of LTERM override name.

IRM_RACF_USERID 8 (character) Character value of RACF user ID.

IRM_RACF_GRNAME 8 (character) Character value of RACF group name.

IRM_RACF_PW 8 (character) Character value of PassTicket/password.

IRM_APPL_NM 8 (character) RACF APPL name defined to RACF on the PTKDATA
definition (not supported in HWSIMSO0 or
HWSIMSO1).

IRM_REROUT_NM 8 (character) Reroute name for the client reroute request.

The following is the data structure for all non-IMS Connector for Java clients.

LL 2 (binary) Length of data segment.

Field Length (bytes) Meaning

Chapter 9. IMS Connect user exit support 129

9.4.2 Input message returned from message exit
This section describes input messages from the message exit of IMS Connector for Java and
non-IMS Connector for Java message structures.

IMS Connector for Java message structure, type 1
The IMS Connector for Java exit output message format that is supported by IMS Connect is
the same message format of the input message. See Table 9-8 on page 127.

Non-IMS Connector for Java message structure, type 3
Table 9-10 shows the output message format supported by IMS Connect from the supplied
HWSIMSO0 and HWSSMPL0 exits (non-IMS Connector for Java client exits). Variable length
OTMA headers are supported, and therefore, the OTMA header length can be other than 466
bytes. The following example contains 466 bytes as used by the supplied exits.

Table 9-10 Non-IMS Connector for Java message structure, type 3

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

Repeat LL, ZZ, DATA for all segments.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

LL 2 (binary) End of message (set to X'0004').

ZZ 2 (binary) Reserved (set to binary zeros).

Field Length (bytes) Meaning

Field Length
(bytes)

Meaning

The first 64 bytes represent the fixed BPE header.

IIII 4 (binary) Length of entire buffer.

CHAIN PTR 4 (binary) Chain pointer to next BPE header.

STORAGE TYPE 8 (character) Storage type.

TYPE ACCESS 4 (character) Type access.

SUBPOOL 1 (binary) Subpool number.

RESV 43 Reserved.

End of BPE header.

Start of user data for this BPE header.

130 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

9.4.3 Output message from IMS Connect to IMS Connector for Java client
Output messages from IMS Connect consist of IMS Connector for Java message structures.

IMS Connector for Java message structure
Table 9-11 shows the message format from IMS Connect to the client. IMS Connector for
Java output is not passed to HWSJAVA0 exit.

Table 9-11 IMS Connector for Java message structure (IMS Connect to client)

OTMA header 466 See OTMA DSECT member HWSOMPFX in IMS.SDFSMAC
library for a description.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

Repeat LL, ZZ, DATA for all segments.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

YY 2 (binary) ZERO indicates end of user data for preceding BPE header.

Start of user data for next BPE header.

BPE header 64 See first BPE header for layout.

OTMA CTL header 32 See OTMA DSECT member HWSOMPFX in IMS.SDFSMAC
library for a description.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

Repeat LL, ZZ, DATA for all segments.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

YY 2 (binary) ZERO indicates end of user data for preceding BPE header.

Restriction: The length of data from one BPE header to the next BPE header cannot
exceed 32 K, excluding the BPE header and the OTMA header.

Field Length
(bytes)

Meaning

Field Length (bytes) Meaning

IIII 4 (binary) Total message length.

ID 8 (character) Char value of *HWSJAV*.

Chapter 9. IMS Connect user exit support 131

9.4.4 Output message: IMS Connect to non-IMS Connector for Java client
Output messages from IMS Connect consist of non-IMS Connector for Java message
structures.

The message format from IMS Connect to the exit
Table 9-12 shows the message format from IMS Connect to the exit.

Table 9-12 Non-IMS Connector for Java message structure (IMS Connect to exit)

OTMA header 466 See OTMA DSECT member HWSOMPFX in
IMS.SDFSMAC library for a description.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

OTMA CTL headers 20 See OTMA DSECT member HWSOMPFX in
IMS.SDFSMAC library for a description.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

Repeat OTMA CTL header, LL, ZZ, DATA for all segments.

OTMA CTL headers 20 See OTMA DSECT member HWSOMPFX in
IMS.SDFSMAC library for a description.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

Field Length (bytes) Meaning

Field Length (bytes) Meaning

OTMA header 466 See OTMA DSECT member HWSOMPFX in
IMS.SDFSMAC library for a description.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

OTMA CTL headers 20 See OTMA DSECT member HWSOMPFX in
IMS.SDFSMAC library for a description.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

Repeat OTMA CTL header, LL, ZZ, DATA for all segments.

OTMA CTL headers 20 See OTMA DSECT member HWSOMPFX in
IMS.SDFSMAC library for a description.

132 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

The message format from exit to the client
The following tables show the message format from the exit to the client. This section
describes these message structures from the point of view of an IMS Connect systems
programmer. If you are looking for a description more appropriate for a client applications
programmer, refer to 9.4, “Message structures between IMS Connect and user exits” on
page 127.

Request Mod Message (RMM)
IMS Connect returns the Request Mod Message (RMM) as the first structure of an output
message if the MFS MOD name is requested and the data output is present. See Table 9-13.

Table 9-13 Request Mod Message format

Complete Status Message (CSM)
IMS Connect returns the Complete Status Message (CSM) as the last structure of an output
message if the input message is processed successfully. It does not generate an
end-of-message (EOM) segment. See Table 9-14.

Table 9-14 Complete Status Message format

Request Status Message (RSM)
IMS Connect returns the Request Status Message (RSM) as the only structure of an output
message if IMS Connect or the message exit determined an error occurred. This is valid for
IMS command output. The RSM contains a return and reason code indicating the type of
status. See Table 9-15 on page 134.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

Field Length (bytes) Meaning

Field Length Meaning

LL 2 (binary) Length of RMM message

ZZ 2 (binary) Reserved (set to binary zeros)

ID 8 (character) Char value of *REQMOD*

MOD 8 (character) Char value of the requested MFS MOD name

Field Length Meaning

LL 2 (binary) Length of CSM message.

CSM_FLG1 1 (binary) Flag byte 1:
Binary '10000000' Asynchronous message queued.
Binary '01000000' Conversational output message.
Binary '00100000' ACK/NAK required (see the Tip
following Table 9-15).

Reserved 1 (binary) Reserved (set to binary zeros).

CSM_ID 8 (character) Char value of *CSMOKY*.

Chapter 9. IMS Connect user exit support 133

Table 9-15 Request Status Message format

The message format from exit to the client
The following tables show the message formats from IMS Connect to the exit. Table 9-16
shows the case when the MFS MOD name is requested and data is being sent.

Table 9-16 Message format when MOD name requested and data being sent

Table 9-17 on page 135 shows the case when MFS MOD name is not requested and data is
being sent.

Field Length Meaning

LL 2 (binary) Length of RSM message.

RSM_FLG1 1 (binary) Flag byte 1:
� Binary '10000000' Asynchronous message

queued.
� Binary '01000000' Conversational output

message.
� Binary '00100000' ACK/NAK required (see the

Tip following this table).

Reserved 1 (binary) Reserved (set to binary zeros).

RSM_ID 8 (character) Char value of *REQSTS*.

RSM_RETCOD 4 (binary) Return code.

RSM_RSNCOD 4 (binary) Reason code.

Tip: ACK/NAK required flag
With sync level=confirm, some IMS messages (for example, DFS065 TRAN/LTERM
STOPPED) do not require an ACK. The ACK/NAK flag applies to all messages, not only
the IMS error messages. This allows the client code to interrogate CSM_FLG1 and
RSM_FLG1 to determine if an acknowledgement (ACK/NAK) response is required for all
messages received.

Field Length (bytes) Meaning

IIII 4 (binary) Total length of the output message
(HWSIMSO1/HWSSMPL1 only).

RMM header 20 See RMM layout in Table 9-13.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

Repeat LL, ZZ, DATA for all segments.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

CSM 12 See CSM layout in Table 9-14.

134 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Table 9-17 Message format when MOD name not requested and data being sent

Table 9-18 shows the case when an error is detected or IMS Connect sends unsolicited
output to client.

Table 9-18 Error detected or sent unsolicited output to client

9.5 IMS Connect DRU exit for asynchronous output support
An OTMA destination resolution (DRU) exit is required to support asynchronous output that is
generated by an IMS application that does an insert (ISRT) to an alternate program
communication block (PCB). IMS Connect provides a sample OTMA DRU exit named
HWSYDRU0. You can either modify the HWSYDRU0 exit to work with your installation, or
provide your own DRU exit.

9.5.1 ALTPCB ISRT message routing flow using OTMA exits
Two optional OTMA output routing exits are provided in IMS for application output to the
ALT-PCB:

� DFSYPRX0

The prerouting exit, performs an initial search for the output destination.

� DRU exit

The destination resolution exit, determines the final destination for an OTMA output
message. (The default name is DFSYDRU0.)

With these two exits, the IMS ALT-PCB output message can be directed to a non-OTMA
destination or to any OTMA client. Figure 9-3 on page 136 illustrates the relationship between
the two OTMA user exits and how IMS handles the return codes from the exits.

Field Length (bytes) Meaning

IIII 4 (binary) Total length of the output message
(HWSIMSO1/HWSSMPL1 only).

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

Repeat LL, ZZ, DATA for all segments.

LL 2 (binary) Length of data segment.

ZZ 2 (binary) Reserved (set to binary zeros).

DATA n User data.

CSM 12 See CSM layout in Table 9-14.

Field Length (bytes) Meaning

IIII 4 (binary) Total length of the output message
(HWSIMSO1/HWSSMPL1 only).

The following structures are same between HWSIMSO0/SMPL0 and HWSIMSO1/SMPL1.

Chapter 9. IMS Connect user exit support 135

Figure 9-3 Two-phase destination resolution flow

Phase 1: Prerouting process
In the first phase, IMS searches for an initial destination for an ALT-PCB output message to
determine if the OTMA route or a traditional IMS route should be used. The processing
algorithm varies, depending on whether or not the OTMA DFSYPRX0 user exit exists in the
IMS system.

If a DFSYPRX0 user exit is in the IMS system, the exit can specify either the traditional IMS or
the OTMA route regardless of the origination of the input message. The exit is not invoked if
the destination is a system console or master terminal operator (MTO).

If the transaction was entered from a non-OTMA LTERM and you want to route the output to
an OTMA destination, you must specify the name of the OTMA client in the appropriate field
of the parameter list. If the transaction was entered from an OTMA client, the contents of that
field are ignored unless you have set the OTMAMD initialization parameter to Y in the
DFSPBxxx PROCLIB member. See the description of DFSYPRX0 in IMS Version 9:
Customization Guide, SC18-7817, for details.

Phase 2: Final destination resolution
In the second phase, IMS determines or changes the destination of an ALT-PCB output
message. If the OTMA route was specified during the prerouting process, and if the DRU exit
is available in the IMS system, it can override the final destination if that destination is not a
transaction (SMB). A new OTMA transaction pipe can be created to send the output
message. The output message can also be rerouted to a different OTMA client by specifying

DFSYPRX0

Input from traditional IMS
GOTO traditional IMS

Input from OTMA
GOTO OTMA

GOTO OTMA GOTO traditional IMS

Based on the input OTMA clent
name or client name override,
IMS tries to locate the DRU exit

DFSYDRU0

OTMA Tpipe is
located or created
for the output Msg

GOTO traditional IMS
Not recommended
Use YPRX0 exit
with RC=8

Reroute to a
defferent OTMA
client

Invalid destination
AI status returned
on the CHNG call

RC=0 RC=4 RC=8

RC=4RC=0 RC=8 RC=12

136 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

the client name. Previously, that was the only way to reroute the asynchronous output from
one OTMA-originated transaction to a different OTMA client, but now this function can be
done in DFSYPRX0. When OTMAMD is set to Y, DFSYPRX0 can and should make all
routing decisions. Refer to APAR PQ33996 for more details.

For more information about the OTMA prerouting exit and destination resolution exit, refer to
IMS Version 9: Customization Guide, SC18-7817.

9.5.2 How IMS Connect communicates with the DRU exit
In IMS Connect, the LTERM name is analogous to the unique clientID name for
commit-then-send message flow. To clarify whether a destination is for IMS Connect (through
OTMA), IMS uses a prerouting exit routine (DFSYPRX0) that can specify where IMS should
look to resolve the destination names. In this case, IMS needs to look at the IMS Connect
clientIDs, because the DRU exit cannot determine whether the message should be directed
to OTMA client (IMS Connect) or traditional IMS processing (ISRT to traditional LTERM or P
to P switching). Determining the destination for an OTMA (IMS Connect client) message
requires two phases:

1. DFSYPRX0 is called to determine the initial destination for the output.

The exit routine can determine whether the message should be directed to OTMA clients
or to IMS Transaction Manager for traditional IMS processing. The exit routine cannot
determine the final destination (Tpipe name).

2. The DRU exit routine (for example, the IMS Connect supplied exit HWSYDRU0) is called
to determine the final destination (Tpipe name) for the output.

Each OTMA client can specify a separate DRU exit routine. In other words, each OTMA client
can specify a single DRU exit for each copy of IMS Connect that is connected to a given
datastore (IMS). This means that one IMS Connect can have the same or a different DRU exit
for each of the datastore definitions in the IMS Connect configuration file.

9.5.3 HWSYDRU0 sample DRU exit
Figure 9-4 on page 138 shows the function of HWSYDRU0, the IMS Connect-supplied OTMA
DRU exit.

You can only use this exit under one of the following conditions:

� The IMS Connect clientIDs are named CLIENT01 through CLIENT09 and all belong to the
same member name.

� The IMS Connect clientIDs are as follows (in this case, Tpipe names are changed and
integrated into another name):

– TPIPE001 through TPIPE099 and all belong to member MEMBER0
– TPIPE100 through TPIPE199 and all belong to member MEMBER1
– TPIPE200 through TPIPE299 and all belong to member MEMBER2
– TPIPE300 through TPIPE399 and all belong to member MEMBER3
– TPIPE400 through TPIPE499 and all belong to member MEMBER4

Chapter 9. IMS Connect user exit support 137

Figure 9-4 The function of the HWSYDRU0 user exit

The HWSYDRU0 exit is only an example, and when you use it, the following sequence of
events occurs:

1. The prerouting exit (DFSYPRX0) sets up addressability to the parameters that are passed
to the HWSYDRU0 exit.

2. The output member name in the output parameter list is set to blanks.

3. HWSYDRU0 determines the action to take based on whether the name in the input
destination parameter (that is, the destination where the message is to be sent) is an IMS
LTERM or an IMS Connect destination. After HWSYDRU0 makes this determination, it
takes a course of action and sets the contents of register 15 on exit.

9.5.4 Debugging the IMS OTMA exits
When you need to debug an IMS OTMA exit, HWSYPRX0 or HWSYDRU0, keep in mind that
they can be called in a cross-memory environment. In addition, those exits must be reentrant.
write to operator (WTO) can be used to display debug messages, but you have to be careful:

� You must use the LIST-EXECUTE form of WTO, that is, WTO MF=(E,WTOMSG), or you
will find 0C4 abends in the IMS control region.

� You must use LINKAGE=BRANCH if you are running in a cross-memory environment.

Example 9-3 shows how WTOs can be safely issued from an IMS OTMA exit routine.

Example 9-3 Issuing WTOs from an IMS OTMA exit routine

LA R7,WTOMSG
BAL R10,DOWTO

DOWTO DS 0H
L R5,ADDRWORK ADDRESS OF 512-BYTE WORK AREA
LTR R5,R5 IS THERE A WORK AREA?
BZR R10 NO - JUST RETURN
USING WTOD,R5 TELL ASSEMBLER
MVC WTOMSGE,WTOMSGL MOVE MESSAGE MASK
MVC WTOTEXT,0(R7) MOVE MESSAGE TEXT

DFSYPRX0
routes to
OTMA client

ALTPCB ISRT TO CLIENT01
ALTPCB ISRT TO CLIENT02
 :
ALTPCB ISRT TO CLIENT09

IMS Application

ALTPCB ISRT TO TPIPE001
ALTPCB ISRT TO TPIPE002
 :
ALTPCB ISRT TO TPIPE100

ALTPCB ISRT TO TPIPE900
ALTPCB ISRT TO TPIPE901
 :
ALTPCB ISRT TO TPIPE999

HWSYDRU0
specifies
final destination
(Tpipe name)

IMS OTMA
TPIPE NAME : CLIENT01

TPIPE NAME : CLIENT02

TPIPE NAME : CLIENT09

TPIPE NAME : MEMBER0

TPIPE NAME : MEMBER9

138 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

EPAR R0 PRIMARY ASID
ESAR R1 SECONDARY ASID
CLR R0,R1 PRIMARY = SECONDARY?
BNE DOWTOX NO - IN XM MODE
WTO MF=(E,WTOMSGE) WTO TRACE MESSAGE
BR R10 RETURN TO CALLER

DOWTOX DS 0H
WTO MF=(E,WTOMSGE),LINKAGE=BRANCH
BR R10 RETURN TO CALLER
DROP R5 TELL ASSEMBLER
EJECT

WTOMSGL WTO ‘ ', X
ROUTCDE=(11),DESC=(7),MF=L

WTOD DSECT
WTOMSGE DS 0CL58 REENTRANT WTO MESSAGE

DS CL2 TEXT LENGTH
DS CL2 MCSFLAGS

WTOTEXT DS CL50
DS CL4 ROUTING AND DESCRIPTOR CODES

Chapter 9. IMS Connect user exit support 139

140 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 10. IMS Connect diagnostics

This chapter contains information about the features that IMS Connect provides to help you to
diagnose problems. It describes the IMS Connect recorder trace and the IMS Connect traces.

The IMS Connect recorder trace is a function to capture information related to IMS Connect
input and output data to a data set. IMS Connect recorder trace is also called IMS Connect
line trace.

Through the IMS Connect Base Primitive Environment, IMS Connect enables you to trace
diagnostic information about events going on within the address space. These traces are
internal incore tables; IMS Connect does not write these trace records to external data sets.
To access to this data, you have to obtain a dump and format the trace tables.

This chapter also describes how to use the IMS Connect Dump Formatter to format IMS
Connect internal control blocks under the control of the Interactive Problem Control System
(IPCS).

10

© Copyright IBM Corp. 2006. All rights reserved. 141

10.1 IMS Connect recorder trace
The IMS Connect recorder trace records the messages and the headers received from the
client and the messages and headers received from OTMA and sent to the client.

The IMS Connect recorder trace records the messages before and after they are processed
by the IMS Connect exits. The trace contains a copy of the first 670 bytes of the data as it is
passed to the user message exit and upon return from the user message exit.

There are three types of recorder trace records:

� Input message from the client. IMS Connect labels them as ITOCRC.
� Output message sent to the client. IMS Connect labels them as ITOCSN.
� Read error record. IMS Connect labels them as ITOCER.

10.1.1 Enabling IMS Connect recorder trace
To enable the recorder trace, you have to allocate a data set for the information to be stored
and add a HWSRCORD DD card to the IMS Connect startup JCL, as shown in
Example 10-1.

Example 10-1 Sample IMS Connect startup JCL with HWSRCORD DD statement

//HWS PROC RGN=4096K,SOUT=A,
// BPECFG=BPECFGHT,
// HWSCFG=HWSCFG00
//*
//***
//* BRING UP AN IMS CONNECT *
//***
//STEP1 EXEC PGM=HWSHWS00,REGION=&RGN,TIME=1440,
// PARM=’BPECFG=&BPECFG,HWSCFG=&HWSCFG’
//STEPLIB DD DSN=SHWSRESL,DISP=SHR
// DD DSN=SDFSRESL,DISP=SHR
// DD DSN=CEE.SCEERUN,UNIT=SYSDA,DISP=SHR
// DD DSN=SYS1.CSSLIB,UNIT=SYSDA,DISP=SHR
// DD DSN=GSK.SGSKLOAD,UNIT=SYSDA,DISP=SHR
//PROCLIB DD DSN=USER.PROCLIB,DISP=SHR
//SYSPRINT DD SYSOUT=&SOUT
//SYSUDUMP DD SYSOUT=&SOUT
//HWSRCORD DD DSN=HWSRCDR,DISP=SHR

Allocate the HWSRCORD data set normal physical sequential data set with record format FB,
record length 1,440 and the block size 14,400. The data set can use secondary extents.

IMS Connect stores the trace information into this single data set. There are no spare data
sets or any wrap-around processing, so when this data set fills up, the trace is disabled.
Starting the trace overwrites trace data recorded in earlier trace.

From an IMS perspective, you can manage this trace data set in a similar manner as to the
IMS Monitor Trace (IMSMON) data set.

10.1.2 Starting and stopping the IMS Connect recorder trace
You use the IMS Connect RECORDER command to start and stop the recorder trace:

� RECORDER OPEN opens the recorder trace data set.
� RECORDER CLOSE closes the recorder trace data set.

142 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

10.1.3 Printing out the recorder trace
Example 10-2 shows the JCL to print the recorder trace data set.

Example 10-2 Sample JCL to print the recorder trace data set

//IDCAMS JOB JOB 1,IDCAMS,MSGLEVEL=1,CLASS=K,TIME=1440
//SELECT EXEC PGM=IDCAMS
//DD1 DD DSNAME=HWSRCDR,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 PRINT INFILE(DD1)

Example 10-3 shows a sample of the output that you obtain.

Example 10-3 Printed recorder trace output sample

0000000 00000000 C9E3D6C3 D9C30052 00000877 13313877 0105168F 00000000 00000000 *....ITOCRC......................*
 000020 C3D3C9C5 D5E3F0F1 BD2D0A48 11A8A120 BD2D0A48 11AA4C80 00000000 00000000 *CLIENT01..............<.........*
 000040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 5CC9D7C2 *............................*IPB*
 000060 00000093 00500000 2A53414D 504C452A 00000000 00000000 C3D3C9C5 D5E3F0F1 *.....&.....(&<..........CLIENT01*
 000080 00400140 C9E5E3D5 D6404040 C9D4E2C7 40404040 40404040 40404040 40404040 *. . IVTNO IMSG *
 0000A0 40404040 40404040 40404040 5C5C5C5C 5C5C5C5C 003B0000 C9E5E3D5 D6404040 * ********....IVTNO *
 0000C0 4040C4C9 E2D7D3C1 E840D3C1 E2E3F140 40404040 40404040 40404040 40404040 * DISPLAY LAST1 *
 0000E0 40404040 40404040 40404040 40404000 04000000 00000000 00000000 00000000 * *
 000100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

10.1.4 Interpreting the recorder trace printout
As you can see in Example 10-3, the printed recorder trace output has eye-catchers to
identify the data that it contains. Figure 10-1 shows the relationship between the messages
traced by IMS Connect and the eye-catchers on the recorder log in a simple transaction flow.

Figure 10-1 Eye-catchers on recorder log

As a first level, the records have an eye-catcher to identify the type of record (if it has data
received from the client or sent to the client). As a second level, there are eye-catchers to
identify if the data is an input to the exit or an output from the exit.

Table 10-1 on page 144 shows the eye-catchers and the information that you find after each
one.

OTMA

IMS Connect

Client

User Exit User Exit

ITOCRC ITOCSN

*OPB

*IPB

*IPB

*OPB

:Eye Catcher on Recorder Log

Chapter 10. IMS Connect diagnostics 143

Table 10-1 Recorder log contents

In this sample flow, you have the following trace records:

� ITOCRC

Contains information about data received from the client. It has the value ITOCRC at the
offset x'04'.

The prefix *IPB begins at offset x'5C' and is followed by the actual input message before it
is given to the IMS Connect exit at offset X'60'. The ID of the exit (IRM_ID) to which this
message will be passed is at offset x'68'.

The prefix *OPB begins at offset x'2FC' and is followed at offset X'300' with the actual
output message after it is processed by the IMS Connect exit.

There are two different cases:

– For IMS Connector for Java messages, the format of the exit output message is the
same as the format of the input message. The HWSJAVA0 exit does not modify the
message.

– For non-IMS Connector for Java messages, the format of the exit output message
contains the BPE header, OTMA headers, and data.

� ITOCSN

Contains information about data sent to the client. It has the value ITOCSN at the offset
x'04'.

The prefix *IPB is followed by the actual message before it is given to the IMS Connect exit
at offset X'60'. Output messages from the OTMA consist of OTMA headers and the data.
The ID of the OTMA Tpipe name can be found at offset x'66'.

At offset X'300' after the prefix *OPB begins the actual message after it is processed by
the IMS Connect exit.

There are two different cases:

– For IMS Connector for Java messages, the format of the message is the same
message format as the output message (except the 12 byte message header added by
IMS Connect). The HWSJAVA0 exit does not modify the message.

– For non-IMS Connector for Java messages, the format of the message is Request Mod
Message (RMM) if available, data, and the Complete Status Message (CSM) if the
input message was processed successfully and output data is available. If IMS
Connect or the user message exit determined that an error occurred or notified some
information to the client (for example, commit confirmation with synclevel confirm), the
only structure contained in the output message is the Request Status Message (RSM).
The RSM consists of 20 bytes of information (LL, ZZ, ID *REQSTS*, the return code,
and the reason code).

In abnormal situations, you can also find ITOCER records with information about read errors.

Eye-catcher on recorder log Contents

ITOCRC: Receive from client

*IPB Input to exit

*OPB Output from exit

ITOCSN: Send to client

*IPB Input to exit

*OPB Output to exit

144 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

For more information about these records, refer to the recorder log record mapping in IMS
Version 9: IMS Connect Guide and Reference, SC18-9287.

10.1.5 Example of recorder trace output
For this example, we use the standard IMS IVP application, but we convert the COBOL
source for transaction IVTNO into a Java application. We use IMS Connector for Java to send
the request to IMS Connect. OTMA commit mode is send-then-commit (synclevel none).

We activate the IMS Connect recorder trace for a single iteration of the IVTNO transaction
triggered from the Web browser. Figure 10-2 shows the sample transaction flow and the
recorder log contents.

Figure 10-2 Sample transaction flow and recorder log contents

Example 10-4 shows the data obtained by printing the recorder trace output.

Example 10-4 Recorder trace output example from IMS Connector for Java

0RECORD SEQUENCE NUMBER - 1
 000000 00000000 C9E3D6C3 D9C30052 00000877 14413251 0101254F 00000000 00000000 *....ITOCRC.............|........*
 000020 C8E6E2F2 E5E5E3E4 B66C556A BEB2BB00 B66C556A C5F65281 00000000 00000000 *HWS2VVTU.%.......%..E6..........*
 000040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 5CC9D7C2 *............................*IPB*
 000060 0000022D 001C0000 5CC8E6E2 D1C1E55C 00000040 C0000000 C8E6E2F2 E5E5E3E4 *........*HWSJAV*... {...HWS2VVTU*
 000080 01400000 00004040 40404040 4040A0F0 00000000 00000000 00000000 00010000 *.0................*
 0000A0 00480020 00404040 40404040 40400000 00000000 00000000 00000000 00000000 *..... *
 0000C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00004040 *.............................. *
 0000E0 40404040 40400000 006AC614 09029196 A49296F8 40400903 A2A8A2F1 40404040 * F........8 1 *
 000100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000120 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000140 00000000 00000000 00000000 00000000 00000100 0000C9D4 E2C24040 4040C8E6 *......................IMSB HW*
 000160 E2F2E5E5 E3E40000 00000000 00000000 00000000 00000000 00000000 00000000 *S2VVTU..........................*
 000180 00000000 00009196 A49296F8 40401000 00000000 00000000 00000000 00000000 *...........8 *
 0001A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0001C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0001E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

Note: When you use the IMS Connector for Java client, messages are not modified for the
HWSJAVA0 exit. The *OPB contents for ITOCSN show the message received from OTMA
with the header added by IMS Connect.

OTMA

IMS Connect

Client

User Exit
(HWSJAVA0)

IRM LLZZDataOTMA Prefix

(1) IMS Connecter for Java -- > IMS Connect

(4) IMS Connect -- > IMS OTMA

OTMA Prefix LLZZData

(5) IMS OTMA -- > IMS Connect(*IPB)

(6) IMS Connect -- > IMS Connecter for Java(*OPB)

(2) IMS Connect -- > HWSJAVA0 (*IPB)

(3) HWSJAVA0 -- > IMS Connect(*OPB)

IRM LLZZDataOTMA Prefix

OTMA Prefix LLZZData(Header*)

*This header is added by IMS Connect

ITOCRC ITOCSN

Chapter 10. IMS Connect diagnostics 145

 000200 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000220 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000240 00000000 00000000 00000000 00000000 0000003B 0000C9E5 E3D5D640 40404040 *......................IVTNO *
 000260 C4C9E2D7 D3C1E840 D1C1D4C5 E2404040 4040C2D6 D5C44040 40404040 F7F7F0F1 *DISPLAY JAMES BOND 7701*
 000280 F2F3F4F5 F6F7F1F2 F3F4F540 40000000 00000000 00000000 00000000 00000000 *23456712345 *
 0002A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0002C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0002E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 5CD6D7C2 *............................*OPB*
 000300 0000022D 001C0000 5CC8E6E2 D1C1E55C 00000040 C0000000 C8E6E2F2 E5E5E3E4 *........*HWSJAV*... {...HWS2VVTU*
 000320 01400000 00004040 40404040 4040A0F0 00000000 00000000 00000000 00010000 *.0................*
 000340 00480020 00404040 40404040 40400000 00000000 00000000 00000000 00000000 *..... *
 000360 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00004040 *.............................. *
 000380 40404040 40400000 006AC614 09029196 A49296F8 40400903 A2A8A2F1 40404040 * F........8 1 *
 0003A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0003C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0003E0 00000000 00000000 00000000 00000000 00000100 0000C9D4 E2C24040 4040C8E6 *......................IMSB HW*
 000400 E2F2E5E5 E3E40000 00000000 00000000 00000000 00000000 00000000 00000000 *S2VVTU..........................*
 000420 00000000 00009196 A49296F8 40401000 01000000 00000000 00000000 00000000 *...........8 *
 000440 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000460 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000480 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0004A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0004C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0004E0 00000000 00000000 00000000 00000000 0000003B 0000C9E5 E3D5D640 40404040 *......................IVTNO *
 000500 C4C9E2D7 D3C1E840 D1C1D4C5 E2404040 4040C2D6 D5C44040 40404040 F7F7F0F1 *DISPLAY JAMES BOND 7701*
 000520 F2F3F4F5 F6F7F1F2 F3F4F540 40000000 00000000 00000000 00000000 00000000 *23456712345 *
 000540 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000560 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000580 00000000 00000000 00000000 00000000 00000000 00000000 00000000 5CC5D5C4 *............................*END*
0RECORD SEQUENCE NUMBER - 2
0000000 00000000 C9E3D6C3 E2D50052 00000877 14413254 0101254F 00000000 00000000 *....ITOCSN.............|........*
 000020 C8E6E2F2 E5E5E3E4 B66C556A C6980B21 00000000 00000000 B66C556A C6983D61 *HWS2VVTU.%..F............%..F../*
 000040 00000000 00000000 00000000 00000000 00010000 00000000 00000000 5CC9D7C2 *............................*IPB*
 000060 01800000 0000F6F0 F0F14040 4040A0F0 0000001E 00000000 00000000 00010000 *......6001 .0................*
 000080 00480020 00404040 40404040 40400000 00000000 00000000 00000000 00000000 *..... *
 0000A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00004040 *.............................. *
 0000C0 40404040 40400000 006AC614 0902D1D6 E4D2D6F8 40400903 E2E8E2F1 40404040 * F...JOUKO8 ..SYS1 *
 0000E0 51005001 82555555 15555555 55555555 55555555 55555555 55555555 55555555 *..&.............................*
 000100 55555555 55555555 55555555 55555555 55555555 55555555 55555555 55555555 *................................*
 000120 55558483 B18783AD 1515B7BD B7A41515 15150100 0000C9D4 E2C24040 4040C8E6 *......................IMSB HW*
 000140 E2F2E5E5 E3E4F6F0 F0F14040 4040B66C 556ABEAC B9000000 00000000 00000000 *S2VVTU6001 .%................*
 000160 00000CB5 DF180000 00000000 00001000 21000000 0000A5F8 00000000 00000000 *.......................8........*
 000180 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0001A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0001C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0001E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000200 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000220 00000000 00000000 00000000 00000000 0000005D 0300C5D5 E3D9E840 E6C1E240 *...................)..ENTRY WAS *
 000240 C4C9E2D7 D3C1E8C5 C4404040 40404040 40404040 40404040 40404040 4040C4C9 *DISPLAYED DI*
 000260 E2D7D3C1 E840D1C1 D4C5E240 40404040 C2D6D5C4 40404040 4040F7F7 F0F1F2F3 *SPLAY JAMES BOND 770123*
 000280 F4F5F6F7 F1F2F3F4 F54040F0 F0F1F100 00000000 00000000 00000000 00000000 *456712345 0011.................*
 0002A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0002C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0002E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 5CD6D7C2 *............................*OPB*
 000300 0000023B 5CC8E6E2 D1C1E55C 01800000 0000F6F0 F0F14040 4040A0F0 0000001E *....*HWSJAV*......6001 .0....*
 000320 00000000 00000000 00010000 00480020 00404040 40404040 40400000 00000000 *................. *
 000340 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000360 00000000 00000000 00004040 40404040 40400000 006AC614 0902D1D6 E4D2D6F8 *.......... F...JOUKO8*
 000380 40400903 E2E8E2F1 40404040 51005001 82555555 15555555 55555555 55555555 * ..SYS1 ..&.................*
 0003A0 55555555 55555555 55555555 55555555 55555555 55555555 55555555 55555555 *................................*
 0003C0 55555555 55555555 55555555 55558483 B18783AD 1515B7BD B7A41515 15150100 *................................*
 0003E0 0000C9D4 E2C24040 4040C8E6 E2F2E5E5 E3E4F6F0 F0F14040 4040B66C 556ABEAC *..IMSB HWS2VVTU6001 .%....*
 000400 B9000000 00000000 00000000 00000CB5 DF180000 00000000 00001000 21000000 *................................*
 000420 0000A5F8 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *...8............................*
 000440 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000460 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000480 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0004A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0004C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0000005D *...............................)*
 0004E0 0300C5D5 E3D9E840 E6C1E240 C4C9E2D7 D3C1E8C5 C4404040 40404040 40404040 *..ENTRY WAS DISPLAYED *
 000500 40404040 40404040 4040C4C9 E2D7D3C1 E840D1C1 D4C5E240 40404040 C2D6D5C4 * DISPLAY JAMES BOND*
 000520 40404040 4040F7F7 F0F1F2F3 F4F5F6F7 F1F2F3F4 F54040F0 F0F1F100 00000000 * 770123456712345 0011.....*
 000540 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000560 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 000580 00000000 00000000 00000000 00000000 00000000 00000000 00000000 5CC5D5C4 *............................*END*
0IDC0005I NUMBER OF RECORDS PROCESSED WAS 2

Table 10-2 on page 147 shows the fields that the ITOCRC record displays in the example.

146 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Table 10-2 IMS Connect receive data

Table 10-3 shows the fields that the ITOCSN record displays in the example.

Table 10-3 IMS Connect send data

Offset Description of the fields in the example trace output

x'04' ITOC prefix.

x'08' RC prefix, indicating a receive from client.

x'5C' *IPB prefix, indicating the beginning of the input buffer from the client to IMS Connect.

x'60' Beginning of input buffer.

x'68' IRM_ID of the IRM header, that is, the ID of the exit to which this message will be passed.
IBM-defined IRM_IDs are:
� *IRMREQ* for a TCP/IP client
� *IRMRE1* for a TCP/IP client/fullword length field prior to message
� *SAMPLE* for IMS sample client for Java
� *SAMPL1* for IMS sample client/fullword length prior to message
� *HWSJAV* for IMS Connector for Java

x'78' Character value of a unique clientID (HWS2VVTU in this example).

x'80' OTMA header information. Refer to 2.2, “OTMA message structure” on page 9 for a
description.

x'256' IMS transaction code and user data, beginning with IVTNO.

x'2FC' *OPB prefix, indicating the beginning of the output buffer from IMS Connect to IMS.

x'300' Beginning of the output buffer.

x'308' IRM_ID of the IRM header, that is, the ID of the exit that has processed this message.
IBM-defined IRM_IDs are same as in offset x'68' above.
This example points to *HWSJAV*.

x'318' Character value of a unique clientID (HWS2VVTU in this example).

x'320' OTMA header information.

x'4F6' IMS transaction code and user data, beginning with IVTNO.

Offset Description of the fields in the example trace output

x'04' ITOC prefix

x'08' SN prefix, indicating a receive from client

x'5C' *IPB prefix, indicating the beginning of the input buffer from IMS to IMS Connect

x'60' Beginning of OTMA header

x'66' OTMA Tpipe name, in our case, '6001'

x'232' Beginning of user data

x'2FC' *OPB eye-catcher, indicating the beginning of the output buffer from IMS Connect to the
client

x'300' Beginning of the OTMA header

x'4DE' Beginning of user data

Chapter 10. IMS Connect diagnostics 147

10.2 IMS Connect traces
The IMS Connect traces normally are only used if requested by the IBM support center while
analyzing a problem. This section helps you to identify how to process these traces and how
to read them in order to provide better information to IBM.

The IMS Connect Base Primitive Environment (IMS Connect BPE) is the component that
provides the tracing services.

10.2.1 BPE configuration
You can enable the IMS Connect traces by updating the IMS Connect startup configuration
member, as specified by the BPECFG parameter. See Chapter 4, “Configuring IMS Connect”
on page 43 for a description of this member.

The following keywords are available for the BPE configuration parameter member:

� LANG

The LANG parameter specifies the language used for IMS Connect BPE and IMS Connect
messages. ENU is for U.S. English, which is currently the only supported language.

� TRCLEV

The TRCLEV parameter specifies the trace level for a trace table and, optionally, the
number of pages of storage allocated for the trace table. TRCLEV controls the level of
tracing (the amount of detail traced) for each specified trace table type. BPE-managed
trace tables are areas in storage where IMS Connect BPE, and IMS Connect, can trace
diagnostic information about events going on within the address space. Each trace table
has a trace table type associated with it. A trace table’s type refers to the kind of events
that are traced into that table. For example, the BPE DISP trace table contains entries
related to events in the BPE dispatcher.

IMS Connect BPE-managed trace tables are internal incore tables only. Trace records are
not written to any external data sets. Some trace table types are defined and owned by
IMS Connect BPE itself. These are known as system trace tables. IMS Connect also
defines its own trace tables. These are known as component trace tables or user-product
trace tables.

Refer to Chapter 4, “IMS Connect Definition and Tailoring,” in IMS Version 9: IMS Connect
Guide and Reference, SC18-9287, for detailed information about the traces available.

10.2.2 Formatting incore trace tables
IMS Connect trace tables are incore tables, you can format them from a dump of an IMS
Connect address space by using the IMS Connect Dump Formatter of the Interactive
Problem Control System (IPCS).

The standard IMS Connect BPE formatting services format the traces. You must link-edit
HWSFTRC0 with an alias of HWSFTvrm (where v is the version level, r is the release level,
and m is the modification level). For example, IMS Connect V9.1.0 would have the alias of
HWSFT910.

The HWSFTRC0 is link-edited as HWSFT910 and must reside in the IMS formatting library to
use for formatting IMS Connect. Example 10-5 on page 149 shows the include, alias, and
name statement.

148 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 10-5 HWSFTRC0 link-edit

INCLUDE LOAD(HWSFTRC0) HWS FORMATTED TRACE
ALIAS HWSFT910 HWS 9.1.0 FORMATTED TRACE
ALIAS NAME HWSFTRC0(R)

You must use the parameters shown in Example 10-6 for the link-edit step.

Example 10-6 HWSFTRC0 link-edit parameters

// PARM=('SIZE=880K,64K)',RENT,REFR,
// NCAL,LET,XREF,LIST)

10.3 IMS Connect Dump Formatter
The IMS Connect Dump Formatter enables you to format various IMS Connect internal
control blocks under the ISPF IPCS environment. The IMS Offline Dump Formatter enables
you to display the following IMS Connect control blocks:

� EST
� SCT
� DCT
� INTT
� SVT
� DST
� HCDB
� FWE
� TWU
� CTOKN

You can also format IMS Connect BPE control blocks and trace entries from within the IMS
Connect Dump Formatter. IMS Connect executes under the IMS Connect BPE.

10.3.1 IMS Connect Dump Formatter activation
Before you install the IMS Connect portion of the Interactive Dump Formatter, ensure that the
Interactive Problem Control System (IPCS) is already working with ISPF and the IMS
formatting functions. The actions to activate the IMS Connect Dump Formatter are different if
you are using the IMS Connect integrated feature of IMS Version 9 or IMS Connect
Version 2.2.

Integrated IMS Connect feature of IMS Version 9
If you have IPCS working with the IMS formatting facilities, you only have to ensure that the
IMS Connect Dump Formatter modules are in a data set that is included in the IPCS
TASKLIB data set concatenation.

The IMS Connect Dump Formatter modules are:

� HWSFT910 (alias of HWSFTRC0)
� HWSOB910

IMS Connect Version 2.2
After you have IPCS working with the IMS formatting facilities, you have to update the DD
concatenations in Table 10-4 on page 150.

Chapter 10. IMS Connect diagnostics 149

Table 10-4 DD concatenations

After you have updated the concatenations, ensure that the IMS Connect Dump Formatter
modules are in a data set that is included in the IPCS TASKLIB data set concatenation.

The IMS Connect Dump Formatter modules are:

� HWS$B130
� HWS$F130
� HWS$S130
� HWSODF0$
� HWSFT220 (alias of HWSFTRC0)
� HWSOB220

10.3.2 Accessing the IMS Connect Dump Formatter
You can access the IMS Connect Dump Formatter by selecting DFSAAMPR from the IPCS
Component Analysis panel. You will receive the primary menu options for IMS dump
formatting, as shown in Figure 10-3.

Figure 10-3 IMS DUMP FORMATTING PRIMARY MENU panel

The way that you access the IMS Connect Dump Formatter depends on the type of IMS
Connect that you are using.

IMS Connect integrated feature of IMS Version 9
Select the option 6 OTHER COMP in the IMS Dump Formatting Primary Menu panel. You see
the IMS Component Selection Dump Formatting Menu, as shown in Figure 10-4 on page 151.

DDNAME Data set to be added Contents of data set

SYSPROC CONN.SHWSCLST Clists

ISPPLIB CONN.SHWSPLIB Panels

ISPTLIB CONN.SHWSTLIB Tables

TASKLIB CONN.SHWSRESL Formatting modules

150 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 10-4 IMS COMPONENT SELECTION DUMP FORMATTING MENU panel

From the option 6 IMS Connect of that panel, you can access the IMS Connect Dump
Formatting Menu panel shown in Figure 10-6 on page 152.

IMS Connect Version 2.2
Select the option 7 OTHER PROD in the IMS Dump Formatting Primary Menu panel. You see
the IMS-Related Product Selection Dump Formatting Menu, as shown in Figure 10-5.

Figure 10-5 IMS-RELATED PRODUCT SELECTION DUMP FORMATTING MENU panel

From the option 2 IMS Connect of that panel, you can access the IMS Connect Dump
Formatting Menu panel, as shown in Figure 10-6 on page 152.

10.3.3 Using the IMS Connect Dump Formatter
Figure 10-6 on page 152 shows the IMS Connect Dump Formatting Menu panel.

Chapter 10. IMS Connect diagnostics 151

Figure 10-6 IMS CONNECT DUMP FORMATTING MENU panel

Before you can format a dump, you need to initialize it. You initialize a dump as follows:

1. Select option 0, Show BPE status and initialize dump from the IMS Connect Dump
Formatting Menu panel. The IMS Connect initialization panel opens, as shown in
Figure 10-7.

Figure 10-7 BPE DUMP CONTENT STATUS AND CONTROL panel

2. A message warning that the symbol HWSCSCD was not found opens. It ask you to enter
the IMS Connect jobname or ASID to cause IMS Connect IPCS symbols to be set for the
dump.

Specify either the jobname or the ASID of the IMS Connect address you want to format
and press Enter. After you have provided a jobname or ASID, the remaining fields are
filled out in the initialization panel, as shown in Figure 10-8 on page 153.

152 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 10-8 BPE DUMP CONTENT STATUS AND CONTROL panel

To obtain a list of all dumped IMS Connect address spaces, leave the jobname and ASID
fields blank.

3. After initializing the dump, press PF3 to return to the IMS Connect Dump Formatting
Primary Menu.

After you have initialized a dump, you can then use the options on the IMS Connect Dump
Formatting Primary Menu to browse the dump data set, perform high-level or low-level IMS
Connect formatting, or perform IMS Connect BPE formatting.

Figure 10-9 on page 154 shows a sample formatted dump. To obtain, it we choose option 2
HI-LEVEL in the IMS Connect Dump Formatting Menu panel. Then, we select option
HWSTRACE to access the IMS Connect trace data by the high-level (IMS Connect
component level) formatting function.

Chapter 10. IMS Connect diagnostics 153

Figure 10-9 Sample of formatted dump (all IMS Connect trace)

154 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 11. IMS Connect Extensions

IMS Connect Extensions is an IBM DB2 UDB and IMS Tools program product (program
number 5655-K48) that extends and enhances the services of IMS Connect. The tool helps
you tune IMS and IMS Connect performance, perform problem determination, and better
manage workloads, user exits, and security.

This chapter gives an overview of IMS Connect Extensions showing how IMS Connect
Extensions can help you manage your IMS Connect system. This chapter includes the
following topics:

� Introduction to IMS Connect Extensions
� Event collection and reporting
� Workload management
� Status Monitor
� Security
� User exits management
� IMS Connect problem determination with IMS Connect Extensions

11

Note: IMS Connect Extensions Version 1 Release 2 was announced on September 7,
2005 with the general availability date of October 7, 2005. We wrote this chapter and the
examples during the summer of 2005 with V1.1. Refer to 11.8, “Highlights of IMS Connect
Extensions Version 1 Release 2” on page 216 for a short description of the enhancements
provided in V1.2.

© Copyright IBM Corp. 2006. All rights reserved. 155

11.1 Introduction to IMS Connect Extensions
IMS Connect Extensions provides the following features:

� Event recording and reporting

IMS Connect Extensions records details of IMS Connect internal events in journal data
sets. They give information about these main points:

– Performance and response time for IMS, IMS Connect, and user message exits
– Availability for datastore and ports
– Throughput information for different transaction types
– Resource availability

IMS Connect Extensions provides batch utilities to format and print the recorded events. It
also provides interfaces to the IMS Performance Analyzer and IMS Problem Investigator
products.

� Workload management

IMS Connect Extensions enables you to dynamically manage workloads with the following
services:

– Transaction routing

IMS Connect Extensions allows for the redirection of transactions from the original
datastore destination, as specified by the client, to another datastore.

You define the rules and logical groupings of datastores to manage the transaction
routing processing. Using this feature, you can redistribute resources without having to
change client applications.

– Workload balancing

IMS Connect Extensions enables the redirection of transactions based on the
capabilities of the individual datastores.

– Transaction pacing

IMS Connect Extensions protects datastores from surges in the numbers of
transactions by detecting the surge and responding by rejecting the incoming message
requests.

Transaction pacing allows IMS Connect Extensions to issue warning messages or to
reject transactions if predetermined, user-specified incoming transaction threshold
values are exceeded.

� Status Monitor

The IMS Connect Extensions Status Monitor displays the current activity status
information for an active IMS Connect system.

The Status Monitor presents information for the IMS Connect system, datastores, and
user message exits for various intervals over the previous hour. It also displays statistical
information across the active ports. It enables you to monitor and display IMS Connect
activity and utilization in real time.

� Security

IMS Connect Extensions enhances the security features of IMS Connect by giving an
optional verification of user access to IMS Connect.

IMS Connect Extensions performs user ID and password validation. It creates ACEE
structures for each user ID and saves them in a cache. On subsequent calls, IMS Connect
Extensions does not reissue the security call, saving valuable system resources.

156 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

IMS Connect Extensions checks whether the user ID associated with an incoming
message request is authorized to use the IMS Connect system.

� User exits management

IMS Connect Extensions supports dynamically reload, addition, deletion, disabling, and
enabling of user exits.

IMS Connect Extensions operation
This section shows the components, commands, and activation steps of IMS Connect
Extensions.

IMS Connect Extensions components
Figure 11-1 introduces the components of IMS Connect Extensions. Note that IMS Connect
Extensions runs in the IMS Connect address space.

Figure 11-1 IMS Connect Extensions components

The following list describes the IMS Connect Extensions components:

� ISPF interface

IMS Connect Extensions provides an Interactive System Productivity Facility (ISPF)
interface to set IMS Connect Extensions options, issue commands, and display IMS
Connect activity. Figure 11-2 on page 158 shows the primary menu of the ISPF panel.

Definitions
data set

Active Journal

IMS Connect Extensions
Operation

Archive
Journal

ISPF

Analysis Reports

IMS Performance Analyzer

IMS Problem Investigator

IMS Connect Extensions Utilities

IMS
Connect

Extensions
IMS

Connect

Chapter 11. IMS Connect Extensions 157

Figure 11-2 IMS Connect Extensions Primary Menu

� Definitions data set

The definitions data set is a VSAM KSDS for your IMS Connect system definitions.

Every system definition defines the options and controls for an IMS Connect system. The
system definition name must be the same HWS ID parameter in the IMS Connect
configuration member; otherwise, IMS connections will not be activated.

You create a definition data set using the option 1 Settings in the ISPF primary menu. To
create system definition, use option 2 Definitions.

� Event collection

The event collection monitors and records IMS Connect activity.

Through the option 2 Definitions in the ISPF panel, you can edit the your system
definition to activate the event collection. You have to define the collection level and the
journal management.

You can obtain reports from the archived journals using the IMS Performance Analyzer,
IMS Problem Investigator, or the IMS Connect Extensions print utilities.

� Statistics collection

This component provides the data used by the Status Monitor to display current IMS
Connect system and port utilization.

The Status Monitor is accessible through option 4 Status in the ISPF primary menu.

� Workload management

With IMS Connect Extensions, you can manage and control transaction workloads.

Using the ISPF interface, you are able to edit a system definition to activate transaction
routing, transaction pacing, and workload balancing.

IMS Connect Extensions commands
IMS Connect Extensions commands are dynamic and can be executed without stopping IMS
Connect.

The interface to issue commands is accessible through the option 3 Commands in the
primary ISPF menu. Figure 11-3 on page 159 shows it.

158 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 11-3 IMS Connect Extensions Commands menu

The following commands are available:

� User Exit

This command enables you to reload, delete, disable, or enable the user exists defined to
IMS Connect Extensions. It also supports dynamically adding new user exits.

� Refresh

This command causes IMS Connect Extensions to be rebuilt from the definitions data set.
This affects, for example, pacing thresholds, transaction routing options, datastore
capacity weightings, and security settings.

� Security

You use this command to refresh the Security Authorization Facility (SAF) class rules and
to delete any cached user ID security profile.

� Set

This command temporarily overrides IMS Connect Extensions definition settings.

� Journal

This command causes the Journal Manager to switch the Active Journal data set and start
using the next data set in the Active Journal rotation.

IMS Connect Extensions activation
IMS Connect Extensions installation is managed by normal SMP/E RECEIVE, APPLY, and
ACCEPT services, and it is the same as other software products that run under the z/OS
environment. Refer to Program Directory for IBM IMS Connect Extensions for z/OS,
GI10-8504, for more information about the IMS Connect Extensions installation.

After you have IMS Connect Extensions installed, follow these steps to activate it:

1. Create a definitions data set.

Using the ISPF interface, create a definitions data set to store your system definitions. For
example, if you have two IMS Connect systems, HWS1 and HWS2, you can define these
in a single definitions data set or in separate data sets. If you want to share definitions
across IMS Connect systems, keep all definitions in a single data set.

2. Create a system definition.

Create the system definition with the ISPF interface. It contains all the definitions for an
IMS Connect system. You must define a system definition for every IMS Connect system,
and the system definition must have the same name as the HWS ID parameter in the IMS
Connect configuration member.

Chapter 11. IMS Connect Extensions 159

3. Modify and submit the IMS Connect JCL.

IMS Connect Extensions runs in the IMS Connect address space. To integrate IMS
Connect Extensions with IMS Connect, make the following changes:

a. Authorize the IMS Connect Extensions product and functional support load libraries
(SCEXLINK and SFUNLINK).

b. Edit your IMS Connect JCL, and in the STEPLIB DD, put the IMS Connect Extensions
product and functional support load libraries in front of the IMS Connect load library.
Add the CEXREPOS DD card for the IMS Connect Extensions definitions data set.

c. Submit the JCL.

Example 11-1 shows a modified IMS Connect JCL to integrate IMS Connect Extensions.

Example 11-1 IMS Connect JCL with IMS Connect Extensions activated

//IMSGCONN PROC RGN=4M,SOUT=S,SYS1=,
// BPECFG=BPECFG00,
// HWSCFG=HWSCFG00
//STEP1 EXEC PGM=HWSHWS00,REGION=&RGN,TIME=1440,
// PARM='BPECFG=&BPECFG,HWSCFG=&HWSCFG'
//STEPLIB DD DSN=CEX.V1R1M0.SCEXLINK,DISP=SHR
// DD DSN=FUN.V1R1M0.SFUNLINK,DISP=SHR
// DD DSN=IMS910G.SDFSRESL,DISP=SHR
//PROCLIB DD DSN=IMS910G.&SYS1.PROCLIB,DISP=SHR
//SYSPRINT DD SYSOUT=&SOUT
//SYSUDUMP DD SYSOUT=&SOUT
//HWSRCORD DD SYSOUT=&SOUT
//CEXREPOS DD DSN=CEX.V1R1M0.CEXREPOS,DISP=SHR

IMS Connect is now executing with IMS Connect Extensions. Check the CEXPRINT DD in
the IMS Connect job to confirm that IMS Connect Extensions has started successfully. You
can also see the IMS Connect Extensions Log through the option 5 Log in the ISPF primary
menu.

Example 11-2 shows an IMS Connect Extensions Log. The log shows the options defined in
the IMS Connect system definition.

Example 11-2 IMS Connect Extensions Log

FUN1003I Processing started at 2005-06-14 13:07:24
CEX5040I Exit HWSJAVA0 loaded at 1201B410, length 000002D0
CEX5040I Exit HWSSMPL0 loaded at 0001F028, length 00001298
CEX5040I Exit HWSCSLO0 loaded at 0000E238, length 00000B98
CEX5040I Exit HWSCSLO1 loaded at 000204A8, length 00000B50
CEX5020I IMS Connect Extensions initialized and active, console port is 7004
CEX5021I Advanced features active, routing inactive, workload balancing inactive,
 statistics collection active, event collection active with collection level 04
FUN2500I Journal Manager initialized with 3 active and 0 overflow journals
FUN2501I Journal full option is reuse, archiving is active
FUN2502I Archive JCL PDS is CEX.V1R1M0.SCEXSAMP, member is CEXARCH
FUN2515I Journal Manager now writing event records to active journal CEX.IMSGCON.ACTIVE.P03

Refer to IBM IMS Connect Extensions for z/OS User’s Guide, SC18-7255, for more
information about IMS Connect Extensions activation and configuration.

160 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

11.2 Event collection and reporting
This topic covers event collection, describing its use and the reports that you can obtain from
the data collected.

Figure 11-4 provides an overview of event collection and reporting showing the flow of a
transaction in IMS Connect and the reports that you can obtain with IMS Connect Extensions.

Figure 11-4 IMS Connect Extensions events and reporting

IMS Connect Extensions collects records from IMS Connect. These records provide
information about end-to-end IMS Connect and IMS response time, user message exit
response time, and IMS response time. They also provide information about resource
availability and message and transaction counts.

11.2.1 Activate event collection
If the event collection feature is active, IMS Connect Extensions gets control for all significant
IMS Connect events and collects them in an Active Journal. You can activate the event
collection using the system definition panel for your IMS Connect system. Figure 11-5 on
page 162 shows this panel with the required options selected.

Events and Reporting

DS availability

Region availability

Port Task availability

Message Counts

TXN Counts

IMS
response

time

User Message Exit
response time

User Message Exit
response Time

IMS
Connect
receives
incoming

TXN

IMS

Client

Exit

Send to
IMS

Receive
from
IMS

Exit

IMS
Connect
sends

response

Client

End to End
IMS Connect

and IMS
response time

Chapter 11. IMS Connect Extensions 161

Figure 11-5 IMS Connect Extensions event collection

You have to define the collection level used. The number and type of event records collected
varies depending on the collection level specified for the IMS Connect system. These are the
options:

� Level 0

Minimum level. Collects startup and shutdown events along with some error events.

� Level 1

Accounting level. Collects return from exit events, OTMA timeout, and session error
events. This level provides accounting information in terms of the number of messages by
transaction, user exit, and so on.

� Level 2

Transit time reporting. Collects the minimum number of records to run simple transit time
reports.

� Level 3

Comprehensive performance analysis. Collects all TCP/IP read and write events for the
analysis of TCP/IP activity.

� Level 4

Maximum level. Collects all event records.

You also define the log record number for IMS Connect Extensions event records through the
field Log Record number. Acceptable field values are in the range x'A0' to x'FF'.

Recommendation: Do not use an existing IMS log record number. A unique log record
number makes IMS Performance Analyzer reporting easier.

162 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

11.2.2 Journal management
You define how IMS Connect Extensions manages the Active and Archive Journals.

Active Journal
IMS Connect Extensions writes events to the Active Journal data sets. The Active Journal is a
series of sequential data sets that are used in a rotation. When the first data set is full, the
second data set is used. This continues until the last data set is full. At this point, IMS
Connect Extensions only reuses Active Journal data sets after the event records are archived
or if the Reuse option is set.

IMS Connect Extensions automatically allocates the Active Journal at startup based on the
template (it also can be preallocated manually). You define the template details in the Active
Journal Data Set panel shown in Figure 11-6.

Figure 11-6 Active Journal template

This list describes the options that you have to set the management of Active Journals:

� Data Set name

This field enables you to specify the data set name prefix used to create the Active Journal
data sets.

IMS Connect Extensions allocates the data sets, making them unique by adding a suffix to
the data set name.

You can use the &ID parameter as part of the data set name. IMS Connect Extensions
substitutes it with the system definition name when the data set is physically allocated.
See Figure 11-6 for an example of the use of the &ID parameter.

Chapter 11. IMS Connect Extensions 163

� Number of data sets

This field enables you to specify the number of data sets in the Active Journal. You can
have 1 to 32 data sets (the default value is 3). If you specify one data set, you must also
specify the Reuse option in the Action flag. To select the aproppiate number for your
installation, you have to consider two points:

– How long you want to wait before accessing the data and running reports

– The amount of processing required by the Archive Manager to copy the files to the
Archive Journal data set

� Journal full option

This field enables you to determine the reaction of IMS Connect Extensions if the overflow
data set become full, or the active data sets become full and there is no overflow
specified. You have these options:

– Wait

Stop reading event records until a data set becomes available. This option causes the
IMS Connect system to stop processing incoming message requests. Use this option
with care because it might impact transaction response time.

– Discard

Continue to create the event records but discard the records until a data set becomes
available.

– Reuse

Reuse/overwrite the data sets.

– End

Shut down the Journal Manager. Event collection stops and cannot be restarted until
IMS Connect is restarted.

� Archive Manager

This field enables you to specify whether the Archive Manager has to copy the Active
Journals to the Archive Journal data sets.

If you activate the No Archive field, the Active Journal records are not copied to the
Archive Journal.

� Allocation parameters

Set of fields to provide IMS Connection Extensions the allocation parameters values for
the Active Journal data sets.

� Number of Overflows

This field enables you to specify whether IMS Connect Extensions will use an overflow
data set if the Archive Manager falls behind and all Active Journal data sets become full. If
the overflow data set also becomes full, the action indicated in the action flag is taken.

The values are 0 (no overflow data set is used, default value) or 1 (use an overflow data
set if required). The overflow data set name prefix is the same as the Active Journal data
set but with a different suffix.

� Overflow size

This field enables you to specify the size of the overflow data set. This is defined as a
multiple of the Primary quantity field. Values are in the range 1 to 99. The default values is
four times the primary quantity.

164 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� Job Statement Information

These fields enables you to specify the JOB card to be used when the Archive Manager is
submitted.

� Archive JCL skeleton

This field enables you to specify the data set and member name that contain the skeleton
JCL to execute the Archive Manager. You can use the sample provided in the CEXARCH
member of the IMS Connect Extensions sample library, SCEXSAMP.

For more information about the Archive Manager utility, see IBM IMS Connect Extensions
for z/OS User’s Guide, SC18-7255.

Archive Journal
The IMS Connect Extensions Archive Manager copies event records from the Active Journal
data sets to the Archive Journal data sets (DASD or tape).

The Archive data sets on DASD are dynamically allocated by the Archive Manager based on
a template that you define in the Archive Journal Data Set menu shown in Figure 11-7.

Figure 11-7 Archive Journal Data Set Template

You have the following options to set the Archive Journal management:

� Data Set name

This field enables you to specify the base data set name used to create the Archive
Journal data sets. You can overtype the Archive Journal data set name to specify a new
data set name.

The Archive Journal data set name must be defined either as a generation data set group
(GDG) or using substitution variables. Use one of the options detailed in this list:

– A GDG base

You can specify a GDG base by entering (+1) at the of the data set name. For example:

 'YOUR.ARCHIVE.FILE(+1)'

The GDG base must be preallocated using standard z/OS definition services.

Chapter 11. IMS Connect Extensions 165

– &DATE (or &JDATE) and &TIME

&DATE, &JDATE, and &TIME will be replaced by the date and time that the Archive
Journal was created. (&JDATE is in julian format.) For example:

'YOUR.ARCHIVE.&DATE..&TIME'

– &FIRST or (&JFIRST)

&FIRST and &JFIRST will be replaced by the date and time of the first event on the
Archive Journal. (&JFIRST is in julian format.) For example:

'YOUR.ARCHIVE.&FIRST'

� Allocation parameters

Set of fields to provide IMS Connection Extensions the allocation parameters values for
the Archive Journal data sets.

� Maximum active

This field enables you to specify the maximum number of Active Journals that can be
written to an Archive data set. When the number is reached, the Archive data set closes
and a new Archive data set starts. Values are in the range of 2 to 32. The default is 3.

� Maximum time

This field enables you to specify the maximum time, in seconds, that the Archive Manager
waits before checking to see if more Active Journals become available for archiving.
Acceptable values are in the range of 0 to 120.

� Maximum size

This field enables you to specify the maximum size, in MB, of an Archive data set. When
the size is reached, the Archive data set closes and a new Archive data set starts. Values
are in the range of 0 to 32767. The default is no limit.

If the maximum size is reached while an Active Journal data set is being copied, the Active
data set copy continues in the new Archive data set.

� Maximum volumes

This field specifies the number of tape volumes that an Archive data set can span. This
value is ignored if Archive data sets are written to DASD devices. When the number is
reached, the Archive data set closes and a new Archive data set starts. Values are in the
range of 1 to 99. The default is one volume.

For a better understanding of the previous parameters, we give the rules governing the
Archive Manager:

1. Whenever an Active Journal data set fills up, the Archive Manager job is submitted.

2. If the Active Journal data set is already being copied or has been copied by another
Archive Manager job (because Maximum time or Maximum actives is set), the Archive
Manager stops processing.

3. When the Archive Manager has completed copying the Active Journal data set, it
processes as follows:

a. If the Maximum time is not set, the Archive Manager stops processing.

b. If the Maximum time is set, the Archive Manager waits for the specified time period and
then checks if another Active Journal data set is full. If no Active data set is full and
ready to be copied, the Archive Manager stops processing.

c. If the Archive Manager has exceeded the Maximum active value, the Archive Manager
ends. The next Archive Manager job copies the new Active Journal data set.

166 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

d. If the Archive Manager has exceeded the Maximum size value, the Archive Manager
ends. The next Archive Manager job copies the new Active Journal data set.

e. If the Archive Manager is writing to tape and the Maximum volumes value has been
exceeded, the Archive Manager ends. The next Archive Manager job copies the new
Active Journal data set.

f. The Active Journal is copied to the current Archive Journal and processing returns to
step 2.

4. When IMS Connect Extensions shuts down and any remaining event records in Active
Journal data sets need copying, the Archive Manager job is submitted.

5. When IMS Connect Extensions restarts and for some reason there are outstanding event
records to be archived, the Archive Manager job is submitted.

Using the IMS Connect Extensions utilities and the tools IMS Performance Analyzer and IMS
Problem Investigator, you can obtain reports from your Archive Journals.

11.2.3 IMS Connect event records
The IMS Connect Extensions event collection process collects event records continuously,
while IMS Connect processes incoming message requests.

An event record consists of an event number and data associated with the event. The event
number ranges from X'00' to X'FF' (decimal 0-255) and the associated data varies depending
on the event number.

There are two types of event records:

� Connect status event

A Connect status event identifies a change in the status of your IMS Connect system, for
example, a resource (datastore, TMEMBER) becoming available or unavailable, or a
socket becoming accepted for input by a port task. Connect status events are typically not
related to the processing of input messages, but can affect their processing.

Connect status event records are identified by a constant event key, 'EVNT'.

� Message related event

Message related event records identify an event in the processing of an incoming
message request.

Message related event records have a store clock (STCK) token event key. For
non-persistent sockets, each incoming message is assigned a unique event key, and
every event associated with the processing of the message has the same event key.

For persistent sockets, all incoming messages are assigned the same event key. All
events associated with the processing of all messages for the duration of the socket have
the same event key.

IMS Connect Extensions can also process two types of trace records:

� Recorder trace records

IMS Connect Extensions provides utilities to convert the IMS Connect recorder trace data
into variable length records in the format of IMS Connect Extensions event records.

� IMS Connect trace records

IMS can optionally collect IMS Connect trace event records. These event records include
information about OTMA, Response Status Messages (RSMs), and exits output
messages.

Chapter 11. IMS Connect Extensions 167

For a detailed description of the IMS Connect events records, refer to IBM IMS Connect
Extensions for z/OS User’s Guide, SC18-7255.

Message related events
IMS Connect Extensions associates message related event records with each other so that
the sequence of events and event times can be identified and reported. IMS Connect
Extensions associates the event records with each other using the event key. This enables
IMS Connect Extensions to group together event records in the sequence they occur.

The collection of event records begins and ends with framing event records. IMS Connect
Extensions uses the following framing events to clearly identify all events for a transaction or
iteration of a conversational transaction:

� Start of frame

The Read Prepare (X'3C') event is used as the start of frame event record. This record
starts a collection of event records related by a key token.

� End of frame

IMS Connect generates this trigger (X'48') event at the end of a multiple event process. It
can be as a result of a deallocate request or other condition that represents the end of the
process. The trigger event contains an indication of why the trigger event was generated.

For a better understanding of IMS Connect Extensions reports, we introduce the records
involved in an IMS Connect flow for sync level none and sync level confirm transactions:

� Event flow: Commit mode 1, sync level none

Example 11-3 shows the event flow for a single commit mode 1, sync level none
transaction. It presents the hexadecimal code of the events records and a description of
them.

Example 11-3 Sample event flow: Commit mode 1, sync level none

3C Prepare READ Socket → Incoming message from client
49 READ Socket
3D Message Exit called for READ → User exit processes the message
3E Message Exit returned from READ
41 Message sent to OTMA → Sent to OTMA for processing
42 Message received from OTMA
3D Message Exit called for XMIT → User exit processes the message
3E Message Exit returned from XMIT
4A WRITE Socket → Response sent back to client
0C Begin CLOSE Socket → Non persistent socket closed
0D End CLOSE Socket
48 Trigger Event CLOSE → IMS Connect has finished processing message

� Event flow: Commit mode 1, sync level confirm

Example 11-4 shows the event flow for a single commit mode 1, sync level confirm
transaction. The difference with the previous example is that the client acknowledgement
appears in the flow.

Example 11-4 Sample event flow: Commit mode 1, sync level confirm

3C Prepare READ Socket → Incoming message from client
49 READ Socket
3D Message Exit called for READ → User exit processes the message
3E Message Exit returned from READ
41 Message sent to OTMA → Sent to OTMA for processing
42 Message received from OTMA

168 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

3D Message Exit called for XMIT → User exit processes the message
3E Message Exit returned from XMIT
4A WRITE Socket → Response sent back to client
49 READ Socket → ACK received from client
49 READ Socket
3D Message Exit called for READ → User exit processes the message
3E Message Exit returned from READ
41 Message sent to OTMA → ACK sent to OTMA
42 Message received from OTMA → OTMA confirms commit
46 De-allocate Session
3D Message Exit called for XMIT → User exit processes the message
3E Message Exit returned from XMIT
4A WRITE Socket → Commit confirm sent to client
0C Begin CLOSE Socket → Non persistent socket closed
0D End CLOSE Socket
48 Trigger Event → IMS Connect has finished processing message

� Event flow: Commit mode 0, sync level confirm

Example 11-5 shows the event flow for a single commit 0, sync level confirm transaction.
In this case, IMS (OTMA) does not send a commit confirm to the client.

Example 11-5 Sample event flow: Commit 0, sync level confirm

3C Prepare READ Socket → Incoming message from client
49 READ Socket
3D Message Exit called for READ → User exit processes the message
3E Message Exit returned from READ
41 Message sent to OTMA → Sent to OTMA for processing
42 Message received from OTMA
3D Message Exit called for XMIT → User exit processes the message
3E Message Exit returned from XMIT
4A WRITE Socket → Response sent back to client
49 READ Socket → ACK received from client
49 READ Socket
3D Message Exit called for READ → User exit processes the message
3E Message Exit returned from READ
41 Message sent to OTMA → ACK sent to OTMA
45 OTMA Time-out → IRM_TIMER time-out occurred (No response from OTMA)
3D Message Exit called for XMIT → User exit processes the message
3E Message Exit returned from XMIT
4A WRITE Socket → IRM_TIMER time-out notification sent to client
0C Begin CLOSE Socket → Non persistent socket closed
0D End CLOSE Socket
48 Trigger Event → IMS Connect has finished processing message

IMS Connect trace records
To activate the IMS Connect trace records collection, use the SET command. Choose the
option 1 System Definition in the Set Command panel to access the Set System Definition
panel. Figure 11-8 on page 170 shows this panel.

Note: To receive data from the client, IMS Connect issues always two read sockets. The
first one reads the first 32 bytes of the message to obtain the architecture fixed data (such
as the LLLL value). The second read socket obtains the rest of the message.

Chapter 11. IMS Connect Extensions 169

Figure 11-8 Set System Definition panel

The Tracing Level field enables you to activate and set the level of tracing for IMS Connect
Extensions. It writes the tracing records to the Active Journal data set, from where they are
archived to the Archive Journals.

The acceptable field values are:

� 0: No tracing records are written.
� 1: Basic tracing records are written (OTMA, IRM, and RSA data).
� 2: In addition to the basic tracing information, client application data is written to the trace

records.

11.2.4 Event Collection print utility
The IMS Connect Extensions print utility, CEXEVTPR, prints summary and detailed event
records. It produces report output of formatted IMS Connect Extensions event records. You
set the level of detail to print.

The IMS Connect Extensions print utility accepts input from one Active Journal or Archive
Journal data set.

Example 11-6 shows a sample JCL and the commands needed to request a report from the
print utility.

Example 11-6 Sample JCL to run IMS Connect Extensions print utility

//userid JOB (ACCOUNT),
//* IMS Connect Extensions Print Utility
//CEXEVTPR EXEC PGM=CEXEVTPR,REGION=8M,

Note: The SET command allows temporary changes. If you recycle IMS Connect, the
tracing level is set to 0 again.

170 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

// PARM=’D’
//STEPLIB DD DISP=SHR,DSN=CEX.V1R1M0.SCEXLINK
// DD DISP=SHR,DSN=FUN.V1R1M0.SFUNLINK
//EVNTIN DD DISP=SHR,DSN=journal.data.set
//SYSUDUMP DD SYSOUT=*
//MSGOUT DD SYSOUT=*
/*

IMS Connect Extensions print utility, CEXEVTPR, has a parameter to specify the type of
report to be written. The acceptable values are:

� T: Transaction summary report
� D: Transaction detail report

Transaction summary report
Example 11-7 shows output for the transaction summary report for a commit mode 1, sync
level none transaction.

The amount of data shown on the report varies depending on the collection level defined. In
this case, we use collection level 4 to produce the most output.

Example 11-7 Print utility transaction summary report

ID=3C,060, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, PREPARE READ SOCKET
ID=49,073, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, READ SOCKET
ID=3D,061, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, MSG EXIT ENTERED
ID=3E,062, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, MSG EXIT RETURN
ID=41,065, V=01, TSKID=0103, KEY=BD2BAD70AD2B6765, MSG SENT TO OTMA
ID=42,066, V=01, TSKID=0103, KEY=BD2BAD70AD2B6765, MSG RCV FROM OTMA
ID=42,066, V=01, TSKID=0103, KEY=BD2BAD70AD2B6765, MSG RCV FROM OTMA
ID=3D,061, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, MSG EXIT ENTERED
ID=3E,062, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, MSG EXIT RETURN
ID=4A,074, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, WRITE SOCKET
ID=0C,012, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, BEGIN CLOSE SOCKET
ID=0D,013, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, END CLOSE SOCKET
ID=48,072, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, TRIGGER EVENT

This report enables you to follow the message processing flow in IMS Connect, in this case,
the same flow introduced in Example 11-3 on page 168.

The transaction summary report displays the following fields:

� ID

The ID identifies the event record number. This is displayed in hexadecimal and decimal
formats.

� V

The V identifies the version of IMS Connect Extensions.

� TSKID

The TSKID identifies the task in which the event occurred.

� KEY

The event key. This is either EVNT for Connect status event records or the token key for
message related event records.

You use the event key to identify all the events related with a transaction. In Example 11-7,
you can see that every event has the same key.

Chapter 11. IMS Connect Extensions 171

� Description

A short description of the event record.

Transaction detail report
Example 11-8 shows the transaction detail report for the same transaction of the previous
example.

Example 11-8 Print utility transaction detail report

 ID=3C,060, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, PREPARE READ SOCKET
 TCPIB: LL=0028, BLKID=01, VVRR=0202, APAR=0001, PORT#=7003 , SOCKET#=0002
 SOCKET FLAG=40, PORT FLAG=00, RMT REQ LEN=00000020, RMT ACT LEN=00000020
 SPECIAL REQUEST DATA=00000000, RC=00000020, RMT RSN CODE=00000000
 RECORD TIME=(DATE=2005.06.16, TIME=15.30.57.389904), LSN=0000000000002665

 ID=49,073, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, READ SOCKET
 TCPIB: LL=0028, BLKID=01, VVRR=0202, APAR=0001, PORT#=7003 , SOCKET#=0002
 SOCKET FLAG=40, PORT FLAG=00, RMT REQ LEN=0000004B, RMT ACT LEN=0000004B
 SPECIAL REQUEST DATA=00000000, RC=0000004B, RMT RSN CODE=00000000
 RECORD TIME=(DATE=2005.06.16, TIME=15.30.57.389948), LSN=0000000000002666

 ID=3D,061, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, MSG EXIT ENTERED
 VAR DATA: APAR=0001, EXITN=HWSSMPL0
 LEN=000A, APAR=0001, FUNC=READ, FLAG1=40, CONTENT=00
 RECORD TIME=(DATE=2005.06.16, TIME=15.30.57.389961), LSN=0000000000002667

 ID=3E,062, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, MSG EXIT RETURN
 VAR DATA: APAR=0001, RC=00000000, RSN=00000000, EXITN=HWSSMPL0
 LEN=0028, APAR=0001, FUNCTION=READ, FLAG1=40, FLAG2=00, UFLAG1=00, CONTENT=98
 EXPXXX RC=00000000, EXPXX RSN=00000000
 IPV4: FAMILY=0002, CLIENT PORT=1077 , CLIENT IP ADDRESS=009.001.059.179
 DATA LENGTH=00000227, CLIENT ID=22575236
 IRM DATA: SECTION LL=0012, APAR=0001, MSG LL=0050, F5=00, TIMER=00
 SOCKET=00, SCHEMA=00, CLIENTID=
 MSG DATA: LL=004E, APAR=0001, STATUS=80, ORIG DSN=IMSG , RTED DSN=
 TRAN CODE=PART , USERID= , RACF GROUP= , MODNAME=
 LTERM= , ORIG ID=22575236, EXIT #=0001, FLAG=14, SYNCLEVEL FLAG=20
 SOCKET FLAG=00, AFLAG=00, AFLAG1=40, TFLAG1=04
 RECORD TIME=(DATE=2005.06.16, TIME=15.30.57.389996), LSN=0000000000002668

 ID=41,065, V=01, TSKID=0103, KEY=BD2BAD70AD2B6765, MSG SENT TO OTMA
 DSIB: LL=0038, BLKID=02, FLAG=10, VVRR=0202, APAR=0001
 DATASTORE NAME=SCSIM9G , DATA LEN=000001C5, DATA ADDR=133960B0
 RC=00000000, RSN=00000000, TPIPE NAME=7003 , TOKEN=0000000000000000
 OTMA CTL TYPE=TRAN, RESP=NONE, COMT=NONE, CMD=NONE, PROC= , CHAIN=FL
 DUMP OF OTMA CONTROL SECTION FOLLOWS
 +0000 01400000 0000F7F0 F0F34040 4040A0F0 *.7003 .0*
 +0010 0000028F 00000000 00000000 00010000 *................*
 RECORD TIME=(DATE=2005.06.16, TIME=15.30.57.390088), LSN=0000000000002669

 ID=42,066, V=01, TSKID=0103, KEY=BD2BAD70AD2B6765, MSG RCV FROM OTMA
 DSIB: LL=0038, BLKID=02, FLAG=10, VVRR=0202, APAR=0001
 DATASTORE NAME=SCSIM9G , DATA LEN=00000222, DATA ADDR=12F2A1A8
 RC=00000000, RSN=00000000, TPIPE NAME=7003 , TOKEN=BD2BAD70AD2B6765
 OTMA CTL TYPE=DATA, RESP=NONE, COMT=NONE, CMD=NONE, PROC= , CHAIN=F
 DUMP OF OTMA CONTROL SECTION FOLLOWS
 +0000 01800000 0000F7F0 F0F34040 404080F0 *......7003 .0*
 +0010 00000255 00000000 00000000 00010000 *................*
 RECORD TIME=(DATE=2005.06.16, TIME=15.30.57.432029), LSN=000000000000266A

172 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

 ID=42,066, V=01, TSKID=0103, KEY=BD2BAD70AD2B6765, MSG RCV FROM OTMA
 DSIB: LL=0038, BLKID=02, FLAG=10, VVRR=0202, APAR=0001
 DATASTORE NAME=SCSIM9G , DATA LEN=000001D2, DATA ADDR=12F7A360
 RC=00000000, RSN=00000000, TPIPE NAME=7003 , TOKEN=BD2BAD70AD2B6765
 OTMA CTL TYPE=COMT, RESP=NONE, COMT=CMTD, CMD=NONE, PROC= , CHAIN=FL
 DUMP OF OTMA CONTROL SECTION FOLLOWS
 +0000 01080080 0000F7F0 F0F34040 4040A0E0 *......7003 .*
 +0010 00000255 00000000 00000000 00010000 *................*
 RECORD TIME=(DATE=2005.06.16, TIME=15.30.57.432318), LSN=000000000000266B

 ID=3D,061, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, MSG EXIT ENTERED
 VAR DATA: APAR=0001, EXITN=HWSSMPL0
 LEN=000A, APAR=0001, FUNC=XMIT, FLAG1=40, CONTENT=00
 RECORD TIME=(DATE=2005.06.16, TIME=15.30.57.432401), LSN=000000000000266C

 ID=3E,062, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, MSG EXIT RETURN
 VAR DATA: APAR=0001, RC=00000000, RSN=00000000, EXITN=HWSSMPL0
 LEN=0028, APAR=0001, FUNCTION=XMIT, FLAG1=40, FLAG2=00, UFLAG1=00, CONTENT=40
 EXPXXX RC=00000000, EXPXX RSN=00000000
 DATA LENGTH=00000128
 RECORD TIME=(DATE=2005.06.16, TIME=15.30.57.432433), LSN=000000000000266D

 ID=4A,074, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, WRITE SOCKET
 TCPIB: LL=0028, BLKID=01, VVRR=0202, APAR=0001, PORT#=7003 , SOCKET#=0002
 SOCKET FLAG=40, PORT FLAG=00, RMT REQ LEN=00000128, RMT ACT LEN=00000128
 SPECIAL REQUEST DATA=00000000, RC=00000128, RMT RSN CODE=00000000
 RECORD TIME=(DATE=2005.06.16, TIME=15.30.57.432579), LSN=000000000000266E

 ID=0C,012, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, BEGIN CLOSE SOCKET
 TCPIB: LL=0028, BLKID=01, VVRR=0202, APAR=0001, PORT#=7003 , SOCKET#=0002
 SOCKET FLAG=40, PORT FLAG=00, RMT REQ LEN=00000000, RMT ACT LEN=00000000
 SPECIAL REQUEST DATA=00000000, RC=00000000, RMT RSN CODE=00000000
 RECORD TIME=(DATE=2005.06.16, TIME=15.30.57.432673), LSN=000000000000266F

 ID=0D,013, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, END CLOSE SOCKET
 VAR DATA: APAR=0001, RC=00000000, RSN=00000000
 RECORD TIME=(DATE=2005.06.16, TIME=15.30.57.527691), LSN=0000000000002670

 ID=48,072, V=01, TSKID=0105, KEY=BD2BAD70AD2B6765, TRIGGER EVENT
 VAR DATA: APAR=0001, TRIGTYP=CLOSE
 RECORD TIME=(DATE=2005.06.16, TIME=15.30.57.527720), LSN=0000000000002671

Compared with the transaction summary report, the transaction detail report adds a variable
data that is specific for every event record.

A example of the information provided by this variable data is the field TYPE for messages
sent to OTMA (event X'41') and messages received back from OTMA (event X'42'). It gives
the type of message involved and has the following values:

� DATA: A data message
� TRAN: A transaction
� RESP: A message response
� CMD: A command
� COMT: A commit confirmed message

Refer to the event record mapping in the IBM IMS Connect Extensions for z/OS User’s Guide,
SC18-7255, for more information about variable data.

Chapter 11. IMS Connect Extensions 173

11.2.5 Recorder trace utility
IMS Connect Extensions provides utilities to process the IMS Connect recorder trace output
data set. These utilities are:

� CEXRTCNV

Converts the recorder trace data into variable length records in the format of IMS Connect
Extensions event records.

Example 11-9 shows a sample JCL for this utility.

Example 11-9 JCL to run recorder trace conversion utility

//CEXRTCNV JOB (ACCOUNT),’NAME’
//*
//***
//* NAME: CEXRTCN
//* DESCRIPTION: IMS CONNECT EXTENSIONS
//* RECORDER TRACE CONVERSION UTILITY
//* FUNCTION: SAMPLE JCL TO RUN THE RECORDER TRACE CONVERSION UTILITY
//***
//*
//STEP01 EXEC PGM=FUNEXEC,PARM=CEXRTCNV
//STEPLIB DD DISP=SHR,DSN=CEX.V1R1M0.SCEXLINK
// DD DISP=SHR,DSN=FUN.V1R1M0.SFUNLINK
//SYSUDUMP DD SYSOUT=*
//CEXPRINT DD SYSOUT=*
//MSGOUT DD SYSOUT=*
//RCDRIN DD DISP=SHR,DSN=your.recorder.input
//RCDROUT DD DISP=SHR,DSN=your.recorder.output
/*

� CEXRTPRT

Formats and prints the recorder trace event records created by CEXRTCNV.
Example 11-10 shows a sample JCL for this utility.

Example 11-10 JCL to run recorder trace print utility

//CEXRTPR JOB (ACCOUNT),’NAME’
//*
//***
//* NAME: CEXRTPR
//* DESCRIPTION: IMS CONNECT EXTENSIONS
//* RECORDER TRACE PRINT UTILITY
//* FUNCTION: SAMPLE JCL TO RUN THE RECORDER TRACE PRINT UTILITY
//***
//*
//STEP01 EXEC PGM=FUNEXEC,PARM=CEXRTPRT
//STEPLIB DD DISP=SHR,DSN=CEX.V1R1M0.SCEXLINK
// DD DISP=SHR,DSN=FUN.V1R1M0.SFUNLINK
//SYSUDUMP DD SYSOUT=*
//CEXPRINT DD SYSOUT=*
//MSGOUT DD SYSOUT=*
//RCDRIN DD DISP=SHR,DSN=your.recorder.output
/*

In Example 11-11 on page 175, you can see the formatted records produced by the recorder
trace print utility.

174 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 11-11 Recorder trace print utility output

 ID=A0,160, TOKEN=00000001
 ITOC RECORD: LEN=0056 ,APAR=0001 ,ID=IT ,CONTENT=C0
 SMF: LEN=0052 ,RECORD TYPE=77 ,TIME=13313877 ,SEQ#=0105168F
 UOW: CLNT=CLIENT01 ,RCVT=BD2D0A4811A8A120 ,ENQT=BD2D0A4811AA4C80
 DS 1ST MSG DQT=0000000000000000, DS CLR DQT=0000000000000000
 ERR TIME=0000000000000000, # MSG XMIT=0000, # MSG RCVD=0000
 TIME=BD2D163D8115DF05, LSN=0000000000000001

 ID=A1,161, TOKEN=00000001
 ITOC REC: LEN=0010 ,APAR=0001 ,CON=80 ,CON1=02 ,TYPE=ITOC / RC / IPB
 REMOTE CLIENT IRM: LLLL=X'00000093'
 DUMP OF IRM HEADER FOR LENGTH=X'0050'
 +0000 00500000 2A53414D 504C452A 00000000 *.&.....(&<......*
 +0010 00000000 C3D3C9C5 D5E3F0F1 00400140 *....CLIENT01. . *
 +0020 C9E5E3D5 D6404040 C9D4E2C7 40404040 *IVTNO IMSG *
 +0030 40404040 40404040 40404040 40404040 * *
 +0040 40404040 40404040 5C5C5C5C 5C5C5C5C * *********
 DUMP OF CLIENT MSG SEGMENT FOR LENGTH=X'003B'
 +0000 003B0000 C9E5E3D5 D6404040 4040C4C9 *....IVTNO DI*
 +0010 E2D7D3C1 E840D3C1 E2E3F140 40404040 *SPLAY LAST1 *
 +0020 40404040 40404040 40404040 40404040 * *
 +0030 40404040 40404040 404040 * *
 DUMP OF CLIENT MSG SEGMENT FOR LENGTH=X'0004'
 +0000 00040000 *.... *

The recorder trace print utility formats the IMS Connect trace, providing records to simplify
the analysis.

11.2.6 Active session utility
IMS Connect Extensions provides the active session utility by APAR PQ97669. IMS Connect
Extensions V1R2 further enhances this by providing an online ISPF-based viewer of active
sessions. Refer to 11.8, “Highlights of IMS Connect Extensions Version 1 Release 2” on
page 216.

The IMS Connect Extensions active session utility analyzes an IMS Connect Extensions
Journal data set to determine the status of all active sessions. This is useful during problem
determination of sessions that have been active for a long period of time.

A session is active after a Read Prepare event for a port/socket has occurred and before the
trigger event following a close socket event has occurred. Sessions that are using persistent
sockets will be active following the trigger event.

The IMS Connect Extensions active session utility accepts input from one Active Journal or
Archive Journal data set. You have to provide to the utility the journals produced since the
beginning of the session.

It produces a report output of formatted IMS Connect Extensions event records useful in
identifying active sessions as part of problem determination. The report helps to identify the
socket and the event key of the active transaction.

Example 11-12 on page 176 shows a sample JCL to use the active session utility.

Chapter 11. IMS Connect Extensions 175

Example 11-12 JCL to run active session utility

//userid JOB (ACCOUNT),'NAME'
//*
//* DESCRIPTION: IMS CONNECT EXTENSIONS ACTIVE SESSION UTILITY
//*
//STEP01 EXEC PGM=FUNEXEC,PARM='CEXJASKT,Y,U',REGION=0M
//STEPLIB DD DSN=FUN.V1R1M0.SFUNLINK,DISP=SHR
// DD DSN=CEX.V1R1M0.SCEXLINK,DISP=SHR
//SYSUDUMP DD SYSOUT=*
//MSGOUT DD SYSOUT=*
//EVNTIN DD DISP=SHR,DSN=journal.data.set

CEXJASKT has the following parameters:

� Help indicator

Specifies whether help description lines are to be printed. The values are:

– Y: Help description lines are printed in the report.
– N: Help description lines are suppressed in the report.

� Case indicator

Specifies whether the report lines are printed in uppercase or lowercase. The values are:

– L: Report is printed in lowercase.
– U: Report is printed in mixed case.

For an example, we send a commit mode 1 transaction that is not sending the ACK after the
IMS response. Example 11-13 shows the report obtained from the active session utility.

Example 11-13 Active session utility report

 IMS CONNECT EXTENSION ACTIVE SESSION REPORT VERSION 01:01:001

 FIRST RECORD DATE=2005.06.17, TIME=23.49.41.713152

 EOF ON INPUT DATASET
 LIST OF ACTIVE SESSIONS

 PORT Ñ= 7003, SOCKET Ñ= 9, KEY=BD2D5EEFF42C9200
 EVENT HISTORY - KEY EVENTS PROCESSED FOR THIS MESSAGE
 READ PREPARE SOCKET
 READ EXIT RETURNED
 MESSAGE SENT TO OTMA
 MESSAGE RECEIVED FROM OTMA
 WRITE EXIT RETURNED
 WRITE SOCKET

 STATE FLAGS AND STATUS INFORMATION AFTER RETURN FROM READ EXIT
 SVT FLAG=14
 ORIGINAL DESTID IS VALID
 UNSUPPORTED EXIT
 SVT SYNC FLAG=21
 COMMIT MODE 1
 SYNC LEVEL=1 (CONFIRM)
 SVT SOCKET FLAG=00
 TRANSACTION SOCKET

 EVENT RECORD 62 READ EXIT RETURN DATA
 EXIT RC=00000000, EXIT REASON=00000000, TXNAME=PART , UID=
 EXIT NAME=HWSSMPL0, OLTERM= , CLIENT ID=22653060
 ORIGINAL DSID=IMSG , TARGET DISID=

176 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

 IPV4: FAMILY=0002, PORT=0FE5, IP ADDRESS=009.001.039.117

 EVENT RECORD 62 WRITE OR EXER EXIT RETURN DATA
 EXIT RC=00000000, EXIT REASON=0000005E

 EVENT RECORD TRACE - OLDEST TO NEWEST
 EVENT=3C, PREPARE FOR SOCKET READ
 EVENT=49, READ SOCKET
 EVENT=49, READ SOCKET
 EVENT=3D, USER MESSAGE EXIT ENTERED FOR READ, XMIT OR EXER
 EVENT=3E, USER MESSAGE EXIT RETURN FOR READ, XMIT OR EXER
 EVENT=41, MESSAGE SENT TO OTMA
 EVENT=42, MESSAGE RECEIVED FROM OTMA
 EVENT=3D, USER MESSAGE EXIT ENTERED FOR READ, XMIT OR EXER
 EVENT=3E, USER MESSAGE EXIT RETURN FOR READ, XMIT OR EXER
 EVENT=4A, WRITE SOCKET
 LAST TRACE EVENT DATE=2005.06.17, TIME=23.50.23.180662

 PREDICTED SESSION STATUS BASED UPON LAST TRACE ENTRY
 P003 - WAITING FOR ACK/NAK FROM REMOTE CLIENT

The active session utility detects the active session and provides information such as the
event key, port, the socket number within the port and the events related with the session.
The active session utility also provides a predicted session status based on the sequence of
event records processed for the session. In Example 11-13 on page 176, there is the
following prediction, which is the situation that we forced:

WAITING FOR ACK/NAK FROM REMOTE CLIENT

After you have the event key provided by the utility, you can use IMS Problem Investigator or
the IMS Connect Extensions print utility to obtain details of the events for this session.

For more information about the records displayed in the active session utility, refer to the
updates to IMS Connect Extensions for z/OS V1.1 User's Guide, SC18-7255, available at:

http://www.ibm.com/support/docview.wss?rs=434&context=SSZJXP&dc=DA400&uid=swg27005885&lo
c=en_US&cs=utf-8&lang=en

11.2.7 IMS Performance Analyzer IMS Connect reports
IMS Performance Analyzer Version 3.3, program number 5655-E15, provides more in-depth
analysis and reporting of IMS Connect event records.

IMS Performance Analyzer provides a comprehensive set of reports from the IMS Connect
performance and accounting data collected by IMS Connect Extensions. The reports provide
a summary and detailed analysis of IMS Connect transaction transit time, resource usage,
and resource availability.

Selection criteria enable you to filter your reporting, for example, to include data only for a
particular transaction code, user ID, and datastore and only for a specific period of time. IMS
Performance Analyzer allows automatic archive selection based on date and time.

These are the IMS Performance Analyzer groups of reports by functional category:

� Transaction transit reports

These reports provide performance statistics to measure the performance of your IMS
Connect transactions. Transaction transit (response) time is broken down into its
components; input, processing (by OTMA), acknowledgement from the client, and output.

Chapter 11. IMS Connect Extensions 177

http://www.ibm.com/support/docview.wss?rs=434&context=SSZJXP&dc=DA400&uid=swg27005885&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=434&context=SSZJXP&dc=DA400&uid=swg27005885&loc=en_US&cs=utf-8&lang=en

They can help identify any bottlenecks in transaction flow and are used for monitoring
system performance, gathering diagnostic information, and tuning IMS.

This group contains the following reports:

– Transit analysis
– Transit log
– Transit extract

� Resource usage reports

These reports contain detailed and summary information about the use and availability of
various IMS Connect resources including TCP/IP ports and Tpipes.

This group contains the following reports:

– Port usage
– RESUME TPIPE
– ACK/NAK
– Exceptions events

� Trace reports

These reports provide chronological listings of selected log records.

The following topics present every type of report. For information about how to create these
reports with IMS Performance Analyzer, refer to IBM IMS Performance Analyzer for z/OS
User’s Guide, SC27-0912.

Transit Analysis report
The IMS Connect Transit Analysis report provides a summary of IMS Connect transaction
performance. Performance data can be summarized by one or two sort keys, including time
of day, transaction code, user ID, datastore (original and target), and port number.

Performance statistics are provided as averages, and optionally, peak percentiles. For
example, you can specify 90 to report the elapsed time within which 90% of transactions
completed. To be complete, this report requires IMS Connect Extensions to collect event data
at collection level 3 or 4.

Example 11-14 shows a Transit Analysis report for sync level none transactions with no RACF
security activated in IMS Connect. The transaction peak is set to 80%, and the data is
summarized by transaction code.

Example 11-14 Transit Analysis report for sync level none transactions

IMS Performance Analyzer 3.3
 IMS Connect Transit Analysis - IMSGCONN

 From 13Jun2005 18.16.15.36 To 20Jun2005 14.47.43.06 Page 1
Transact Message Response -------------- Input -------------- -Process- --------- Output ---------- Rate Time
 Code Count Time Pre-OTMA READ Sock READ Ex SAF OTMA Confirm Post-OTMA XMIT Ex /Sec Outs NAK
________ _______ _________ _________ _________ _______ _______ _________ _________ _________ _______ ____ ____ ____
IVTNO 234 Avg 9.284 0.229 0.052 0.025 0.000 8.794 0.000 0.261 0.027 0 0 0
 80% 23.329 0.396 0.077 0.033 0.000 22.826 0.000 0.371 0.040
PART 50 Avg 103.958 0.332 0.057 0.129 0.000 37.566 0.000 66.058 0.041 0 0 0
 80% 154.813 0.934 0.086 0.655 0.000 86.206 0.000 96.568 0.068
-------- ------- --------- --------- --------- ------- ------- --------- --------- --------- ------- ---- ---- ----
Total 284 Avg 25.952 0.247 0.053 0.043 0.000 13.859 0.000 11.845 0.029 0 0 0
 80% 65.134 0.541 0.078 0.265 0.000 39.495 0.000 36.503 0.046

The report gives the total response time and the intermediate times divided by groups: input,
process, and output times. It helps you to identify where is the cause of bad response times.

The IMS Performance Analyzer uses the connect events record time stamps to give the
average values of the IMS Connect transaction performance. Figure 11-9 on page 179 uses

178 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

the event flow for sync level none transactions to show graphically the meaning of the most
relevant fields of the Transit Analysis report.

Figure 11-9 Transit Analysis report fields for sync level none transactions

The Transit Analysis report also gives timeout and NAK counters. In Example 11-15, you can
see the Transit Analysis report in the same environment as the previous example but with
sync level confirm transactions.

Example 11-15 Transit Analysis report for sync level confirm transactions

 IMS Performance Analyzer 3.3
 IMS Connect Transit Analysis - IMSGCONN

 From 13Jun2005 19.23.57.91 To 20Jun2005 16.36.47.51 Page 1
Transact Message Response -------------- Input -------------- -Process- --------- Output ---------- Rate Time
 Code Count Time Pre-OTMA READ Sock READ Ex SAF OTMA Confirm Post-OTMA XMIT Ex /Sec Outs NAK
________ _______ _________ _________ _________ _______ _______ _________ _________ _________ _______ ____ ____ ____
IVTNO 199 Avg 423.346 0.244 0.050 0.059 0.000 6.430 91.360 215.038 0.056 0 199 0
 80% 509.536 0.425 0.071 0.083 0.000 16.250 118.189 280.791 0.093
PART 42 Avg 223.626 0.210 0.048 0.094 0.000 32.199 111.543 79.672 0.055 0 0 0
 80% 246.098 0.276 0.060 0.140 0.000 41.315 127.335 80.381 0.060
-------- ------- --------- --------- --------- ------- ------- --------- --------- --------- ------- ---- ---- ----
Total 241 Avg 388.540 0.238 0.049 0.065 0.000 10.921 94.877 191.447 0.056 0 199 0
 80% 490.035 0.405 0.069 0.096 0.000 23.640 120.919 265.232 0.090

The report changes for the sync level confirm transaction. A new field, Confirm, appears and
fields such as OTMA and the fields related with exits now have a different meaning.

Figure 11-10 on page 180 uses the event flow for sync level confirm transactions to show
graphically the meaning of the most relevant fields of the Transit Analysis report. Notice that
now the OTMA and exits average time is calculated as the addition of two different times.

3C Prepare READ Socket
49 READ Socket
3D Message Exit called for READ
3E Message Exit returned from READ
41 Message sent to OTMA
42 Message received from OTMA
3D Message Exit called for XMIT
3E Message Exit returned from XMIT
4A WRITE Socket
0C Begin CLOSE Socket
0D End CLOSE Socket
48 Trigger Event CLOSE

Response
Time

Pre-OTMA

Read Sock

Read Ex

OTMA

Post-OTMA

Xmit Ex

Chapter 11. IMS Connect Extensions 179

Figure 11-10 Transit Analysis report fields for sync level confirm transactions

To focus on the meanings of the time fields, the previous examples shows the total average
times for every transaction, but you are able to obtain the same results by time intervals with
total and subtotal times. Example 11-16 shows this Transit Analysis report option using one
minute time intervals.

Example 11-16 Transit Analysis report by transaction and one minute time with subtotals

 IMS Performance Analyzer 3.3
 IMS Connect Transit Analysis - IMSGCONN

 From 20Jun2005 17.17.22.77 To 20Jun2005 17.22.09.84 Page 1
Transact Time Message Response -------------- Input -------------- -Process- --------- Output ---------- Rate Time
 Code Count Time Pre-OTMA READ Sock READ Ex SAF OTMA Confirm Post-OTMA XMIT Ex /Sec Outs NAK
________ ________ _______ _________ _________ _________ _______ _______ _________ _________ _________ _______ ____ ____ ____
DSPINV 17.20.00 1 Avg 222.965 0.220 0.043 0.075 0.000 41.166 101.635 79.943 0.070 0 0 0
 80% 222.965 0.220 0.043 0.075 0.000 41.166 101.635 79.943 0.070
 17.21.00 4 Avg 213.761 0.244 0.070 0.171 0.000 25.613 101.011 86.892 0.052 0 0 0
 80% 229.149 0.294 0.087 0.321 0.000 26.738 112.305 94.814 0.058
 17.22.00 1 Avg 439.132 0.189 0.040 0.084 0.000 38.251 105.004 295.687 0.054 0 0 0
 80% 439.132 0.189 0.040 0.084 0.000 38.251 105.004 295.687 0.054
DSPINV Subtotal 6 Avg 252.857 0.231 0.061 0.141 0.000 30.312 101.781 120.533 0.055 0 0 0
 80% 330.675 0.274 0.079 0.263 0.000 36.550 110.632 193.081 0.063

PART 17.17.00 8 Avg 232.005 0.239 0.044 0.112 0.000 27.809 117.323 86.633 0.055 0 0 0
 80% 247.871 0.314 0.048 0.178 0.000 30.585 132.627 94.044 0.060
 17.18.00 3 Avg 265.415 0.243 0.083 0.079 0.000 68.941 106.098 90.131 0.094 0 0 0
 80% 317.124 0.263 0.113 0.082 0.000 127.488 118.752 101.920 0.124
 17.21.00 4 Avg 198.215 0.198 0.072 0.066 0.000 28.143 84.567 85.306 0.051 0 0 0
 80% 245.768 0.228 0.103 0.083 0.000 32.060 117.586 92.001 0.065
 17.22.00 1 Avg 229.447 0.178 0.041 0.079 0.000 25.839 111.343 92.085 0.053 0 0 0
 80% 229.447 0.178 0.041 0.079 0.000 25.839 111.343 92.085 0.053
PART Subtotal 16 Avg 229.662 0.225 0.058 0.092 0.000 35.482 106.655 87.298 0.061 0 0 0
 80% 266.838 0.282 0.081 0.141 0.000 61.158 133.529 94.799 0.080

-------- ------- --------- --------- --------- ------- ------- --------- --------- --------- ------- ---- ---- ----
Total 22 Avg 235.988 0.227 0.059 0.105 0.000 34.072 105.326 96.362 0.060 0 0 0
 80% 286.070 0.279 0.080 0.180 0.000 56.074 128.521 134.520 0.076

3C Prepare READ Socket
49 READ Socket
3D Message Exit called for READ
3E Message Exit returned from READ
41 Message sent to OTMA
42 Message received from OTMA
3D Message Exit called for XMIT
3E Message Exit returned from XMIT
4A WRITE Socket
49 READ Socket
49 READ Socket
3D Message Exit called for READ
3E Message Exit returned from READ
41 Message sent to OTMA
42 Message received from OTMA
46 De-allocate Session
3D Message Exit called for XMIT
3E Message Exit returned from XMIT
4A WRITE Socket
0C Begin CLOSE Socket
0D End CLOSE Socket
48 Trigger Event

Response
Time

Pre-OTMA

Read Sock

Read Ex -1

Read Ex -2

OTMA - 1

OTMA - 2

Confirm

Post-OTMA

Xmit Ex -1

Xmit Ex -2

180 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Transit Log report
The IMS Connect Transit Log report provides performance details about every transaction
processed by IMS Connect, providing a complete picture of transaction processing. To be
complete, this report requires IMS Connect Extensions to collect event data at collection level
3 or 4. The order of transactions in the report is based on when they end, not when they start.

Example 11-17 shows a Transit Log report. The meaning of the fields are the same as in the
Transit Analysis report with the addition of the port used and the datastore that processes the
transaction.

Example 11-17 Transit Log report

 IMS Performance Analyzer 3.3
 IMS Connect Transit Log - IMSGCONN

 Log from 20Jun2005 17.17.22.77 Page 1
 Start Time Transact Target Port Response -------------- Input -------------- -Process- --------- Output ----------
HH.MM.SS.THmiju Code DataStor Number Time Pre-OTMA READ Sock READ Ex SAF OTMA Confirm Post-OTMA XMIT Ex E
_______________ ________ ________ ________ _________ _________ _________ _______ _______ _________ _________ _________ _______ _
17.17.22.778483 PART IMSG 7003 214.073 0.308 0.042 0.133 0.000 29.777 104.885 79.101 0.055
17.17.26.045348 PART IMSG 7003 224.563 0.257 0.057 0.073 0.000 26.696 117.480 80.129 0.067
17.17.32.586330 PART IMSG 7003 250.720 0.177 0.042 0.075 0.000 25.707 131.270 93.565 0.049
17.17.43.082958 PART IMSG 7003 208.069 0.427 0.041 0.300 0.000 23.704 105.741 78.196 0.048
17.17.45.298137 PART IMSG 7003 219.878 0.176 0.040 0.090 0.000 31.792 103.990 83.918 0.062
17.17.48.061337 PART IMSG 7003 232.730 0.179 0.042 0.074 0.000 31.820 105.939 94.790 0.055
17.17.50.724001 PART IMSG 7003 261.835 0.199 0.041 0.075 0.000 23.820 156.111 81.704 0.053
17.17.58.487076 PART IMSG 7003 244.168 0.186 0.043 0.073 0.000 29.156 113.164 101.660 0.050
17.18.02.030706 PART IMSG 7003 232.823 0.220 0.068 0.083 0.000 29.529 122.312 80.760 0.061
17.18.14.209534 PART IMSG 7003 336.252 0.268 0.123 0.077 0.000 149.227 103.346 83.409 0.087
17.18.35.630495 PART IMSG 7003 227.170 0.240 0.059 0.076 0.000 28.067 92.637 106.225 0.133
17.20.46.704486 DSPINV IMSG 7003 222.965 0.220 0.043 0.075 0.000 41.166 101.635 79.943 0.070
17.21.01.700277 DSPINV IMSG 7003 225.803 0.291 0.095 0.101 0.000 27.305 97.813 100.392 0.062
17.21.05.265378 PART IMSG 7003 245.768 0.183 0.045 0.083 0.000 32.664 115.857 97.062 0.053
17.21.08.812926 PART IMSG 7003 108.873 0.183 0.049 0.035 0.000 25.623 0.000 83.065 0.031
17.21.18.622821 DSPINV IMSG 7003 196.378 0.197 0.061 0.071 0.000 24.042 91.923 80.214 0.047
17.21.27.719390 PART IMSG 7003 230.551 0.251 0.125 0.081 0.000 31.393 117.586 81.319 0.050
17.21.41.557448 DSPINV IMSG 7003 232.871 0.189 0.048 0.075 0.000 25.639 120.782 86.260 0.050
17.21.49.355531 PART IMSG 7003 207.667 0.174 0.068 0.065 0.000 22.890 104.825 79.776 0.071
17.21.57.135709 DSPINV IMSG 7003 199.993 0.299 0.076 0.437 0.000 25.467 93.526 80.700 0.049
17.22.05.859506 DSPINV IMSG 7003 439.132 0.189 0.040 0.084 0.000 38.251 105.004 295.687 0.054
17.22.09.842509 PART IMSG 7003 229.447 0.178 0.041 0.079 0.000 25.839 111.343 92.085 0.053

Transit Extract report
The IMS Connect Transit Extract report gathers performance details about every transaction
processed by IMS Connect. You can request a list or summary extract, or both. The List
Extract report provides similar details as the Transit Log report, while the Summary Extract
summarizes these details over a specified time interval, typically 15 minute intervals.

The extract data is suitable for importing into DB2 or PC tools from where you can run queries
or produce reports and graphs. To be complete, this report requires IMS Connect Extensions
to collect event data at collection level 3 or 4.

Port Usage report
The IMS Connect Port Usage report provides a summary of the TCP/IP ports used by the
IMS Connect system. For each port, it provides average statistics for port depth, message
processed count, and ACCEPT, READ, and WRITE socket counts. It also provides peak
percentile statistics for input READ and ACK/NAK READ socket counts. To be complete, this
report requires IMS Connect Extensions to collect event data at collection level 3 or 4.

Example 11-18 on page 182 shows a sample Port Usage report. In addition, the counters it
also provides average times for READ socket commands (including ACK/NAK READ socket
commands). The report can optionally be summarized by time interval.

Chapter 11. IMS Connect Extensions 181

Example 11-18 Port Usage report

 IMS Performance Analyzer 3.3
 IMS Connect Port Utilization - DVPCFGDA

 From 08Mar2004 08.47.44.11 To 25Mar2004 12.20.02.83 Page 1
 -- Depth -- Message ACCEPT ---- READ ----- --- Input READ ---- -- ACK/NAK READ --- ---- WRITE ----
 Port Ave Max Count Count Count Len Average 90% Peak Average 90% Peak Count Len
 _____ _____ _____ _________ _________ _________ _____ _________ _________ _________ _________ _________ _____
 8801 11 26 1010 443 3681 32 668.505 1.888.699 773.304 4.310.637 910 128
 8802 33 83 2500 2514 7412 6 1.072.717 2.006.237 0.000 0.000 2500 91
 8803 0 0 0 14 0 0 0.000 0.000 0.000 0.000 0 0
 8804 0 0 0 14 0 0 0.000 0.000 0.000 0.000 0 0
 8805 0 0 0 14 0 0 0.000 0.000 0.000 0.000 0 0
 8806 0 0 0 14 0 0 0.000 0.000 0.000 0.000 0 0
 8807 0 0 0 14 0 0 0.000 0.000 0.000 0.000 0 0
 8808 0 0 0 14 0 0 0.000 0.000 0.000 0.000 0 0
 8809 0 0 0 14 0 0 0.000 0.000 0.000 0.000 0 0

Resume Tpipe report
The IMS Connect Resume Tpipe report provides a summary of Resume Tpipe command
activity.

The report provides command statistics, including a command count and a breakdown by
command type: Auto (with timeout), No Auto, and Single. Command statistics include the
count of commands issued, IMS messages received, negative responses (Tpipe queue
empty), NAK, and timeout interval. It can contain generated Tpipe names. This report
requires IMS Connect Extensions to collect event data at collection level 2, 3, or 4.

Example 11-19 shows a sample Resume Tpipe report. The report can optionally be
summarized by time interval.

Example 11-19 Resume Tpipe report

 IMS Performance Analyzer 3.3
 IMS Connect Resume Tpipe - DVPCFGDA

 From 15Mar2004 09.25.43.79 To 15Mar2004 12.20.02.83 Page 1

 --------------- Noauto --------------- ---------------- Auto ---------------- --------- Single ---------
Time --- Msg --- Avg --- Msg --- Avg Avg
15Mar Tpipe Count NResp Fail Avg Max Timeout Count NResp Fail Avg Max Timeout Count NResp Fail Timeout
_______ ________ _____ _____ _____ _____ _____ ________ _____ _____ _____ _____ _____ ________ _____ _____ _____ ________
9.25.00 TRRBS001 1 0 0 2 2 0.25 0 0 0 0 0 0.00 0 0 0 0.00
9.26.00 TRRBS001 0 0 0 0 0 0.00 0 0 0 0 0 0.00 2 0 0 0.25
 TRRBS002 2 0 0 2 2 0.25 0 0 0 0 0 0.00 0 0 0 0.00
9.27.00 CEX30001 1 0 0 2 2 0.25 0 0 0 0 0 0.00 0 0 0 0.00
 TRRBS001 1 0 0 2 2 0.25 0 0 0 0 0 0.00 0 0 0 0.00
 16034180 0 0 0 0 0 0.00 1 0 0 2 2 0.25 0 0 0 0.00
9.28.00 CEX40002 0 0 0 0 0 0.00 0 0 0 0 0 0.00 1 1 0 7.00
 TRRBS001 0 0 0 0 0 0.00 2 1 0 1 2 5.00 0 0 0 0.00
0.14.00 TRRBS001 1 0 0 2 2 0.25 0 0 0 0 0 0.00 0 0 0 0.00
0.15.00 TRRBS001 1 0 0 2 2 0.25 0 0 0 0 0 0.00 0 0 0 0.00
 TRRBS002 0 0 0 0 0 0.00 0 0 0 0 0 0.00 2 0 0 0.25
0.16.00 CEX40001 1 0 0 2 2 0.25 0 0 0 0 0 0.00 0 0 0 0.00
0.24.00 CEX40001 1 0 0 2 2 0.25 0 0 0 0 0 0.00 0 0 0 0.00

ACK/NAK report
The IMS Connect ACK/NAK report provides a summary of acknowledgement activity for
transactions that use sync level confirm.

Positive acknowledgement (ACK) and negative acknowledgement (NAK) statistics are
reported for each transaction code. NAK is further broken down as negative
acknowledgement from either OTMA (NAK sense code) or from the client. It also includes
NAK code explanations for OTMA NAKs.

182 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 11-20 shows an ACK/NAK report summarized by time interval. In all these reports,
when the input message is a command and not a transaction, a mnemonic prefixed by *CMD
is reported in the Transact Code field.

Example 11-20 ACK/NAK report

IMS Performance Analyzer 3.3
 IMS Connect ACK/NAK - DVPCFGDA

 From 01Apr2004 11.57.06.98 To 01Apr2004 15.17.58.84 Page 1

 Time Transact Target Confirm ------ ACK ------- --- Client NAK --- --- OTMA NAK ----------------------------------
 19Apr Code Datastore Count Count Avg Elaps Count Avg Elaps Count Sense Code
________ ________ ________ ________ ________ _________ ________ _________ ________ _____________________________________
12.00.00 PART IMD3 1 0 0.000 0 0.000 1 1A Message cancelled due to IMS error
12.30.00 PART IMD3 3 3 2.641.491 0 0.000 0
13.00.00 *CMD_RHQ IMD3 10 10 0.491 0 0.000 0
 *CMD_RHQ IMD4 10 10 0.323 0 0.000 0
 *CMD_RTP IMD3 8 8 0.293 0 0.000 0
 *CMD_RTP IMD4 8 8 0.361 0 0.000 0
 DSPALLI IMD3 1 1 271.069 0 0.000 0
 DSPALLI IMD4 1 1 217.887 0 0.000 0
 DVPTRAN5 IMD3 2 0 0.000 2 255.411 0
15.00.00 *CMD_RHQ IMD3 4 4 0.395 0 0.000 0
 *CMD_RHQ IMD4 4 4 45.767 0 0.000 0
 *CMD_RTP IMD3 6 6 0.358 0 0.000 0
 *CMD_RTP IMD4 6 6 0.337 0 0.000 0
 DVPTRAN5 IMD3 8 6 2.568.341 2 1.631.982 0
 DVPTRAN5 IMD4 9 7 895.849 2 1.152.072 0
 ID=EXAMP IMD3 3 0 0.000 0 0.000 3 24 Previous conversation still in progress
 ID=EXAMP IMD4 3 0 0.000 0 0.000 3 1A Message cancelled due to IMS error

Exception Events report
The IMS Connect Exception Events report provides details about events that cause
transactions to fail or that signal critical resources are no longer available. The List report
provides a list (in chronological order) of all exception events. To be complete, this report
requires IMS Connect Extensions to collect event data at collection level 3 or 4.

Example 11-21 shows a sample Exception Events report. A summary report is also available,
providing a recap of each exception event encountered and a count of the number of times it
occurred.

Example 11-21 Exception Events report

 IMS Performance Analyzer 3.3
 IMS Connect Exception Report - DVPCFGDA

 Report from 04Mar2004 10.19.36.22
 Event Time ID Description Information
_______________ __ _________________________________ ___
10.19.36.229174 11 Datastore Un-Available DSname=XCFMIMD3
10.19.36.234938 11 Datastore Un-Available DSname=XCFMIMD4
10.19.36.376444 13 TMember leaves XCF group DSname=HWSDEV3
10.19.36.380776 13 TMember leaves XCF group DSname=HWSDEV4
10.27.50.682345 11 Datastore Un-Available DSname=XCFMIMD3
10.27.50.684494 11 Datastore Un-Available DSname=XCFMIMD4
10.27.50.940388 13 TMember leaves XCF group DSname=HWSDEV3
10.27.50.944613 13 TMember leaves XCF group DSname=HWSDEV4
08.49.02.395660 41 Msg to OTMA response is NAK DSname=XCFMIMD4 Tpipe=8801 RSN=0000
08.50.20.882001 11 Datastore Un-Available DSname=XCFMIMD3
08.50.20.882091 47 Session error Type=TERM
08.50.20.889827 11 Datastore Un-Available DSname=XCFMIMD4
08.50.20.899802 47 Session error Type=TERM
11.31.54.190824 13 TMember leaves XCF group DSname=HWSDEV4
11.31.54.194165 13 TMember leaves XCF group DSname=HWSDEV3
10.25.53.984955 45 OTMA time-out Time-out value= 1

IMS Connect Trace report
The IMS Connect Trace report provides detailed analysis of individual IMS Connect event
records. Trace reports are typically used to investigate point-in-time performance problems

Chapter 11. IMS Connect Extensions 183

because they provide all available information. To focus on the desired problem area or to
minimize the size of the report, specify the date and time range or selection criteria, or both.

The IMS Connect Trace report provides a list of transactions, each with detailed information
about every event in the life of that transaction. You can see when a transaction starts,
followed by all the events associated with the transaction in the order they occurred.

Example 11-22 shows a sample trace report for a commit mode 1 sync level confirm
transaction.

Example 11-22 Trace report for a commit 1 sync level confirm transaction

 IMS Performance Analyzer 3.3
 IMS Connect Trace - IMSGCONN

 Trace from 20Jun2005 19.40.39.08 Page 1
Start/+Relative Elapsed ID Description Information
_______________ ________ __ _________________________________ __
20.19.44.295864 *Start* 3C Prepare Read Socket Key=BD312B17A81F0660 Depth=1 Port=7003 Sock=2
 +0.000060 0.060 49 Read Socket Port=7003 Sock=2
 +0.000127 0.066 3D Message Exit called for READ Exit=HWSSMPL0
 +0.000168 0.040 3E Message Exit return for READ RC=00 RSN=00 IP=9.1.59.179 DSOrig=IMSG TC=PART
 Commit Mode=1 Synch Level=CONFIRM Socket Type=Transaction
 +0.000264 0.096 41 Message sent to OTMA TPipe=7003 MSG=Transaction
 +0.025716 25.452 42 Message received from OTMA TPipe=7003 MSG=Data Sense=0000
 +0.025902 0.185 3D Message Exit called for XMIT Exit=HWSSMPL0
 +0.025941 0.039 3E Message Exit return for XMIT RC=00 RSN=00
 +0.026179 0.237 4A Write Socket Port=7003 Sock=2
 +0.144417 118.238 49 Read Socket Port=7003 Sock=2
 +0.144585 0.167 49 Read Socket Port=7003 Sock=2
 +0.144610 0.025 3D Message Exit called for READ Exit=HWSSMPL0
 +0.144654 0.043 3E Message Exit return for READ RC=00 RSN=00 IP=9.1.59.179 DSOrig=IMSG TC=PART
 Commit Mode=1 Synch Level=CONFIRM Socket Type=Transaction
 +0.144743 0.089 41 Message sent to OTMA TPipe=7003 MSG=Response RESP=ACK
 +0.145384 0.640 42 Message received from OTMA TPipe=7003 MSG=Commit Conf CONFIRM=Committed Sense=0000
 +0.145453 0.069 46 De-allocate Session RSN=COMT
 +0.145474 0.020 3D Message Exit called for XMIT Exit=HWSSMPL0
 +0.145497 0.022 3E Message Exit return for XMIT RC=00 RSN=00
 +0.145689 0.191 4A Write Socket Port=7003 Sock=2
 +0.145720 0.030 0C Begin Close Socket Port=7003 Sock=2
 +0.225328 79.608 0D End Close Socket Port=7003 Sock=2
 +0.225356 0.028 48 Trigger event Trigger=CLOSE

For more information about the IMS Performance Analyzer reports, refer to IBM IMS
Performance Analyzer for z/OS Report Analysis, SC27-0913.

11.2.8 IMS Problem Investigator
APAR PQ92211 in IMS Problem Investigator Version 1.1 introduces support for IMS Connect
Extensions event record analysis.

You can use IMS Problem Investigator for z/OS to analyze IMS Connect event data. IMS
Problem Investigator offers its full reporting and viewing capabilities to assist in the analysis
of event data in Archive Journal data sets. Archive File Selection is available for automatic
selection of archive data sets for batch analysis of an IMS Connect system.

IMS Connect Extensions settings
Before using the IMS Connect Extensions events in IMS Problem Investigator, you have to
define the IMS Connect Extensions settings. Follow these steps:

1. From the Primary Option Menu, select option 0 Profile, and then from the submenu select
option 4 IMS Connect Extensions Settings. Figure 11-11 on page 185 shows the menu.

184 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 11-11 IMS Connect Extensions Settings menu

2. Specify:

– The Log Record Code that IMS Connect Extensions assigns to the event records. The
default is A0.

– The name of the IMS Connect Extensions Definitions Data Set that defines the IMS
Connect systems and archive data sets on which you want to report.

IMS Connect Extensions event analysis
To access to the IMS Connect Extensions Archive Journals, follow these steps:

1. Select option 6 Connect from the Primary Option Menu to view the list of IMS Connect
systems and archive data sets. Figure 11-12 shows the IMS Connect System Definitions
panel.

Figure 11-12 IMS Connect System Definitions panel

Chapter 11. IMS Connect Extensions 185

2. You can specify S to display the list of Archive Data Sets, as shown in Figure 11-13.

Figure 11-13 Archive Data Sets for IMS Connect Extensions list

3. You have three valid line actions:

– SUB to submit a report or extract request for the system.

– S to select this data set for processing (IMS Problem Investigator Formatted Browse).

– P to add file to the Process Log Files list. The data set name is placed at the top of the
list from where you can then select it for dialog or batch processing.

186 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Submit a report or extract a request for the system
When you choose the SUB option, the runtime options are displayed, as shown in
Figure 11-14.

Figure 11-14 Submit Report/Extract Request

The submit options are the same as for IMS log reporting. The difference is that when Report
Interval is specified, IMS Connect Archive File Selection is used to locate the archive data
sets.

Chapter 11. IMS Connect Extensions 187

IMS Problem Investigator Formatted Browse
When you choose S, you access the IMS Problem Investigator Formatted Browse, as shown
in Figure 11-15.

Figure 11-15 IMS Problem Investigator Formatted Browse

You can select any of the events to view the details in formatted records. Figure 11-16 on
page 189 shows an example for an x'3D' record. In the formatted records, you can see
information such as the name of the exit called (HWSSMPL0) and the functions for which it is
called (READ).

188 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 11-16 IMS Problem Investigator event detail formatted records

11.3 Workload management
As we introduced in 11.1, “Introduction to IMS Connect Extensions” on page 156, IMS
Connect Extensions enables you to manage dynamic workloads with the following services:

� Transaction routing
� Workload balancing
� Transaction pacing

To manage the workload management, IMS Connect Extensions uses the definitions made in
the options 4, 5, and 6 of the Definitions menu, as shown in Figure 11-17.

Figure 11-17 Definitions menu

Chapter 11. IMS Connect Extensions 189

The following list describes these options:

� Datastore Groups

A datastore group is a logical collection of datastores. Typically, datastore groups are
constructed to reflect the development life cycle: development, testing, and production.

A datastore can only be a member of one datastore group. Datastore groups are useful
during the construction of transaction routing rules for either transactions or datastores
and for the setting of pacing thresholds.

� Affinity Lists

An affinity list is another logical group of datastores. Typically, affinity lists are constructed
on the basis of workload (transactions). A datastore can be included in more than one
affinity list. It is useful to define affinity lists when constructing transaction routing rules for
either transactions or datastores.

� Applications

An application is a logical collection of transactions. A transaction can only belong to a
single application.

Applications are useful in the construction of transaction routing rules. They simplify the
definition of transaction routing rules by providing default options for all transactions
belonging to the application. If required, transaction routing options can override the
default application routing options.

11.3.1 Transaction routing
Transaction routing allows IMS Connect Extensions to alter the target IMS datastores that
process incoming transaction requests by dynamically changing the target datastore used for
IMS OTMA communication. This improves availability and performance.

An identifier within the incoming transaction request header sent by the client application
normally determines the target IMS datastore for processing. However, IMS Connect
Extensions provides routing by transaction that allows the target IMS datastore to be
substituted with an alternative. IMS Connect Extensions does not route all incoming message
requests. Table 11-1 shows which message types can be routed.

Table 11-1 Routing options for message types

Message type Routing option

Conversational The first message of a conversational transaction can be routed. All
subsequent messages of a conversational transaction will be routed to the
datastore that processed the first message in the conversation.

Non-conversational A non-conversational transaction can be routed.

Send Only A Send Only message can be routed.
Note: If the output from a Send Only is retrieved using RTPIPE then
transaction routing should not be active for these Send Only transactions.

RESUME TPIPE A RTPIPE message cannot be routed. It will always be directed to the
datastore as defined in the incoming message request.
Ensure transaction routing is inactive for all transactions that create the
asynchronous output or change RTPIPE processing and send RTPIPEs to
all datastores that may have output.

ACK/NAK/DEALLOC All ACKs, NAKs and DEALLOCs will be routed to the datastore that
processed the first message.

190 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

This dynamic routing is performed using a combination of transaction affinity and datastore
affinity:

� Transaction affinity

Transaction affinity enables you to define on which datastores a transaction can execute.
If the transaction can execute on other datastores, you need to define the transaction and
its affinity processing to IMS Connect Extensions.

Transaction affinity is the list of datastores that are candidates for processing the incoming
transaction. This candidate list can be a single datastore or a list of datastores.

� Datastore affinity

Datastore affinity enables you to create groups of datastores with similar processing
characteristics. For example, datastore affinity can be created for test or production
datastores. By using datastore affinity, a test transaction might benefit from transaction
routing but still be assured it will process only on a test system.

You set these affinities when you define a transaction to IMS Connect Extensions using the
option 7 Transactions in the Definitions menu. Figure 11-18 shows the Transaction panel.

Figure 11-18 Transaction definition panel

This panel enables you to define the datastores where the transaction can be routed using
datastores groups or affinity lists. From this panel, you activate or deactivate the routing
option for a transaction. You also define the response of IMS Connect Extensions when the
transaction routing logic cannot find a datastore to route the message.

You also define affinity when you define a datastore to IMS Connect Extensions using the
option 3 Datastores in the definitions menu. Figure 11-19 on page 192 shows the panel.

Chapter 11. IMS Connect Extensions 191

Figure 11-19 Datastore definition panel

This panel enables you to define the datastore affinity for a particular datastore. From this
panel, you activate or deactivate the routing option for a datastore. You can also activate the
transaction routing for an application when you define it.

Candidate list
The combination of transaction affinity and datastore affinity determines the candidate list of
datastores that can process the incoming transaction. The candidate list for a transaction can
contain multiple datastores.

Figure 11-20 on page 193 shows a graphical example of the rules used by IMS Connect
Extensions to find a candidate list of datastores. The candidate list is built using the
intersection of transaction affinity and datastore affinity. The diagram shows an IMS Connect
system containing eight datastores and assumes an incoming message request running TX1
on datastore IMD2 and that the definitions for both TX1 and IMD2 have transaction routing
set to Active.

192 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 11-20 Candidate list for a single transaction

Step 1 in the diagram shows the incoming message request. Step 2 shows that TX1 has a
transaction affinity of datastores IMP1, IMT1, and IMD1. Step 3 shows that IMD2 has a
datastore affinity of datastores IMD1 and IMD2. Step 4 shows the intersection of transaction
affinity and datastore affinity as IMD1. The message is routed from IMD2 to the new target
datastore of IMD1.

11.3.2 Workload balancing
Workload balancing allows IMS Connect Extensions to redirect incoming transaction
requests to one of multiple IMS datastores, thereby balancing the transaction workload
across multiple IMS systems, ensuring both availability and responsiveness for the remote
client.

Workload balancing uses a weighted rotate algorithm that considers the processing capacity
of a datastore. Datastores with greater capacity receive more transactions. Basic rotation is
achieved by assigning each datastore an equal weighting value. You specify the relative
weighting of each datastore during the datastore definition process. See Figure 11-19 on
page 192. The Capacity weight rating field accepts values in the range of 1 to 100.

If the workload balancing option on the system definition is set to Active and IMS Connect
Extensions identifies that a datastore is no longer available, the datastore is not used to
process incoming message requests.

Figure 11-21 on page 194 illustrates workload balancing. The figure shows an IMS system
containing eight datastores and assumes an incoming message request running TX1 on
datastore IMD1 and that the definitions for both TX1 and IMD1 have transaction routing set to
Active.

Chapter 11. IMS Connect Extensions 193

Figure 11-21 Workload balancing example

Step 1 in the this diagram shows the incoming message request. Step 2 shows that TX1 has
a transaction affinity of all datastores. Step 3 shows that IMD1 has a datastore affinity of
datastores IMD1 and IMD2. Step 4 shows the intersection of transaction affinity and datastore
affinity as IMD1 and IMD2. Step 5 shows workload balancing using the relative datastore
capacity weightings of IMD1 and IMD2 to select the new destination. In this example, assume
that IMD1 has twice the capacity of IMD2 and is the new target destination. The message is
routed from IMD2 to the new target datastore of IMD1.

11.3.3 Transaction pacing
Transaction pacing enables IMS Connect Extensions to reject transactions if predetermined
incoming message threshold values are exceeded. Transaction pacing is performed after
transaction routing and workload balancing when the target datastore is determined.

You can define pacing thresholds at three levels of granularity:

� Datastores: The most granular. See Figure 11-19 on page 192.
� Datastore groups.
� IMS Connect system: The least granular. See Figure 11-5 on page 162.

At each of these levels, you can activate transaction pacing and set warning and reject
threshold values. IMS Connect Extensions continually monitors incoming message arrival
rates against these user-defined thresholds for identifying unusually high incoming message
arrival rates.

194 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

At the IMS Connect system, IMS Connect Extensions defines transaction pacing using a
number of controls:

� Interval count

This defines the number of consecutive 20 second intervals that must be exceeded before
IMS Connect Extensions issues warning messages or rejects transactions. This value is
set for the whole of the IMS Connect system and applies to all levels of transaction pacing.

� Warning threshold

At this threshold, IMS Connect Extensions issues a warning message to the IMS Connect
Extensions Log and system console indicating that this threshold level has been
exceeded.

� Reject threshold

At this threshold, IMS Connect Extensions rejects incoming message requests. IMS
Connect Extensions issues a message to the IMS Connect Extensions Log and system
console indicating that maximum pacing rates have been reached.

The SET and REFRESH commands allow the transaction pacing definitions to be altered
dynamically.

11.4 Status Monitor
IMS Connect Extensions is constantly recording statistics about current activity and
processing rates. It collects statistics at the end of every 20 second interval and displays on
the Status Monitor for each IMS Connect system in an overview and detailed format.
Statistics displayed on the screen are delayed by as much as 20 seconds.

The Status Monitor is displayed when you invoke option 4 Status of the IMS Connect
Extensions Primary Options menu. Figure 11-22 shows the Status Monitor panel.

Figure 11-22 Status Monitor panel

The Status Monitor provides an overview of activity for a single IMS Connect system. You
have to specify its name. The Status Monitor has two views:

� System view: To select system information for IMS Connect systems, datastores,
datastore groups, and user exits.

Recommendation: Set pacing thresholds at the most granular level of datastores and
datastore groups rather than for the IMS Connect system. This minimizes the overall
number of incoming message requests that will be rejected.

Chapter 11. IMS Connect Extensions 195

� The port view: To select port information for IMS Connect systems, datastores, and user
exits.

To work with the Status Monitor, set the Activate Statistics collection option on the System
Definitions panel to Active. See Figure 11-5 on page 162.

11.4.1 System view
With this view, you can access the System Overview and System Detail panels.

System Overview
The System Overview panel provides a global view of activity across the IMS Connect
system. The panel displays information over various intervals for the following definition
types:

� HWS: The IMS Connect system
� DG: Datastore groups
� DS: Datastores
� EXIT: User exits

Figure 11-23 shows the Status Monitor - System Overview panel.

Figure 11-23 Status Monitor - System Overview panel

The Status Monitor - System Overview panel recognizes the following commands:

� GO

The GO command activates automatic screen refresh. The screen is refreshed every 20
seconds. To stop the GO command, press ATTN/PA1.

� FORM

The FORM command displays the Form Definition screen. This enables you to customize
the information displayed on this screen.

The Status Monitor displays information for the various definitions based on the current
form definition. In the example, the default is modified to show data related to ACKs and
messages routed by IMS Connect Extensions.

In the Interval field, you specify the time interval for which statistics are displayed. The line
action enables you to access to the System Detail panel. Use S to select the definition.

196 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

System Detail
The Status Monitor System Detail panel displays statistics for a single definition over various
time periods in the last hour. You can choose any of the components shown in the System
Overview panel.

Figure 11-24 shows a System Detail panel for an IMS Connect system. The default data
displayed is modified with the FORM command to show the incoming message processed by
the read exit with RC=0 and accepted by IMS Connect Extensions (not rejected by security,
pacing, and so on).

Figure 11-24 System Detail panel for an IMS Connect system

As in the System Overview panel, you have the GO and FORM commands and the interval
option.

11.4.2 Port view
With this view, you can access the Port Overview and Port Detail panels.

Port Overview
The Port Overview panel provides a global view of activity across all ports in the IMS Connect
system. Figure 11-25 shows the Port Overview panel for an IMS Connect System with only
one port.

Figure 11-25 Port Overview panel

Chapter 11. IMS Connect Extensions 197

As in the System Overview panel, you have the GO and FORM commands and the interval
option. The interval option in this case shows the activity in the last 20 seconds or minute
intervals.

In this case, we add information related to send only messages, routed messages, and
RTIPIE with the FORM command. The line action enables you to access to the Port Detail
panel. Use S to select the desired port.

Port Detail
The Port Detail panel provides detailed activity for a single port in the IMS Connect system.
For this panel, you have two view options, Historical and System. Figure 11-26 shows the
Port Detail panel for the System view, which shows the activity in the interval selected on the
Port Overview panel.

Figure 11-26 Port Detail: System view

In this case, we add information related to send only messages, ACK, NAKs, and sent error
messages sent to the client with the FORM command. Figure 11-27 shows the Port Detail
panel for the Historical view, which shows the port activity in different points of time.

Figure 11-27 Port Detail: Historical view

As in the Port Overview panel, you have the GO and FORM commands. The interval option is
the one selected in the Port Overview panel.

198 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

11.4.3 Form definition
Forms control the presentation of the Status Monitor screen output. Forms enable you to
tailor the formatting of the data displayed by the Status Monitor screens. You can modify the
Status Monitor to present only information relevant to you, making it easier and quicker to
interpret the screens.

Forms are defined using the FORM command or from Form in the action bar of most Status
Monitor panels. You can define a form for each Status Monitor panel. Figure 11-28 shows the
panel that opens when you enter form at the command line. It displays the current form
definition.

Figure 11-28 Form Definition panel

Use the Form Definition panel to tailor the information displayed on the Status Monitor to
meet your individual requirements:

� Insert new columns in the Status Monitor display.
� Delete existing columns from the display.
� Alter the order in which columns are displayed.

You can choose the fields and formats that you need. Using the PROMPT (F4) in the Name
field, you obtain a list of the allowed values, as shown in Figure 11-29.

Figure 11-29 Field values for form definitions

Chapter 11. IMS Connect Extensions 199

11.5 Security
IMS Connect Extensions enhances the security features of IMS Connect.

User ID and password validation
IMS Connect Extensions performs user ID and password validation by making a call to the
installation security system using the standard SAF interface.

It creates ACEE structures for each user ID and saves this ACEE control block in a cache. On
subsequent calls for the same user ID, password, or PassTicket, group, and application, IMS
Connect Extensions does not reissue the security call, instead it uses the ACEE from the
cache, which is more efficient.

You activate the security using the System Definitions panel. Figure 11-30 shows the fields
involved.

Figure 11-30 Security fields in System Definitions panel

User ID ACEE ageing interval
IMS Connect Extensions keeps the ACEEs in the cache for a specific period defined by the
Ageing interval on the System Definition panel. The ACEE structure is cleared when this time
interval is reached. An ageing interval of 0 minutes indicates that the ACEEs are not deleted
after a certain time period.

Any ACEE structure that is in the cache for a period greater than the ageing interval is not
used. IMS Connect Extensions makes a new security call to perform user ID and password
verification whenever the:

� Password or PassTicket has changed
� Group or application has changed
� ACEE has been in the cache for longer than the ageing interval

IMS Connect validation
This feature of IMS Connect Extensions checks whether the user ID associated with an
incoming message request is authorized to use the IMS Connect system. IMS Connect
Extensions rejects the message request if security returns an invalid status.

IMS Connect Extensions performs this validation against a predefined security resource
class. This resource class can be an existing resource class, but it must be defined in the
security class table with a length of 56 bytes or less.

If IMS Connect Extensions is performing IMS Connect validation, it preloads the security
resource class in storage to improve performance.

Online security commands
Through the Commands menu shown in Figure 11-2 on page 158, you can access the
security commands.

200 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 11-31 shows the Security Commands panel. Use this panel to:

� Refresh SAF class rules.
� Delete any cached user ID security profiles.

Figure 11-31 Security Commands panel

11.6 User exits management
IMS Connect Extensions enables you to manage user exits without interrupting IMS Connect
execution.

11.6.1 User exits definition
To manage exits with IMS Connect Extensions, you have to define them through the option 2
User Exits in the Definitions panel. Figure 11-32 shows the User Exit panel.

Figure 11-32 User Exit definition panel

Not: Activate either IMS Connect security or IMS Connect Extensions security. Do not
activate both, because this doubles the amount of security processing.

Chapter 11. IMS Connect Extensions 201

The following list explains the most relevant fields:

� Activate Exit Definition

This field enables you to activate this user exit. If the user exit is not active (or not defined),
no IMS Connect Extensions features can execute for incoming message requests
processed by this user exit.

� IRM offset definition

IMS Connect Extensions requires some information defined in the user portion of the IRM
header. This field enables you to define the IRM offsets used by this user exit. The
acceptable values are:

– 1. Use default offsets as referenced in the IMS Connect sample exits supplied by IBM

– 2. Use IRM offsets as defined below

The security fields are in fixed offsets within the IRM as defined in this list:

• User ID Offset

The IRM offset containing the security user ID. Acceptable values are 0 or in the
range of 29 to 65527. A value of zero (0) or blank indicates that the field is not
present.

• Password Offset

The IRM offset containing the security password. Acceptable values are 0 or in the
range of 29 to 65527. A value of zero (0) or blank indicates that the field is not
present.

• Group Offset

The IRM offset containing the security group name. Acceptable values are 0 or in
the range of 29 to 65527. A value of zero (0) or blank indicates that the field is not
present.

• APPLname offset

The IRM offset containing the security APPL name. Acceptable values are 0 or in
the range of 29 to 65527. A value of zero (0) or blank indicates that the field is not
present.

– 3. Use supplementary exit named below

The security fields are not located at fixed offsets within the IRM. A supplementary
user exit is be called to provide the fields as each message is received and processed
by IMS Connect Extensions. Enter the name of a user exit that defines the IRM format
used.

� Length prefix

This field enables you to specify whether this user exit uses a 4 byte length prefix for
messages returned to the client. The acceptable values are:

– /
User exit uses a 4 byte length prefix.

– Blank
User exit uses a 2 byte length prefix.

� Message ID support

These fields enables you to specify whether MSG ID1 and MSG ID2 for this user exit
support ASCII or EBCDIC.

The acceptable values are:

– 1. ASCII

202 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

– 2. EBCDIC

The default values for the IBM-supplied exits are ASCII (MSG ID1) and EBCDIC (MSG
ID2), excluding HWSJAVA0 where the values are reversed.

Defining IBM sample exits to IMS Connect Extensions
You can define the standard IBM-supplied exits to IMS Connect Extensions using a load
command. You can invoke this command from the action bar or the load command on the
User Exit List panel. It shows you the list of IBM sample exits not defined in IMS Connect
Extensions. You can load them by using S in the action field. Figure 11-33 shows the load IBM
sample User Exits panel.

Figure 11-33 IBM sample User Exits panel

11.6.2 User exits commands
Through the Commands menu shown in Figure 11-2 on page 158, you can access the user
exits commands. Figure 11-34 shows the User Exit Commands panel.

Figure 11-34 User Exit Commands panel

You can reload, add, delete, or make active/inactive for the next message requesting
processing your user exits. IMS Connect Extensions performs it without interrupting the
execution of IMS Connect.

The User Exit Commands panel recognizes the following command:

� ADD

The ADD command loads a new user exit executable. The user exit must exist in one of
the STEPLIB data sets associated with the IMS Connect system and be defined to IMS
Connect Extensions.

Chapter 11. IMS Connect Extensions 203

IMS Connect Extensions initializes the new user exit executable and after successful
initialization is ready to process incoming messages for the MSG IDs specified.

Note the following considerations:

– The ADD request is rejected if the new user exit uses message IDs that are used by
existing user exits.

– IMS Connect Extensions does not automatically update the IMS Connect configuration
member with the name of the user exit. You must do this manually.

– After a user exit has been added, it counts against the total number of message exits
allowed by IMS Connect. This is true even if the user exit is later deleted or disabled.

The User Exit Commands panel enables the following actions through the action field:

� RELOAD

The RELOAD option reloads a new copy of the user exit executable.

The RELOAD command cannot be used to change or alter the message ID strings
supported by the user exit. If you need to change the message ID string for a user exit, use
the ADD command to add a new user exit supporting the message IDs.

After the RELOAD command is issued for a given user exit, the exit must process at least
one input message before the RELOAD command can be used again for the same user
exit.

� DELETE

The DELETE option deletes the association between the MSG IDs and the user exit. After
a user exit has been deleted, all messages for those MSG IDs are rejected by IMS
Connect Extensions.

Note the following considerations:

– The user exit is logically, not physically, deleted from the IMS Connect system.
– The user exit executable is not physically deleted from the load library.
– If required, the ADD command can be used to reinstate a deleted user exit.

� DISABLE

The DISABLE option suspends processing for the user exit. The exit is not physically
removed from the IMS Connect system.

IMS Connect Extensions rejects incoming messages for those MSG IDs supported by the
user exit. Messages for XMIT or EXER are supported.

� ENABLE

The ENABLE option reenables a previously disabled user exit and reassociates MSG IDs
with the user exit. If the user exit is not in a disabled state, the command is rejected.

User exit considerations
The following restrictions apply to all user exit commands:

� If the remote client is using IMS conversational processing, the user exits and the remote
client have to be able to tolerate an environment in which some iterations of the
conversation are processed by one version of the user exit and subsequent iterations by a
different version.

� If the remote client is using persistent sessions, the user exits and the remote client have
to be able to tolerate an environment where some messages for the session are
processed by one version of the user exit and subsequent messages for the session are
processed by a different version.

204 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� If a user exit has been disabled or deleted and IMS Connect Extensions advanced
features is turned off, the user exits might begin to receive messages.

11.7 IMS Connect problem determination
This topic provides several examples of IMS Connect problem determination using the IMS
Connect Extensions features. It shows how to use of the reports described in 11.2, “Event
collection and reporting” on page 161 to analyze problems related with the following issues:

� NODELAYACK issues
� Incorrect message length
� Client fails to ACK message
� Timeout issues
� Duplicate clients

11.7.1 NODELAYACK issues
NODELAYACK is a TCP/IP parameter that you can set in the TCP/IP profile in the port
statement or in the gateway statement.

It allows non-data transmissions from the host to flow without data. If NODELAYACK is used,
the z/OS TCP/IP immediately sends an ACK to the remote server TCP/IP. The ACK is not
appended to the data being sent from IMS Connect.

It works in the following way:

� If the client code sends one SEND followed by a READ to the host with a NODELAYACK
setting, an ACK is sent separately.

� If the client code sends two or more SENDs followed by a READ to the host, the host
TCP/IP sends an ACK immediately to the data received. This allows the next SEND of
data from the client to flow.

The other option is to use DELAYACK to add a delay before sending an ACK to the remote
server TCP/IP. The ACK is appended to the data being sent from IMS Connect, so you do not
have to suffer a delay. It is useful to minimize non-data transmissions from the host.

Delays receipt of data
The ACK delay value can produce delays in data receipt. For sync level confirm, the delay
also impacts the receipt of the ACK/NAK sequence. Without IMS Connect Extensions to
calculate these delays and evaluate their impact, you have to use internal trace entries.

Using the collected data from IMS Connect Extensions and IMS Performance Analyzer, you
can obtain detailed, summary, and trace reports about read socket timings. In addition, you
can use the IMS Problem Investigator or IMS Connect Extensions print utility to format
individual read socket event records.

Recommendation: If possible, RELOAD user exits during a period of low activity.

Note: If your client application performs a single SEND followed by a READ, we
recommend using DELAYACK. We recommend using NODELAYACK if your client
application sends more than one SEND followed by a READ.

Chapter 11. IMS Connect Extensions 205

Delay example
In this example, we have two ports, 7003, which has defined the standard default ACK value,
and 7005, which has defined the NODELAYACK parameter.

Figure 11-35 shows the IMS Performance Analyzer Transit Log report including transactions
for both ports. The report shows a worse response time in transactions in port 7003 due to
high Pre-OTMA times.

Figure 11-35 NODELAYACK example: Transit Log report

With this report, you can easily identify the READ Sock time as the element that is producing
the bad response time.

Figure 11-36 on page 207 shows the IMS Performance Analyzer Trace report, which provides
the detailed events information for these transactions.

206 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 11-36 DELAYACK example: Trace report

You can see that the time between the prepare read socket and the first read socket finishes
is about 350 milliseconds. This clearly shows the impact of the ACK delay parameter. You can
also see in the second read socket the impact of the ACK delay value in the receipt of the
ACK/NAK (sync level confirm transactions).

Figure 11-37 shows the same report for port 7005, which has NOACKDELAY activated. In
this case, the time of the first read socket is 80 milliseconds and the ACK/NAK read socket
delay is 79 milliseconds.

Figure 11-37 NODELAYACK example: Trace report

IMS Connect Extensions enables you to detect ACK delays problems without making
calculations based on IMS Connect traces.

Chapter 11. IMS Connect Extensions 207

11.7.2 Incorrect message length
IMS Connect does not process an input message until the entire the message is read. The
initial LLLL value of the message controls the total length of the message. If the message
contains an erroneous LLLL value, you can find problems in IMS Connect. For example, if the
client specifies a larger LLLL value, the connection hangs because IMS Connect is expecting
more data.

The determination of this problem is difficult, even with IMS Connect Extensions, because
there is no information because IMS Connect does not start to process the message.
Because the problem is related to a hanged session, the procedure must be to use the active
session utility to identify the session and then go to IMS Problem Investigator or print utility to
view the read socket events.

Incorrect message length example
In this example, a session hangs because it provides in the LLLL field a value larger than the
length of the message. The length of the message is 143 bytes, but the LLLL field specifies
243.

The active session report in Figure 11-38 shows only two events, read prepare and read
socket. The predicted session status indicates that IMS Connect is reading the client input. It
also provides the session key.

Figure 11-38 Incorrect message length example: Active Session report

You can identify the events related to that session in IMS Problem Investigator using the
session key obtained in the Active Session report. Figure 11-39 on page 209 shows the IMS
Problem Investigator interface with the two socket events.

208 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 11-39 Incorrect message length example: IMS Problem Investigator events

By selecting the events, you can see the details. Figure 11-40 shows the formatted records
for the read prepare event.

Figure 11-40 Incorrect message length example: Prepare READ Socket formatted records

Marked in the figure, you see the requested read length followed by the actual read length.
Before reading all the data of an input message, IMS Connect always reads the first 32 bytes.
These bytes are fixed by the architecture and cannot be modified by the user.

Chapter 11. IMS Connect Extensions 209

Reading these bytes, IMS Connect obtains the LLLL value and sends another read socket to
read the rest of the message. Figure 11-41 shows the event details for the second read
socket.

Figure 11-41 Incorrect message length example: Second READ Socket formatted records

IMS Connect calculates the data requested in this second read socket as the difference
between the input LLLL value and the data already read (32 bytes). As you can see in the
IMS Problem Investigator formatted records, IMS Connect requested 211 bytes, but the data
read is 111 bytes, which is the real length of the message without the first 32 bytes. As a
consequence, IMS Connect waits for more input and the session becomes hanged.

11.7.3 Client fails to ACK message
When a client fails to ACK/NAK a message, the symptoms can vary depending on the client
actions. IMS Connect Extensions events help you to identify the problem by following the
event flow. By activating the traces, it also provides trace event formatted records to show the
output write data, including *CSMOKY* and the RSM returned if the client does not send the
required ACK.

Client fails to ACK message example
In this example, we have a transaction with commit mode 1, sync level confirm, and
transaction socket type. Instead of sending an acknowledgement of the message, the client
closes the socket.

Figure 11-42 on page 211 shows the sequence of events obtained through the IMS Problem
Investigator ISPF interface. It shows the output message sending and the client response.
You can also see a session error event. IMS Connect issues this kind of event every time that
an unexpected circumstance occurs.

210 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 11-42 ACK failed: Event flow

The message exit receives the message from OTMA and constructs the output to send to the
client. Therefore, in the event trace for the exit, you find relevant information. Figure 11-43
shows the formatted records for the event recording exit output message trace.

Figure 11-43 ACK failed: Trace event

Chapter 11. IMS Connect Extensions 211

Marked in the figure, you can see the CSMOKY translated to ASCII and the flag that indicates
that an ACK/NAK is requested for this IMS Connect output.

After this event, you can see a write socket event indicating that the IMS Connect output is
sent to the client followed by a read socket issued to get the requested ACK. Figure 11-44
shows the formatted records for the read socket.

Figure 11-44 ACK failed: READ Socket event

This event shows that IMS Connect does not receive an ACK/NAK. It requests 32 bytes of
data to receive, but no data is received, because the client closes the connection without
sending the ACK.

The last event is the session error that IMS Connect issues. Figure 11-45 on page 213 shows
its details. Note that IMS Connect attempts to identify the type of event that caused the error.

Important: Remember that you can only obtain this event if the tracing level is activated. In
this case, we use tracing level 2 (see Figure 11-8 on page 170).

212 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 11-45 ACK failed: Session error event

11.7.4 Timeout issues
IMS Connect Extensions helps you handle timeout issues, providing reports about all client
timeouts events. The events include the original timer values. IMS Connect Extensions
collects a session error event for any message issued by IMS Connect.

Timeout example
Figure 11-46 on page 214 shows the events that identify a timeout. The message is sent to
IMS and the response is not received within the timeout value.

Chapter 11. IMS Connect Extensions 213

Figure 11-46 Timeouts: Event flow

You can easily identify the timeout in the event flow. You also can see in the formatted event
records the timeout value that expired, as shown in Figure 11-47.

Figure 11-47 Timeout value

In this case, the timeout values is too short by only a few milliseconds (just to illustrate).

11.7.5 Duplicate clients
IMS Connect does not know the client name until the message returns from the message exit.
If the same client is already active for the port, it sends a duplicate client error message.

214 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

This problem is often caused by an incorrect client timeout recovery. A common cause is a
client timeout shorter than the IMS Connect timeout value. When the client receives a timeout
and resends the message through another socket, the client can be active in IMS Connect
because its timeout is not expired.

The IMS Connect Extensions events show the timing and sequence of incorrect recovery and
client name usage overlap.

Duplicate client examples
Figure 11-48 shows the flow for a duplicate client error. After receiving the message from the
read message exit, IMS Connect issues a session error event.

Figure 11-48 Duplicate client: Event flow

Select the session error event and you can see that is caused by a duplicate client error. See
Figure 11-49 on page 216.

Chapter 11. IMS Connect Extensions 215

Figure 11-49 Duplicate client: Session error event

The message exit returned event in Figure 11-48 on page 215 provides the client name. By
searching in the journal for the previous events related with that client name, you determine
the problem. If the problem is related to a timeout, you will probably find the same client
sending a previous message sent to OTMA without receiving any response.

11.8 Highlights of IMS Connect Extensions Version 1 Release 2
Enhancements in IMS Connect Extensions Version 1.2 include:

� Active session display, providing detailed information about the state and wait times of
active sessions

� Programming interface for user applications, allowing external applications to access IMS
Connect data

� Alternate routing when a primary datastore is unavailable

� Journal and journal print enhancements, including the ability to change many journal
options dynamically

� New facilities to provide IMS Connect clients with password change services and
identification information

� Improved resource tracing, providing selective tracing using criteria such as port,
transaction, or client

� Support for Internet Protocol Version 6 (IPv6)

� Support for a user version of HWSTECL0

� Definitions migration utility to import and export definitions data sets from one IMS
Connect Extensions system to another

216 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

IMS Connect Extensions V1.2 supports all the currently supported IMS versions. If either IMS
Version 7 or IMS Version 8 is used, IMS Connect Extensions for z/OS requires IMS Connect
for z/OS V2.2. If IMS Version 9 is used, IMS Connect for z/OS, V2.2 is not needed because
IMS Version 9 provides an integrated IMS Connect function that replaces IMS Connect V2.2.

11.8.1 Status Monitor: Active sessions
Active session display is a real-time exception report on the state of all active socket sessions
processed by IMS Connect. It is an extension of the batch utility.

The utility lets you:

� View a summary of all in-flight transactions (see Figure 11-50).

� Select individual session states and get more information about the transactions currently
being processed.

� Identify socket transactions with long wait times.

� Use filters to select sessions based on conditions.

� Create forms to completely customize the display.

Figure 11-50 View a real-time summary of active socket sessions

In addition to the summary view, you can select individual session states and get more
information about the transactions currently being processed (see Figure 11-51 on
page 218).

Chapter 11. IMS Connect Extensions 217

Figure 11-51 View details of socket sessions

11.8.2 Programming interface for user applications
The programming interface for user applications is a High Level Assembler (HLASM) API
that:

� Provides IMS Connect event data
� Lists IMS Connect systems
� Lists tasks in an IMS Connect region
� Lists active sessions

11.8.3 Primary datastore routing
The primary datastore routing feature enhances transaction routing by enabling you to use a
virtual datastore as the message-determined target datastore. IMS Connect Extensions
translates the virtual datastore to a primary datastore based on the IMS Connect system that
is processing the message.

If the primary is not available, you can automatically use dynamic routing and workload
balancing to route the message.

11.8.4 Journal and journal print enhancements
The journal print utility includes the following enhancements:

� Improved event record selection:

– By event ID.
– By event key.
– By event data contained in event type 62 (return from read exit).

218 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

– Find the event key based on client ID, transaction code, LTERM, and more.

� Reduce the amount of print output by using start-after and stop-after values

Archive Journaling is now more flexible and easier to use, enabling you to select different
levels of archiving control:

� Custom

Enter a completely customized archive job.

� Partial

Use substitution variables to generate portions of the archive statement dynamically.

� Automated

Archive options are generated automatically.

11.8.5 Client services exit
The client services exit is an IMS Connect message exit that provides clients with:

� IMS Connect password change facilities

� Who-am-I services to obtain information such as:

– Client name
– IP address
– Port number
– Event key

The client application only needs to send a message with CEXSVC01 in the message
header. The message is intercepted by the exit; it is not forwarded to IMS.

11.8.6 Enhanced tracing
Tracing is enhanced by letting you selectively trace messages based on:

� Port number or all ports
� Client name
� Transaction name
� Exit name
� User ID
� LTERM
� IP address

Chapter 11. IMS Connect Extensions 219

220 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 12. IMS Connector for Java

Although access to IMS transactions using the IMS Connect software can be used by
non-Java clients, it is most commonly used by Java clients on a local host or a distributed
platform. In this chapter, we outline the different methods that can be used to build a Java IMS
client. Some of these are based on an architectural design and resources provided by IMS
Connector for Java, others are based on the socket interface without assistance from any
architected resource manager code.

First, we describe the J2EE Connector architecture (JCA) as it has been defined within Java 2
Platform, Enterprise Edition (J2EE). Then, we explain how a Java client uses JCA by coding
to the Common Client Interface (CCI) provided by IMS Connector for Java. We also explain
which tools and wizards are available to quickly build applications aimed at calling existing
IMS transactions, for which Cobol, C, or MFS descriptions of the transaction input and output
messages are available.

The Java clients can be stand-alone programs or can be modules scheduled in WebSphere
Application Server or similar J2EE application server, or even in stored procedures.

This chapter also addresses other important areas such as two-phase commit (2PC),
security, interaction verbs, message rerouting, and coding guidelines.

12

© Copyright IBM Corp. 2006. All rights reserved. 221

12.1 J2EE Connector architecture (JCA)
The current JCA specification is v1.5. It is part of the J2EE 1.4 specification. Although it has
been implemented in the latest resource adapter for IMS Connector for Java, the new
extensions are not necessarily used by the connector implementations created by the tool
wizards. A good start to understanding JCA is provided by the article “Introduction to the
J2EE Connector Architecture,” available at:

http://www.ibm.com/developerworks/java/edu/j-dw-javajca-i.html

In JCA, we distinguish the following parts:

� System contracts
� Common Client Interface (CCI)
� Resource adapter module

12.1.1 System contracts
We expect the JCA to fulfill some requirements. Those requirements are not unique to IMS
but common to all enterprise information system (EIS) connections. IMS is the case that we
outline in this book. In Figure 12-1, we show the relationship between the CCI components
and the elements of the system contracts.

Figure 12-1 CCI system contracts

The system contracts can be considered as a group of agreements that have to be fulfilled by
the resource adapter and application server implementations and accessible for a client
through the CCI.

We distinguish the following elements within the contracts, shown in Figure 12-1:

� The connection management contract enables physical connections to the EIS and
provides a mechanism for the application server to pool those connections. Connections
can be local through internal memory mechanisms (program call) or remote (TCP/IP)
connections. The pooling implementation will be different and can change over time, but
the change should be invisible for the client API.

 J2EE
Application Server

Connection
Pooling

Transaction
Manager

Security
Manager

Application
Component

Resource
 Adapter

System Contracts

Container-Component
 Contract

Connection
Management
Transaction
Management
Security
Management

Common Client
Interface (CCI)

EIS Specific
 Interface

Enterprise Information System
(IMS)

222 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

http://www.ibm.com/developerworks/java/edu/j-dw-javajca-i.html
http://www.ibm.com/developerworks/java/edu/j-dw-javajca-i.html
http://www.ibm.com/developerworks/java/edu/j-dw-javajca-i.html

� The transaction management contract supports access to an EIS in a transactional
context. Transactions can be managed by an external application server, for example,
WebSphere Application Server, providing transactions that incorporate other resources
besides the EIS (global transactions), or they can be internal to the EIS resource manager
(local transactions), in which case, no external Transaction Manager is required. A global
transaction is under the control of RRS, and it can, in addition to IMS transactions, also
include access to DB2, WebSphere MQ, or other resources directly from the program that
invoked the IMS transaction. IMS is a participant in the global transaction case. For a local
transaction, IMS is the coordinator, and it controls the synchronization for all resources
accessed from the IMS processing program in this case.

� The security contract supports secure access to the EIS. It has the responsibility to pass a
credential to the EIS representing a user name and password or an already authenticated
user so that the EIS can verify that the users are who they claim to be and are allowed to
access the resources of an EIS. The user ID that is passed is determined based on the
security configuration used for the application server.

How system contracts are implemented on each side (application server and resource
adapter) is not specified by JCA; they can be implemented as each vendor sees appropriate.

12.1.2 Common Client Interface
The second element of JCA is the client API. This API as defined in JCA is the Common
Client Interface (CCI). The CCI is a standard client API for use by application components. It
is designed to provide a base-level API for EIS access on which higher-level functionality will
be built by EAI and tools vendors. The CCI is divided into five parts:

� Connection-related interfaces
� Interaction-related interfaces
� Data representation-related interfaces
� Metadata-related interfaces
� Exceptions and warnings

The client API implementation for a particular EIS is distributed as a set of Java classes. This
set contains the implementation of the interfaces specified by the JCA, mostly contained in
the JAR file connector.jar. For IMS, this set of classes is distributed in the JAR file imsico.jar.

12.1.3 Resource adapter module
The resource adapter module contains all the elements necessary to provide EIS connectivity
to J2EE applications. All of the resource adapter module's files are packaged into a single
resource adapter archive (RAR) file. Specifically, the RAR file includes the following
components:

� The Java classes and interfaces that implement the resource adapter
� Any utility Java classes required by the resource adapter
� Any EIS-specific, platform-dependent native libraries
� A deployment descriptor

The deployment descriptor is a meta-file (XML) that describes the resource adapter and
provides information that is used in its deployment. It is named ra.xml and is located in the
META-INF folder of the RAR file. Application servers, such as WebSphere Application Server,
make use of the deployment descriptor supplied with a resource adapter to configure it to a
specific operational environment.

All Java classes and interfaces are packaged in JAR files, which are then contained by the
RAR file. The native files, Java Native Interface (JNI) files, are also packaged in the RAR file.

Chapter 12. IMS Connector for Java 223

JNI files are, in general, DLL files, in Microsoft Windows they have the extension dll, while in
a UNIX® environment (z/OS included) the extension is so (shared object). JNI files that are
not written in Java are often also called drivers and are required if the access to the resource
cannot be fulfilled in Java. For example, the local option provided by IMS Connector for Java
and IMS Connect uses JNI, as does JDBC™ type 2 access and DLI database access. The
TCP/IP protocol is entirely supported in Java and does not require JNI.

12.2 JCA infrastructure and API
Before any message can be sent to or received from an EIS system, a connection has to be
established. The duration of this connection and the way it is obtained are essential for the
performance and the quality of the interchange with the EIS.

After a connection has been obtained, an interaction with the EIS can be performed. The
same connection can be used by several consecutive interactions. Basically, an interaction is
a communication with the EIS that follows one of the possible patterns: send, send-receive,
receive, and so on. For example, in the case of the IMS resource adapter, a typical interaction
is a send-receive communication that runs a transaction in IMS.

In the past, the EIS was the coordinator of the transactional context, because all resource
changes were done in its transactional environment. This is what we now call a local
transaction. The transactional context can also be coordinated on a higher level by either an
XA coordinator or Resource Recovery Services (RRS) on z/OS, in which case, several EIS
interactions and direct resource accesses (DB2, DLI, WebSphere MQ) can be part of the
same global transaction.

In the following section, we explain more in detail how this JCA infrastructure has been
implemented in the resource adapter and how it can be used by the Common Client Interface.
We also outline the enhancements in JCA v1.5 as compared to JCA v1.0.

12.2.1 Connection management
An application component accesses the EIS through ConnectionFactory and Connection
interfaces, which are provided by the resource adapter. These CCI interfaces
(javax.resource.cci.ConnectionFactory and javax.resource.cci.Connection) are specific to the
resource adapter. In the case of the IMS resource adapter, they are implemented by the
classes com.ibm.connector2.ims.ico.IMSConnectionFactory and
com.ibm.connector2.ims.ico.IMSConnection. The classes that implement these interfaces are
provided in JAR files that are packaged in the RAR file.

In JCA v1.0 and JCA v1.5, an application can obtain a ConnectionFactory in two ways.
Figure 12-2 on page 225 shows this. The common point is the availability of the factory from
which a Connection object can be created. An application uses a Connection object as a
handle to the underlying physical connection to the EIS. Be aware that in both cases, a
ConnectionFactory object is instantiated. However, the ConnectionFactory object obtained by
a lookup in a managed environment, such as WebSphere Application Server, provides better
connection management through pooling and reuse of connections. The other
ConnectionFactory object, obtained in the non-managed way, is associated with a default
connection manager. The default connection manager does not provide pooling and reuse of
connections.

224 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 12-2 Instantiating the IMS ConnectionFactory

An application obtains an IMSConnectionFactory in the following ways:

� IMSConnectionFactory by lookup

The IMSConnectionFactory object is obtained through a lookup through the Java Naming
and Directory Interface™ (JNDI). Because the application only needs to know the JNDI
name of the connection factory, it does not need to have any knowledge of the actual
configuration of the connection factory. On different platforms and environments, we can
use the same JNDI name, with different properties, which makes a JCA program highly
independent from the platform on which it runs. This supposes that the associated factory
information has been registered in a namespace. A connection factory obtained in this
way is said to produce managed connections.

� IMSConnectionFactory from ManagedConnectionFactory

The connection factory can also be obtained using an IMSManagedConnectionFactory
object, which is instantiated at run time, and then populated with the required properties.
An IMSConnectionFactory object can then be instantiated through the
createConnectionFactory method of the IMSManagedConnectionFactory object. A
connection factory obtained in this way is said to handle non-managed connections.

After the IMSConnectionFactory object is instantiated, an IMSConnection object is obtained
from it using the getConnection() method. IMS Connector for Java provides two variants of
the getConnection method; one with and one without a connectionSpec parameter. An
IMSConnectionSpec object is passed on the getConnection method if connection-related
information needs to be provided, or if component-managed EIS sign-on is being used by the
application.

Note: In WebSphere, a JCA connection factory is defined and configured using the
administration functions of the application server (administrative console or wsadmin
scripting).

ConnectionFactory can be obtained in 2 ways
method 1 provides an instance with default connection management
method 2 provides an instance with elaborated connection management (pooling,...

The connectionSpec parameter is optional for the getConnection method
(it is not allowed with res-auth container)

IMSManagedConnectionFactory

IMSConnectionFactory

IMSConnection

getConnection ()

createConnectionFactory()

Lookup from
NameSpace

1

2

(only with container)
IMSConnectionSpec

Chapter 12. IMS Connector for Java 225

It is important to note that an IMSConnection object is an application-level handle to an
underlying physical connection to the EIS (IMS). The physical connection to the EIS is
represented by a ManagedConnection object, which is internal to the resource adapter. By
using an application-level handle to an underlying physical connection, an application is
isolated from the creation and maintenance of physical connections. Functions, such as
creation, pooling, and reuse of physical connections to the EIS, are the combined
responsibility of the resource adapter and application server.

JCA v1.0 implements the previously discussed connection management and provides an
application with the following two models for using the connection handle:

� Get-use-close

In the get-use-close model, an application always obtains a new connection when it needs
one, uses it, and then closes it again. The get-use-close model might sound inefficient, but
the connection pooling that the application server implements should make the get
operation inexpensive. And because the application holds on to the connection for only as
long as it is needed, different instances or parts of the application can reuse the
connection, thereby reducing the total resource usage. Each time the application invokes
the getConnection method to create a new connection handle, the connection manager
reuses a managed connection from the pool and only creates a new managed connection
when none are available. When the connection handle notifies the connection manager
that it has been closed, the managed connection is cleaned up and returned to the pool.

� Cached-handle

In the cached-handle model, the application obtains the connection once up-front and
caches a reference to it in an instance field. Application writers typically use the
cached-handle approach because they believe the application will perform better or when
no pooling is available. But because of the benefits of connection pooling under the
get-use-close model, there is generally little performance difference between the two
usage models. Although the cached-handle model makes the logic in the business
method simpler, additional logic is required to close the connection on passivation and
re-create it on activation. The possibility also exists that, if the bean gets destroyed by the
container (for example, because a method has thrown a runtime exception), an open
connection might be left dangling. The biggest problem with the cached-handle model is
that while one instance of the bean or servlet is holding on to the connection, another
instance cannot use it, so you end up with at least as many connections as instances.

Because a cached-handle is held across method and transaction boundaries by an
application, for JCA v1.0, you are encouraged not to cache the connection across the
transaction boundary for shareable connections. The get-use-close pattern is preferred.

Connection management in JCA v1.5
The JCA v1.5 specification has addressed the cached-handle issue by introducing an
optimization called lazy connection association. This optimization has two components,
disassociation and lazy association, as described here:

� Dissociation

A resource adapter indicates to the connection manager that the adapter supports this
optimization. When a connection goes temporarily out of scope (that is, when the bean or
servlet method exits), the connection manager can, if it also supports the optimization,
dissociate the connection handle held by the application from the underlying managed
connection that represents the physical connection (for example, a TCP/IP socket). This
lets the managed connection be returned to the pool for use by other parts of the
application.

226 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� Lazy association

Rather than reassociating the connection handle with the managed connection the next
time a method is called, the optimization uses lazy association. If the method does not use
the connection, or it only calls simple methods on the connection handle that do not
require access to the back end, a managed connection is not removed from the pool
unnecessarily. Only when the connection handle is actually used does the connection
manager locate a suitable managed connection from the pool and reassociate it with the
connection handle.

For more information about JCA 1.5, see article “JCA 1.5, Part 1: Optimizations and life-cycle
management,” available at:

http://www.ibm.com/developerworks/java/library/j-jca1/

12.2.2 Transaction management
Two types of transaction management are available in JCA:

� The first type involves a Transaction Manager coordinating the activity of multiple resource
managers across a single transaction.

� The second type involves a transaction with only a single resource manager, called a local
transaction. This second type is not always implemented by the external coordinator, for
example, this is not done for IMS Connect.

A resource adapter can also indicate, through its deployment descriptor, that it does not
support transactions. Multiple resource managers participating in the same transaction are
supported by the Java Transaction API (JTA) XAResource interface. This interface allows a
Transaction Manager to manage transactions among multiple resources that support the
interface. The ManagedConnection interface contains a method, getXAResource(), that
returns an XAResource object. The application server's Transaction Manager uses this object
to manage the transaction.

In this case, JCA v1.5 also tries to implement more efficiency.

To enlist, or not to enlist
Everyone knows that transactions can be expensive, particularly XA (global) transactions.
This makes it all the more important for a transaction not to do more work than necessary.
Suppose you have Enterprise JavaBeans (EJB) deployed using container-managed
transactions and a transactional attribute of RequiresNew for the business method. A new
global transaction begins when the method is invoked. When the connection to the EIS is
created, the connection manager has no idea how it will be used, so it must obtain an
XAResource from the associated managed connection and enlist it in the external transaction.
The connection might be used only to query the database, or might not be used at all, but the
connection manager must enlist the connection anyway, in case, for example, an
IMStransaction with update intent is performed. This means that, at a minimum, the resource
must make start, commit or rollback, and end flows to the back end.

Completion needs to flow to the resource when the transactional method ends, even if the
method did not use the connection transactionally. If another resource becomes involved in
the transaction, you have forced an unnecessary two-phase commit, causing an additional
prepare flow. The only good thing here is that the resource manager can still return

Note: When we use the word transaction in the previous text, we mean a unit of work
(UOW) in which one or many IMS transactions can be participants, together with other
transactions, directly updating resources such as DB2 and DL/I.

Chapter 12. IMS Connector for Java 227

http://www.ibm.com/developerworks/java/library/j-jca1/

XA_RDONLY (for read only) from the prepare call to indicate that it has not actually done any
work. The Transaction Manager does not then need to flow the completion call to that
resource manager and, if only one resource manager actually did any work in the transaction,
the Transaction Manager might be able to avoid a slow write to its log file.

Avoiding enlisting with JCA v1.5
By now, you should have the idea that you do not want to enlist in the transaction unless
absolutely necessary. The JCA V1.5 specification has a solution: lazy enlistment. The Java
specification, expressed by Interfaces and Abstract classes, force the vendors to implement
the lazy enlistment extension.

The LazyEnlistableManagedConnection interface is a marker interface implemented by the
managed connection to indicate to the connection manager that it does not need to eagerly
enlist the managed connection in an existing transaction when a new connection is created in
a transaction or in a new transaction started when a connection already exists. If a connection
handle is about to perform some work that should be part of any transaction, and its managed
connection has not already been enlisted, it determines whether the connection manager
implements the LazyEnlistableConnectionManager interface. If it does, it calls the lazyEnlist
method, passing the managed connection. If a transaction is associated with the calling
thread, the XAResource from the managed connection is enlisted at that point.

12.2.3 Other JCA v1.5 items
In addition to the contracts already mentioned, other contracts are part of the new JCA v1.5
specification. For a more detailed explanation of the specification, see the articles written by
David Currie, available at:

� http://www.ibm.com/developerworks/library/j-jca1

� http://www.ibm.com/developerworks/library/j-jca2

� http://www.ibm.com/developerworks/library/j-jca3

12.2.4 Interaction with EIS
After a Java application has an IMSConnection object, an IMSInteraction object can be
obtained through a createInteraction method on the connection. Figure 12-3 on page 229
shows the basic steps for connecting and interacting with an EIS. Programming this is indeed
very simple for a Java programmer; nevertheless, an additional complexity would need to
cope with exceptions within try/catch groups.

228 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

http://www.ibm.com/developerworks/library/j-jca1
http://www.ibm.com/developerworks/library/j-jca2
http://www.ibm.com/developerworks/library/j-jca1
http://www.ibm.com/developerworks/library/j-jca3
http://www.ibm.com/developerworks/library/j-jca2
http://www.ibm.com/developerworks/library/j-jca3

Figure 12-3 Connection and interaction flow with EIS

In the upper part of Figure 12-3, you find again the acquisition of the connection factory as
outlined before, followed by getConnection. From the connection, you can follow the creation
of the IMSInteraction object. At first glance, the use of the IMSInteraction object is very
simple. It has an execute method that can be invoked with three parameters:

� IMSInteractionSpec
� Input record
� Output record

InteractionSpec
The InteractionSpec parameter defines the characteristics of the interaction with IMS. In the
case of IMS Connector for Java, the interaction with IMS is through IMS Connect. When IMS
Connector for Java communicates with IMS Connect using TCP/IP, the socket connection can
be either a dedicated persistent socket connection or a shareable persistent socket
connection. The type of socket connection used for an interaction is determined prior to the
interaction, when the connection is established. Depending on the EIS that is addressed,
specialized implementations exist. For example, the implementation for IMS Connector for
Java is called IMSInteractionSpec, which contains specific properties regarding the exchange
with IMS. Example 12-1 lists the properties in the IMSInteractionSpec object. The properties
convEnded and asyncOutputAvailable are output only properties, property mapName is an
input/output property, and all other properties are input only.

Example 12-1 InteractionSpec properties

int commitMode
int executionTimeout
int imsRequestType
int interactionVerb
String ltermName
String mapName,
boolean purgeAsyncOutput
boolean reRoute
String reRouteName
int socketTimeout

CCI

OutrecordCCI
get

(1)

InteractSpec

(2)

ManagedConnectionFactory

ConnectionFactory

Connection

InterAction
Resource
Adapter

InrecordCCI (1)

(2)

IC4J

createInteraction
getConnection

execute

createConnectionFactory

 Lookup from
 NameSpace

set

IC4J = IMS Connector for Java

Chapter 12. IMS Connector for Java 229

boolean convEnded; (Output)
boolean asyncOutputAvailable; (Output)

New properties and property values can be added to support additional function in later
releases of IMS Connector for Java. The IMSInteractionSpec object has getter and setter
methods for all properties. We explain these properties later.

Input record
IMS Connector for Java views the JCA input record as a Java byte array, in a well-defined
encoding and containing the fields of the IMS transaction input message in the right order, at
the correct offset, with the required length, and aligned as expected by the IMS application
program that is invoked. In JCA, this byte array has to be a Java object that implements two
CCI interfaces:

� javax.resource.cci.Record
� javax.resource.cci.Streamable

This record can be built using the tooling wizards of an integrated development environment
such as WebSphere Studio Application Developer Integration Edition or Rational Application
Developer, or your Java application can build the input record without using tooling.

Output record
The output record implements the same CCI interfaces as the input record. For some IMS
transactions, there are additional considerations for the output record. An IMS application
program can return one of a number of possible output messages. An IMS application
program can also return a variable length output message. Variable length output messages
include multiple segment output messages and output messages containing arrays with a
variable number of elements. In these cases, the Java application must include special logic
to process the output message. This logic is illustrated in samples provided by IMS
Connector for Java. You can find the samples at the following Web page:

http://www.ibm.com/software/data/ims/examples/exHome.html

12.2.5 Security

The JCA security contract uses the Java Authentication and Authorization Service (JAAS)
Subject class to provide security information. When a new ManagedConnection is created,
the createManagedConnection() method is passed a Subject instance. The connection uses
the Subject when it attempts to sign on to the EIS. A Subject contains information about the
principal, or name, of the Subject, along with information about the security credentials held
by the principal.

JCA v1.0 defines two types of credentials:

� A GenericCredential is a Java wrapper, representing a specific security mechanism, such
as a Kerberos credential.

� A PasswordCredential holds user name and password information.

An application server supporting JCA v1.0 must provide implementations of both of these
interfaces. In JCA v1.5, the GenericCredential interface has been deprecated but is still
usable. The recommended replacement interface, the org.ietf.jgss.GSSCredentialinterface in
J2SE™ v1.4, is not yet fully supported by WebSphere Application Server for z/OS nor by IMS
Connector for Java. As a result, the GenericCredential interface continues to be used by
WebSphere Application Server for z/OS and IMS Connector for Java.

230 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

http://www.ibm.com/software/data/ims/examples/exHome.html

The resource adapter's deployment descriptor lists the type of security supported, the
authentication mechanism used, the interface of the credentials supported, and whether
reauthentication is supported. The getConnection() method of a ManagedConnection takes a
Subject as a parameter to support reauthentication.

12.2.6 Summary
JCA describes and enforces with interfaces the way the connection and interaction
specifications must be implemented by the vendors, who want to have connection support for
their EIS. The specification is EIS neutral. The practical distribution for a particular EIS
consists of a framework of classes, extending and implementing the interfaces outlined in the
specification. JCA v1.5 brings extensions to the JCA v1.0 specification. Compliance with the
new specification requires the implementation of those additional interfaces.

IMS currently provides the following distributions of the IMS resource adapter, where x is a
maintenance level of a particular distribution:

� IMS Connector for Java Version 2.1.0.4

– Based on JCA v1.0
– To be used with WebSphere Application Server V5
– New features only supported with IMS Version 8.1
– Earlier release features supported:

• IMS Connect Versions 1.2 and 2.1
• IMS Versions 7.1 and 8.1

� IMS Connector for Java Version 2.2.x

– Based on JCA v1.0
– To be used with WebSphere Application Server V5 and V6
– Prerequisites:

• IMS Connect Version 2.2 and IMS Version 8.1 or IMS Version 9.1
Or:

• Integrated IMS Connect in IMS Version 9.1

� IMS Connector for Java Version 9.1.0.1.x (requires a license for IMS V9.1)

– Based on JCA v1.0
– To be used with WebSphere Application Server V5 and V6
– Prerequisites:

• IMS Connect Version 2.2 and IMS Version 8.1 or IMS Version 9.1
Or:

• Integrated IMS Connect in IMS Version 9.1

� IMS Connector for Java Version 9.1.0.2.x

– Based on JCA v1.5
– To be used with WebSphere Application V6
– Prerequisites:

• IMS Connect Version 2.2 and IMS Version 8.1 or IMS Version 9.1
Or:

• Integrated IMS Connect in IMS Version 9.1

Chapter 12. IMS Connector for Java 231

12.3 Building applications that use IMS Connector for Java
Applications that use IMS Connector for Java can be built in different ways:

� Using the tools provided with IBM WebSphere Studio Application Developer Integration
Edition Version 5.1

These tools generate applications that are based on an enterprise service that represents
the IMS transaction. The generated application uses Web Services Invocation Framework
(WSIF). The tools also use WSIF. The tools also generate Format Handler classes to aid
in the conversion of IMS transaction input and output messages.

� Using the tools provided with IBM Rational Application Developer V6

Rational Application Developer tools generate applications that are based on a JCA Java
bean that represents the IMS transaction. Java data bindings for the input and output
message of the IMS transaction are generated separately.

� Coding directly to the CCI provided by the IMS resource adapter

For this option, the user has the option of using WebSphere Studio Application Developer
Integration Edition or Rational Application Developer to generate classes to process the
input and output messages of the IMS transaction.

We give examples of all three types of applications and explain how to build them. All three
solutions use the CCI. In the case of WebSphere Studio Application Developer Integration
Edition and Rational Application Developer, the CCI is used by the generated code.

12.3.1 Introduction
As already outlined, each execution of a transaction in IMS requires two basic steps:

� Connection: To IMS through IMS Connect

Connections can be reused by several connector clients if they are managed with
connection pooling or a connection handler obtained in one particular client is reused for
several Interactions.

Connection characteristics are determined by the properties of the ConnectionFactory and
the ConnectionSpec instances used during the getConnection method.

� Interaction: With an IMS transaction (conversational or non-conversational)

Interaction characteristics are determined by the properties of the InteractionSpec
instance provided when the execute method of the Interaction instance is invoked. In
addition, Input and Output objects are specified during the invocation of the call.

IMS Connector for Java allows for many options in its connection and interaction. These
options are specified as properties of objects provided at run time.

In the next section, we describe the different options that influence the behavior of your
application.

12.3.2 Connection properties
The characteristics or properties of a connection are determined when the connection is
acquired. They are obtained mainly from two sources:

� IMSConnectionFactory

You should remember that this item can be described as a JNDI reachable object from a
namespace from which it can be looked up or through the instantiation of an
IMSManagedConnectionFactory from which an IMSConnectionFactory can be created.

232 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Connections that were obtained from a looked-up connection factory are managed
connections. In this case, the connection pooling mechanism implemented in the
environment (container) will provide connection optimizations. This is the case for both
shareable and dedicated (with clientID) sockets. The socket connections (shareable or
dedicated) are serially reusable, so they cannot be used for two requests at the same time.
When one request uses the connection and closes it, the connection is returned to the
pool for reuse by another request, then the other request uses it, and so on.

Figure 12-4 shows the difference between managed connection pooling for shareable and
dedicated sockets. Connection management provides the efficient use of connections by:

– Avoiding the physical open and close of connections
– Reusing free connections

As shown in Figure 12-4, dedicated sockets are only supported with commit mode 0
protocol.

Figure 12-4 Connection pooling

If your client program configures a managed connection factory at runtime and uses it to
obtain a connection factory, rather than using a JNDI lookup to obtain a connection factory,
it will be using non-managed connections. If your client program uses non-managed
connections, it does not have the benefit of an efficient pooling mechanism. In addition, if
your client program is using non-managed connections defined as shareable, be aware
that a lot of Tpipes can be generated. To avoid this, the client program should use
dedicated socket connections.

Example 12-2 shows the properties of the IMSManagedConnectionFactory object. This
object is populated at execution time. For each of the properties, we have Java accessors.
A ConnectionFactory for Nonmanaged Connections is obtained by a
createConnectionFactory() method and carries the properties from the creation class from
which it was derived.

Example 12-2 IMSConnectionFactory properties

Boolean CM0Dedicated
String dataStore
String groupName
String hostName
String IMSConnectName
PrintWriter logWriter
String MFSXMIRepositoryID
String MFSXMIRepositoryURI
String passWord
Integer portNumber
Boolean SSLEnabled
String SSLEncryption

WAS IMS ConnectIC4J IMS(Socket Connection) (Tpipe)

CM1 Tpipe

CM0 Tpipe

CM0 Dedicated
Tpipe

Connection Request (CM1)

Connection Request (CM1)

Connection Request (CM0)

Connection Request (CM0)

Connection Request (CM0)

Connection Request (CM1)

Connection Request (CM1)

Connection Req. (CM0 dedicated)

Sharable Connection

Dedicated Connection

g

WAS = WebSphere Application Server, IC4J = IMS Connector for Java

Chapter 12. IMS Connector for Java 233

String SSLKeystoreName
String SSLKeystorePassword
String SSLTruststoreName
String SSLTruststorePassword
Integer traceLevel
String transactionResourceRegistration
String userName

A connection factory obtained by lookup in the name space receives the characteristics
from the definition in the namespace and supports managed connection handling. This
can be realized in a WebSphere Application Server environment.

� IMSConnectionSpec

From the connection factory, a handle to an object representing a physical connection is
instantiated through the getConnection method. An IMSConnectionSpec object can be
passed as a parameter of the getConnection method. This object has two purposes:

– In the case of component-managed EIS sign-on (also referred to as application
authentication), it defines the security information that can override the security
information in the connection factory.

– In the case of a connection factory configured to create dedicated persistent socket
connections (CM0Dedicated = TRUE), the clientID is specified in this object. Dedicated
persistent socket connections are used for interactions that use commit mode 0
synchronization protocol.

Example 12-3 shows the fields of the object.

Example 12-3 IMSConnectionSpec properties

String groupName
String password
String userName
String clientId

Connection pooling
Connection pooling, as explained earlier, is mostly dictated by the way the connection factory
has been obtained. If the container is not managing the connections, the program can
preserve the connection handlers. The use of dedicated or shareable persistent sockets also
influence the behavior. For a persistent dedicated socket, obviously there is a one-to-one
relationship with the clientID.

Application security
Application security is based on the following properties:

� User name

The Security Authorization Facility (SAF) user ID that will be used for all connections
created by this connection factory. This property can be provided by different sources
depending on whether you use Component/Application or Container security binding. For
the overwrite rules, refer to Figure 12-5 on page 235.

Note: Component/Application or Container security binding can be set in the
deployment descriptor of the J2EE artifacts.

234 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� Password

The password that will be used by IMS Connect to verify the SAF user ID for all
connections created by this connection factory. The password is optional; it will always be
sent to IMS Connect but will only be used if IMS Connect has RACF turned on (RACF=Y
in the IMS Connect configuration member or IMS Connect SETRACF ON command has
been issued).

� Group name (optional)

The IMS group name that will be used for all connections created by this connection
factory.

In a J2EE environment, for example, WebSphere Application Server, the security user ID that
is passed to IMS Connector for Java and on to IMS Connect is a user ID that is derived from
different sources. We define two terms from Figure 12-5:

� Res-Auth: Specified in a Deployment Descriptor
� ServantID: User ID of the server started task in J2EE

Figure 12-5 Security information overwrite

Note: The IMS group name can only be provided in a Component/Application managed
environment.

Res-Auth

Container
Managed
Alias(3)

Container
Managed

Alias
(3)

Conn
Spec(1)

Connection
Spec

Component
Managed

Alias
yes

container (2)
component
(application)

yes no

no

yes

Component
Managed

Alias

Connection
Factory
custom
prop?

no

(1) ConnectionSpec passed in getConnection()
(2) Container environment must be available (for example,
WebSphere Application Server)
(3) Deprecated in WebSphere Application Server V6

RunAS

Caller
userId

EJBrole

J2EE
Servant
userId

V6
Local connection

Gobal
Security

ON

no

yes

Servant
UserId

Res/Reference
JaasLogin

Configuration

None
Custom
Login

Default
Mapping

Alias

By
LoginModule

Chapter 12. IMS Connector for Java 235

In Figure 12-5 on page 235, we distinguish two sides:

� Component (application)-managed authorization

Based on the Res-Auth option in the resource reference section of the deployment
descriptor, we follow the left path. Use the following steps:

– If we specify credential information (user ID/password) with the ConnectionSpec object
in the getConnection() call on the ConnectionFactory, this credential information is
taken.

– Otherwise, check if a component-managed alias was specified. This alias is specified
in the factory definition in the container resources for the cell. User aliases are defined
earlier in the global security section of the WebSphere Application Server cell through
the administrative functions.

– Otherwise, custom properties of the factory are taken if they exist.

If no credentials have been provided, they are blank. An exception will be thrown if
authentication information is required by the resource.

This type of authorization behaves the same as in WebSphere Application Server Version
5.

� Container-managed authorization

Based on the Res-Auth option in the resource reference of the deployment descriptor, we
follow the right path. This option changed a lot with WebSphere Application Server
Version 6. Use the following steps:

– If the authentication method is set to none, the behavior is similar to WebSphere
Application Server Version 5. A container-managed alias can be indicated. This alias
belongs to the factory definition in the container resources for the cell.

– Aliases are defined earlier in the global security section of the WebSphere Application
Server cell through the administrative functions.

– In this case, if no alias was specified, as for WebSphere Application Server Version 5:

• If global security is off, the servant user ID is used.
• If global security is on, but only with a local option, the RunAs identity is selected.

– If the authentication method is set as default, a default JAAS login configuration
DefaultPrincipalMapping is used. This configuration takes the Java class
(com.ibm.ws.security.auth.j2c.WSPrincipalMappingLoginModule) as a login module.
The module takes a parameter, an alias. The reference to this alias is done in the
resource reference section of the deployment descriptor and travels with the
deployment. An alias that is valid in the development tool probably will not be valid on
the z/OS system. This alias reference can be adapted during the deployment phase of
the J2EE application (EAR file), or later through the administration console.

– If the authentication method is set as custom JAAS login, we have the opportunity to
specify our own JAAS login module. This provides a lot of freedom. In this module, we
have to respect a predefined implementation. It is possible to extract the
“Utoken/thread” identity from the J2EE security and propagate it to connection. As
such, the connection to IMS can be executed under the RunAs (caller, role, and so on)
identity. This mechanism is active outside global security. If you want to develop a new
mapping LoginModule in WebSphere Application Server Version 6, use the
programming interface described in the “Developing your own J2C principal mapping
module” topic of IBM WebSphere Application Server for z/OS, Version 6.0.1: Securing
applications and their environment, SA22-7961.

236 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Service point
This information specifies how IMS Connect can be reached from IMS Connector for Java.
The information is part of the ConnectionFactory instance.

� Host name

Mandatory for TCP/ IP connections: The IP address or host name of the machine running
the target IMS Connect.

� Port number

Mandatory for TCP/IP connections: The number of a port used by the target IMS Connect
for TCP/IP connections. Multiple sockets can be open on a single TCP/ IP port.

� IMS Connect name

Mandatory for local option connections: The job name of the target IMS Connect. The IMS
Connect name overrides host name and port number, so it must not be specified for
TCP/IP connections.

Transport security
The user ID security information on which the authorization in IMS is based is passed over
the local option connection or over TCP/IP. In the latter case, we often have to secure the
transport layer of this connection with Secure Sockets Layer (SSL). When we refer to the
word client in the context of this SSL discussion, this is not the end-user client accessing IMS.
In this context, the client is IMS Connector for Java, because the connection that is being
secured is only the connection between IMS Connector for Java and IMS Connect. The setup
of the SSL protected socket connection is only done once by an initial handshake. This
socket connection is persistent and continues to be used in this protected state. SSL exists in
two flavors:

� SSLv2: Only the server proves its identity.
� SSLv3: Both the client and server prove their identity.

IMS Connector for Java only supports SSLv3 through its successor Transport Layer Security
(TLS) v1. The identity on the client side used to establish the protected connection is
determined by properties in IMSConnectionFactory.

In SSL, a keystore is a password-protected database that contains key entries that consist of
an entity's identity and its private key. A truststore is a key database (keystore) intended to
contain only trusted certificate entries, that is, the identity and public key of known and trusted
entities. Typically, a keystore is used to hold your own certificates and private keys, while a
truststore is used to hold other entities' certificates and public keys. You might elect to provide
more protection for your private keys by storing them in a keystore with restricted access,
while making your truststore more accessible. However, you can choose to keep both your
and others' private and public keys and certificates in the same keystore or truststore.

If no value is specified for the KeyStore Name property, the value of the TrustStore Name
property is used as both the KeyStore Name and the TrustStore Name. Likewise, if no value is
specified for the TrustStore Name property, the value of the KeyStore Name property is used
as both the KeyStore Name and the TrustStore Name. If neither the KeyStore Name nor the
TrustStore Name values are specified, ICO0096I exceptions are thrown for both the KeyStore
Name and the TrustStore Name: Warning. Invalid value provided for SSL parameter. In
addition, an ICO0003E: Failed to connect to host exception and the underlying
FileNotFoundException occur. This is because IMS Connector for Java has no name to use
when it tries to open a Java Keystore (JKS) format keystore as it attempts to initialize an SSL
socket connection to the host.

On z/OS, RACF can be used as the key repository for the keyrings. A keyring does exactly
what its name implies—it contains keys. It holds the private key (default) for the owner of the

Chapter 12. IMS Connector for Java 237

keyring and public keys (certificates) of various certificate authorities, used for the verification
of partner certificates. A keyring also contains the certificate of the keyring owner for
exchanging it with possible partners during an SSL handshake. A z/OS keyring can also be
used as a truststore, in which case, it contains trusted certificate entries. Note that, even
when WebSphere Application Server for z/OS and IMS Connect are in the same z/OS image
and use the same instance of RACF, you probably want to use separate keyrings for
WebSphere Application Server and IMS Connect.

The following IMSConnectionFactory properties are used to define SSL connections:

� SSL Enabled

The default is false. This property is only valid for TCP/IP connections. A value of true
indicates that IMS Connector for Java will create an SSL socket connection to IMS
Connect using the HostName and PortNumber specified in these connection properties.
This port must be configured as an SSL port by IMS Connect.

� KeyStore Name

For non-z/OS platforms, specify the fully qualified path name of your JKS keystore file. For
z/OS, specify the name of your JKS keystore file as previously discussed, or a special
string that provides the information needed to access your RACF keyring. Private keys
and their associated public key certificates are stored in password-protected databases
called keystores.

The keystore name can be used to specify either a JKS keystore or a RACF keyring when
running on z/OS. A RACF keyring is specified as: keystore_type:keyring_name:racfid. The
keystore_type must be either JCERACFKS when software encryption is used for SSL, or
JCE4758RACFKS if hardware encryption is used. Replace keyring_name with the name
of the RACF keyring that you are using as your keystore and racfid with a RACF ID that is
authorized to access the specified keyring. Examples of RACF keyring specifications are:

JCERACFKS:myKeyring:kruser01
JCE4758RACFKS:myKeyring:kruser01

When running in z/OS, if the keystore name matches the above RACF keyring format and
points to a valid RACF keyring, IMS Connector for Java uses the specified RACF keyring
as its keystore. If the RACF keyring format is used and the keystore type specified is
anything other than JCERACFKS or JCE4758RACFKS, IMS Connector for Java attempts
to interpret the keystore name specified as the name of a JKS keystore file.

� KeyStore Password

Specify the password for the keystore. Private keys and their associated public key
certificates are stored in password-protected databases called keystores. The KeyStore
password property is used with both JKS keystores and RACF keyrings.

� TrustStore Name

For non-z/OS platforms, specify the fully-qualified path name of your JKS truststore file.
For z/OS, specify the JKS name or the RACF keyring of the truststore. The same format is
used for the values of the KeyStore Name and TrustStore Name properties. See the
description of the KeyStore Name property for a discussion of this format. A truststore file
is a key database file (keystore) intended to contain public keys or certificates of trusted
entities.

� TrustStore Password

Specify the password for the truststore. A truststore file is a key database file that contains
public keys. The KeyStore Password property is used with both JKS keystores and RACF
keyrings.

238 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� Encryption Type

Select the encryption type. Strong and weak are related to the strength of the ciphers, that
is, the key length. All those ciphers that can be used for export come under the weak
category and the rest go into the strong category. By default, the encryption type is set to
weak.

On the server side, IMS Connect initialization for SSL is done through the file referenced by
SSLENVAR parameter in the IMS Connect configuration. SSL also requires the availability of
protected TCP/IP ports, which are specified through the SSLPORT parameter in the IMS
Connect configuration. Example 12-4 shows an example of an IMS Connect SSL
configuration file (this is also the default setup of SSL).

Example 12-4 SSL configuration

###
This is an SSL interface configuration file
###
GSK_PROTOCOL_SSLV2=GSK_PROTOCOL_SSLV2_ON
GSK_PROTOCOL_SSLV3=GSK_PROTOCOL_SSLV3_ON
GSK_PROTOCOL_TLSV1=GSK_PROTOCOL_TLSV1_ON
GSK_KEYRING_FILE=SSLRING
GSK_KEYRING_LABEL=IMS_CONNECT
GSK_KEYRING_PW=
GSK_KEYRING_STASH_FILE=
GSK_CLIENT_AUTH_TYPE=GSK_CLIENT_AUTH_FULL_TYPE
GSK_SESSION_TYPE=GSK_SERVER_SESSION
GSK_V2_CIPHER_SPECS=642
GSK_V3_CIPHER_SPECS=0906030201

In Example 12-4, the following fields are important:

� GSK_KEYRING_FILE=SSLRING: The qualified keyring name is userid.SSLRING, where
userid is the ID under which IMS Connect is running.

� GSK_KEYRING_LABEL=IMS_CONNECT: The label of the certificate in the keyring.

Figure 12-6 on page 240 shows how the system is retrieving information for setting up a
secure TCP/IP channel:

� In IMS Connector for Java, each connection factory can be configured independently to
create SSL connections.

� IMS Connect can be configured to accept SSL connections through the IMS Connect and
SSL configuration members.

Chapter 12. IMS Connector for Java 239

Figure 12-6 TLSv1 elements

A complete example, “Configuring SSL for IMS Connector for Java and IMS Connect,” which
explains all the required steps including generating certificates, is available at:

http://www.ibm.com/software/data/ims/examples/exHome.html

Dedicated or shareable persistent sockets
The CM0Dedicated property of the IMSConnectionFactory object determines whether the
acquired socket connection is dedicated or shareable. A dedicated connection requires the
setting of a clientID through the connectionSpec object passed in the getConnection method.

The default is false. A value of false indicates that the connection factory will generate
shareable persistent socket connections and IMS Connector for Java will generate a clientID
to identify the socket connection. These connections can be used by commit mode 0 and
commit mode 1 interactions. A value of true indicates that the connection factory will generate
dedicated persistent socket connections, which require user-specified clientIDs to identify the
socket connections. A dedicated persistent socket connection is reserved for a particular
clientID, and only commit mode 0 interactions are allowed. This property applies to TCP/IP
connections only.

Mandatory reference to IMS
Datastore name is the name of the target IMS datastore. It must match the ID parameter of
the datastore statement that is specified in the IMS Connect configuration member. It also
serves as the XCF member name for IMS during internal XCF communications between IMS
Connect and IMS OTMA.

Optional trace
Trace level is the level of information to be traced. Four levels are supported:

� RAS_TRACE_OFF (0)
� RAS_TRACE_ERROR_EXCEPTION (1)
� RAS_TRACE_ENTRY_EXIT (2)
� RAS_TRACE_INTERNAL (3)

Keystore/Keyring
for IMS Connect

-Certificate
-PrivKey

other
Certificates

default

e.g. Certificate AuthoritiesKeystore/Keyring
for IMS
ConnectionFactory

-Certificate
-PrivKey

other
Certificates

e.g. Certificate Authorities

validatevalidate

IMSConnectionFactory

IMS Connect
configuration

TLSv1

On z/OS keyrings can be in RACF

SSL configuration

240 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

http://www.ibm.com/software/data/ims/examples/exHome.html

In a non-managed environment, if tracing is needed, the application must configure the
IMSManagedConnectionFactory object.

Example 12-5 Setting trace information in a non-managed environment

// Set the trace level.
mcf.setTraceLevel(new Integer(IMSTraceLevelProperties.RAS_TRACE_INTERNAL));
// Provide a value for the file to be used for the trace.
try {
PrintWriter pr = new PrintWriter(new java.io.BufferedWriter(

new java.io.FileWriter("c:/temp/CCISampleLog.log", false)));
mcf.setLogWriter(pr);
} catch (Exception ex) {

}

In the WebSphere test environment of the development environment or WebSphere
Application Server, ensure that the Enable trace check box is selected. To enable logging
and tracing in the IMS resource adapter, enter the following in the Trace string field:

com.ibm.connector2.ims.*=all=enabled

Other combinations of trace strings will enable tracing in other components. For example,
with the following trace string, the string com.ibm.ejs.j2c.* provides you with logging and
tracing of the WebSphere implementation of the J2EE connector architecture and the string
com.ibm.connector2.* provides you with logging and tracing of all of the resource adapters,
including IMS:

com.ibm.ejs.j2c.*=all=enabled:com.ibm.connector2.*=all=enabled

Transaction enlistment
In “To enlist, or not to enlist” on page 227, we explain transaction enlistment as provided by
the JCA v1.5 IMS resource adapter.

TransactionResourceRegistration (optional) indicates the type of transaction resource
registration (enlistment). Valid values are either “static” (immediate) or “dynamic” (deferred). If
this property is set to dynamic, the enlistment of the resource to the transaction scope is
deferred until the resource is used for an interaction for the first time.

MFS support
The following properties only apply for applications generated by development environments
that support MFS. At the time of the publication of this book, only WebSphere Studio
Application Developer Integration Edition supports MFS.

� MFS XMI Repository ID

This property is used by applications generated from MFS source. This field contains a
unique name for identifying the repository location. This ID must match the repository field
defined in the generated format handler of your application. The default for this field is
default.

Note: Trace strings can vary slightly with different versions of WebSphere Application
Server.

Note: This is a property of the JCA v1.0 IMS resource adapters. For the JCA v1.5 IMS
resource adapter, transaction enlistment does not require the specification of a property
value.

Chapter 12. IMS Connector for Java 241

� MFS XMI Repository URI

This property is used by applications generated from MFS source. This field specifies the
physical location of the XMI repository. Valid formats for this field include:

– file://path_to_xmi, where path_to_xmi is a directory on the local file system
containing the XMI files, for example, file://c:/xmi.

– http://url_to_xmi, where url_to_xmi is a valid URL that resolves to a directory
containing the XMI files, for example, http://sampleserver.com/xmi.

– hfs://path_to_xmi, where path_to_xmi is the HFS directory on the host z/OS. This
format is only supported for WebSphere Application Server for z/OS.

12.3.3 Interaction properties
The execution of an IMS transaction is invoked through the execute method on an
IMSInteraction object. One of the parameters that has to be specified on the execute method
is the IMSInteractionSpec object, describing the characteristics of this IMS interaction.

Figure 12-7 shows the set methods of the IMSInteractionSpec class that are used to give a
value to a property.

Figure 12-7 IMSInteractionSpec setters

The following sections describe all the properties of the IMSInteractionSpec object.

Output only
These output only properties are not set by the application component:

� asyncOutputAvailable (output only)

This property is used by a Java application on return from a commit mode 0 interaction on
a dedicated or shareable persistent socket to determine if there is queued output for the
associated clientID. clientID is a property of IMSConnectionSpec and can be a
user-specified value or an IMS Connector for Java generated value. The value of
asyncOutputAvailable is true if there are messages in the queue. The
asyncOutputAvailable property is not set on input by the application component.

Note: If your Java application uses this property, it must be exposed as an output
property of IMSInteractionSpec.

242 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� convEnded (output only)

This property is used by a Java application to determine if a conversation has ended
(true). The convEnded property is not set on input by the application component.

commitMode
The following two commit modes are available:

� 0 (commit_then _send): The transaction is committed or aborted by the IMS Transaction
Manager and the result message is queued on a Tpipe. Commit_then_send uses sync
level 1.

� 1 (send_then_commit): The transaction status is waiting for a synchronization message.
Note that the message processing regions are occupied as long as the synchronization
message is received.

The value is used by the IMS resource adapter to indicate the type of commit mode
processing to be performed for an IMS transaction.

The commitMode property can be set to 0 or 1 when interactionVerb is set to
SYNC_SEND_RECEIVE.

When interactionVerb is set to SYNC_RECEIVE_ASYNCOUTPUT,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT, or SYNC_SEND, IMS Connector for
Java uses commitMode 0.

CommitMode 1 is required when interactionVerb is set to SYNC_END_CONVERSATION. If
commitMode is 0 and a dedicated persistent socket is used for the interaction, the clientID
property of the IMSConnectionSpec must be provided for the interaction. If commitMode is 0
and a shareable persistent socket is used for the interaction, the clientID must not be
specified. If commitMode 0 or 1 is specified for an interaction on a shareable persistent
socket, the output message from a transaction can be purged or rerouted. The output
message is recoverable by using a subsequent interaction within the same application with
interactionVerb set to SYNC_RECEIVE_ASYNCOUTPUT,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, or
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT.

If a dedicated persistent socket is used for a commitMode 0 interaction, the output message
from a transaction cannot be purged or rerouted, but the output message is recoverable using
a subsequent interaction with interactionVerb set to SYNC_RECEIVE_ASYNCOUTPUT,
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, or
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT.

imsRequestType
imsRequestType indicates the type of IMS request and determines how output from the
request is handled by the IMS resource adapter. Integer values are:

� 1 (IMS_REQUEST_TYPE_IMS_TRANSACTION)

The request is an IMS transaction. Normal transaction output returned by IMS is used to
populate the application’s output message. If IMS returns a “DFS” message, the IMS
resource adapter throws an IMSDFSMessageException. This value for imsRequestType is
used for applications that are not generated using WebSphere Studio MFS support.

Note: If your Java application uses this property, it must be exposed as an output
property of IMSInteractionSpec. A conversation, as previously referenced, is a Java
application that invokes an IMS transaction with a scratch pad area (SPA) defined.

Chapter 12. IMS Connector for Java 243

� 2 (IMS_REQUEST_TYPE_IMS_COMMAND)

The request is an IMS command. Command output returned by IMS, including “DFS”
messages, is used to populate the application’s output message. The
IMSDFSMessageException is not thrown. This value for imsRequestType is used for
applications that submit IMS commands.

� 3 (IMS_REQUEST_TYPE_MFS_TRANSACTION)

This value for imsRequestType is reserved for applications that are generated using
WebSphere Studio MFS support. Normal transaction output returned by IMS, as well as
“DFS” messages, are used to populate the application’s output message. The
IMSDFSMessageException is not thrown.

interactionVerb
interactionVerb defines the mode of interaction between the Java application and IMS. The
values currently supported by the IMS resource adapter are:

� 0 (SYNC_SEND)

The IMS resource adapter sends the client request to IMS through IMS Connect and does
not expect a response from IMS. With a SYNC_SEND interaction, the client does not need
to synchronously receive a response from IMS. SYNC_SEND is supported on both
shareable and dedicated persistent socket connections and is only allowed with
commitMode 0 interactions. If the interactionVerb is set to SYNC_SEND, execution
timeout and socket timeout values are ignored. Note that imsRequest type 2 is not allowed
with SYNC_SEND and will generate an exception.

� 1 (SYNC_SEND_RECEIVE)

The execution of an IMS Interaction sends a request to IMS and receives a response
synchronously. A typical SYNC_SEND_RECEIVE interaction is the running of a
non-conversational IMS transaction in which an input record (the IMS transaction input
message) is sent to IMS and an output record (the IMS transaction output message) is
returned by IMS. SYNC_SEND_RECEIVE interactions are also used for the iterations of a
conversational IMS transaction. A conversational transaction requires commitMode 1. A
non-conversational transaction can run using either commitMode 1 or commitMode 0. If
commitMode 0 is used on a dedicated persistent socket, a value for the clientID property
of IMSConnectionSpec must be provided. If commitMode 0 is used on a shareable
persistent socket, a value for the clientID property of IMSConnectionSpec must not be
provided.

� 3 (SYNC_END_CONVERSATION)

If the application executes an interaction with interactionVerb set to
SYNC_END_CONVERSATION, the IMS resource adapter sends a message to force the
end of an IMS conversational transaction. For SYNC_END_CONVERSATION,
commitMode 1 is required. The clientID is not allowed.

� 4 (SYNC_RECEIVE_ASYNCOUTPUT)

interactionVerb SYNC_RECEIVE_ASYNCOUTPUT is valid on both shareable persistent
and dedicated persistent socket connections. SYNC_RECEIVE_ASYNCOUTPUT is used
to retrieve asynchronous output that was not delivered. When
SYNC_RECEIVE_ASYNCOUTPUT is used on a dedicated persistent socket, a value
must be provided for the clientID property of IMSConnectionSpec.
With this type of interaction, the Java client can only receive a single message. If there are
no messages in the IMS OTMA asynchronous queue for the clientID when the request is
made, no further attempts are made to retrieve the message. No message is returned and
a timeout will occur after the length of time specified in the executionTimeout property of
the SYNC_RECEIVE_ASYNCOUTPUT interaction.

244 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� 5 (SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT)

interactionVerb SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT is valid on both
shareable and dedicated persistent socket connections. It is used to retrieve
asynchronous output. With this type of interaction, the Java client can only receive one
single message. If there are no messages in the IMS OTMA asynchronous queue for the
clientID when the request is made, no further attempts are made to retrieve the message.
No message will be returned and a timeout will occur after the length of time specified in
the executionTimeout property of the
SYNC_RECEIVE_ASYNCOUTPUT_SINLE_NOWAIT interaction.

� 6 (SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT)

interactionVerb SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT is used to retrieve
asynchronous output. It is valid on both shareable and dedicated persistent socket
connections. With this type of interaction, the Java client can only receive one single
message. If there are no messages in the IMS OTMA asynchronous queue for the clientID
when the request is made, IMS Connect waits for OTMA to return a message. IMS
Connect waits the length of time specified in the executionTimeout property of the
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_WAIT interaction before returning an
exception.

Timeouts
Two types of timeout can be defined. The socketTimeout needs to be larger than the
executionTimeout, as shown in Figure 12-8. The value that you need to set depends on from
your environment and the response times that you can expect.

Figure 12-8 Execution and socket timer

Note: The interactionVerbs, SYNC_RECEIVE_ASYNCOUTPUT and
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT, perform the same function.
However, we recommend that you use
SYNC_RECEIVE_ASYNCOUTPUT_SINGLE_NOWAIT with Rational Application
Developer V6.0.0.2 with the IMS resource adapter V9.1.0.1.1 or V9.1.0.2.

Note: The J2EE Connection architecture (JCA) value SYNC_RECEIVE (2) is currently
not supported.

Timer functions
IC4J Application IMS ApplicationICON IMS

(Send)

(Receive)
GU I/O PCB

ISRT I/O PCB

ix.execute(ixSpec, inRec, outRec);ix.execute(ixSpec, inRec, outRec); Socket Timer Execution
Timer

ixSpec.setExecutionTimeout(3000);
ixSpec.setSocketTimeout(6000);
ixSpec.setExecutionTimeout(3000);
ixSpec.setSocketTimeout(6000);

(Receive)

IC4J = IMS Connector for Java

Chapter 12. IMS Connector for Java 245

The two types are:

� socketTimeout

The maximum amount of time IMS Connector for Java will wait for a response from IMS
Connect before disconnecting the socket and returning an exception to the client
application. The socketTimeout value is represented in milliseconds. To use socket
timeout, the value must be greater than zero. If a socket timeout is not specified for an
interaction, or it is supplied with a socket timeout value of zero milliseconds, this results in
no socket timeout or an infinite wait.

� executionTimeout

The maximum amount of time allowed for IMS Connect to send a message to IMS and
receive a response. The executionTimeout value is represented in milliseconds and must
be a decimal integer that is either -1 or between 1 and 3,600,000, inclusively. That is, the
executionTimeout value must be greater than zero and less than or equal to one hour. If a
-1 value is set for this property, the interaction runs without a time limit.

ltermName
This is the LTERM name used to override the value in the LTERM field of the IMS application
program’s I/O PCB. See IMS Version 9: IMS Connect Guide and Reference, SC18-9287, for a
description of how to use the LTERM override. The value of this property can be set if the
client application wants to provide an LTERM override name. This name will be in the IMS
application program’s I/O PCB, with the intent that the IMS application will make logic
decisions based on this override value.

mapName
The mapName field typically contains the name of a Message Format Service (MFS) control
block. MFS is the component of IMS that performs online formatting of transaction input and
output messages. Because IMS Connect uses IMS OTMA to access IMS, MFS online
formatting is bypassed. However, the mapName field can still be used by a Java application to
input the name of an MFS control block to an IMS application program or to retrieve the name
of an MFS control block provided by an IMS application program.

On input, typically the value of the mapName property is the name of an MFS message
output descriptor, or MOD. The MOD name is provided to the IMS application program in the
I/O PCB. On output, the value of the mapName property is the name of an MFS message
output descriptor. This is the MOD name that the IMS application program specified when
inserting the transaction output message to the I/O PCB.

purgeAsyncOutput
This is an input property. This property determines whether or not IMS Connect purges
undelivered output. This property is only valid for interactions on shareable persistent socket
connections that use the IMS interaction verb SYNC_SEND_RECEIVE. It is not valid for any
interactions on dedicated persistent socket connections. It applies to commit mode 0
interactions. It does not apply to commit mode 1 interactions. However, if a commit mode 1
interaction executes a program-to-program switch, the spawned program will run commit
mode 0, and therefore, the property will apply.

Note: The mapName field should not be used by Java applications that use an enterprise
service whose input and output messages are generated by WebSphere Studio MFS
support.

246 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

If the purgeAsyncOutput property is not specified on a SYNC_SEND_RECEIVE interaction
on a shareable persistent socket connection, the default is TRUE. If this property is set to
TRUE, the following output messages are purged:

� Undelivered output message inserted to the I/O PCB by the primary IMS application
program

� Output messages inserted to the I/O PCB by secondary IMS application programs invoked
by a program-to-program switch

reRoute
This is an input property. This property is only valid for SYNC_SEND_RECEIVE interactions
on shareable persistent socket connections with either a commit mode 0 or a commit mode 1
interaction that spawns a program-to-program switch that invokes another commit mode 0
interaction and results in undeliverable secondary output. This property determines if
undelivered output is to be rerouted to a named destination specified in the reRouteName
field.

If reRoute is TRUE, the asynchronous output is not queued to the Tpipe of the generated
clientID. Instead, the asynchronous output is queued to the destination specified in the
reRouteName field. The default value for reRoute is FALSE. If both reRoute and
purgeAsyncOutput are set to TRUE, an exception is thrown.

reRouteName
This property provides the name of the destination to which asynchronous output is queued.
If reRoute is TRUE, this property provides the named destination. If reRoute is FALSE, the
reRouteName property is ignored. If the reRoute property is set to TRUE, and no
reRouteName is provided, the value for the reRouteName property is:

� The value specified in the IMS Connect configuration file.

� If no value is specified in the IMS Connect configuration file, the value __HWS$DEF__ is
used.

The property, reRouteName, is only valid for SYNC_SEND_RECEIVE interactions on
shareable persistent socket connections. It is not valid for any interactions on dedicated
persistent socket connections.

12.3.4 Use considerations
The most used interactionVerbs are SYNC_SEND and SYNC_SEND_RECEIVE. The other
verbs are related to the retrieval of asynchronous or non-delivered output.

SYNC_SEND: Programming model
Always execute this interactionVerb with commitMode 0. In general, no output is expected
because it normally addresses a non-response mode transaction. This is the normal way of
using it.

If this verb is used with a response mode transaction, an output message is inserted to the
I/OPCB and queued on the Tpipe with a clientID. Here, we distinguish the following cases:

� Shareable persistent socket

The clientID has been generated by the system. In this case, no messages can be
retrieved, and after a while, there is overflow on the Tpipe queue.

Chapter 12. IMS Connector for Java 247

� Dedicated persistent socket

The clientID is mandatory and has been provided by the IMS Connect client in the
IMSConnectionSpec object. The messages queued on the Tpipe can be retrieved by
issuing a SYNC_RECEIVE_ASYNCOUTPUT interaction.

If the program is inserting an output message to an alternate PCB, which is associated with
an Tpipe destination, those messages can be retrieved under the following conditions:

� The CM0Dedicated property was set to TRUE in the connection factory.

� SYNC_RECEIVE_ASYNCOUTPUT interaction, commitMode 0, clientID of alternate PCB.

SYNC_SEND_RECEIVE: Programming model
This interactionVerb can be executed with commitMode 0 and 1.

commitMode 0
To better understand the meaning of this commit mode, we use the expression
commit_then_send. In other words, the commit/backout is decided by IMS at the end of the
transaction execution, the message processing region (MPR) is freed immediately, and a
message, inserted by the message processing program, is put on the Tpipe queue. This
probably is the best way to trigger stand-alone transactions with update intent because the
queued message will stay on the queue as long has a dequeue has not been confirmed by an
ACK from the client, which is sent automatically by the resource adapter after receiving the
output message.

A commitMode 0 with SYNC_SEND_RECEIVE cannot participate in a global unit of work
under RRS control. IMS is always the coordinator, and the message processing region is
freed as soon the IMS sync point terminates.

Figure 12-9 shows the flow.

Figure 12-9 IMS Connector for Java flow for commit mode 0

The confirm (ACK) is automatically sent by IMS Connector for Java after receiving the
message, after which the message is dequeued. We can work both with shareable and
dedicated persistent sockets. In this case, there is a difference in the error processing and
handling of undelivered output. Undelivered output might also be caused by an execution

WebSphere Application Server IC4J IMS Connect IMS

Any Platform
(Windows, AIX 5L, z/OS, etc.) z/OS Platform

TRX Start
DB Update

Begin Commit

End Commit

ACK Send

Output MSG
DEQ

IMS
UOW

SYNC_SEND_RECEIVE USER
EXIT

MSGQ

IC4J = IMS Connector for Java

248 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

time when the socket connection timed out before the execution was producing any output.
Here, we distinguish the following cases:

� Shareable persistent socket

This socket type implies an automatic generated clientID.

All errors result in a resource exception being thrown to the client application. In this case,
the output message cannot be delivered anymore to the client and it will not be queued to
the Tpipe. This undelivered output can be handled in a couple of ways depending on the
specified options:

– purgeAsyncOutput=TRUE (default)

The following output is purged:

• Undelivered output message inserted to the I/O PCB by the primary MPP (the first
program invoked by the transaction).

• Output messages inserted to the I/O PCB by a secondary program, invoked by a
program switch.

– reroute=true, reRoutName=xxxxx, purgeAsyncOutput=false

• Undelivered output messages are queued to the named reroute destination.

• Non-delivered messages because of Socket timeout are queued to the Tpipe
corresponding to the generated clientID.

– reroute=true, reRoutName=xxxxx, purgeAsyncOutput=false

• Undelivered output messages are queued to the named reroute destination.

� Dedicated persistent socket

This socket type requires that a clientID is specified through the IMSConnectionSpec
object. All errors result in a resource exception being thrown to the client application. If the
output message cannot be delivered to the client, it is queued for later retrieval by
SYNC_RECEIVE_ASYNCOUTPUT.

Figure 12-10 shows the SYNC_RECEIVE_ASYNCOUTPUT flow. The properties
purgeAsyncOutput and reRoute are not applicable for this type of socket.

Figure 12-10 SYNC_RECEIVE_ASYNCOUTPUT flow for commit mode 0

WAS IC4J IMS Connect IMS

Any Platform
(Windows, AIX 5L, z/OS, etc.) z/OS Platform

ACK Send

Output MSG
DEQ

USER
EXIT

SYNC_RECEIVE_
ASYNCOUTPUT

Queuing MSG
For ALTPCB ISRT

Or NAKed

Output MSG
SEND

MSGQ

IC4J = IMS Connector for Java, WAS = WebSphere Application Server

Chapter 12. IMS Connector for Java 249

commitMode 1
With this mode, only shareable persistent sockets are supported. To better understand the
meaning of this commit mode, we use the expression send_then_commit. After sending the
output message directly to the client, the message processing region (MPR) in which the
transaction ran waits on a commit/abort hint, and consequently the MPR stays occupied with
the message processing program (MPP). The synchronization level will be defined by the
transactional context in which the transaction was invoked and determine whether the
transaction is part of a global unit of work or not. Basically, we have the following cases:

� No transactional context

We are in this situation when the client does not run in a container, or if the external
container method (for example, the method of an Enterprise JavaBeans, or EJB) that
invokes the IMS transaction was tagged in its container with the attribute
TX_NOTSUPPORTED. In this case, the invoked transaction is a stand-alone transaction,
and the selected sync level will be none. Under this sync level, the output message is not
put on the Tpipe queue but send immediately to the client. The MPR in which the
transaction ran waits for an acknowledgment, which with sync level none will be the
confirmation that the output message was sent correctly over XCF to the IMS Connect,
even before it was passed to the IMS client. This is depicted in Figure 12-11.

With this scenario, be aware that the occupancy time of the MPR has been increased
slightly and that the fact that the message was acknowledged by the XCF in the
IMSConnector is not a guarantee for a correct arrival at the client, for example, in
WebSphere Application Server. Only use this type for query only transactions.

Figure 12-11 IMS Connector for Java flow for commit mode 1, sync level none

� Transactional context

A transactional context can be set in a container, for example, a client container or a
WebSphere container. Transactional context means that a global unit of work (GUOW) has
begun, which for z/OS is registered with RRS, and as a result of this, the invoked
transaction will be part of this GUOW. Several other accesses from the client through the
resource managers can be part of the same GUOW. The synchronization level used in this
case is SYNCPT. RRS is responsible for coordinating the total synchronization point
processing, but the hint to start this processing is given by the container.

Next, we explain briefly how a transactional context can be obtained and when the global
commit/abort signal is fired. The transaction type is set in the deployment descriptor of the
Enterprise JavaBeans (EJB). Example 12-6 on page 251 provides an example.

WAS IC4J IMS Connect IMS

Any Platform
(Windows, AIX 5L, z/OS etc.) z/OS Platform

No Transaction Context

TRX Start
DB Update

Begin Commit

End Commit

IMS
UOW

USER
EXIT

IMS Transaction Send

Receive

IC4J = IMS Connector for Java, WAS = WebSphere Application Server

250 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 12-6 EJB transaction type description

<enterprise-beans>
 <session id="IMSPhoneSess">
 <ejb-name>IMSPhoneSess</ejb-name>
 <home>j2cEJB.IMSPhoneSessHome</home>
 <remote>j2cEJB.IMSPhoneSess</remote>
 <ejb-class>j2cEJB.IMSPhoneSessBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type> <== or Bean ==>
 </session>
</enterprise-beans>

– Declarative (transaction type Container)

EJBs are objects with several entry points, called methods. All methods have by
default or explicitly a transactional attribute. This attribute determines the transactional
behavior of everything invoked from within this method. We distinguish the following
values:

• Required: A new transaction created if one does not exist; otherwise, continue with
the existing transaction.

• Supports: No new transaction created; eventually continue with the existing
transaction.

• RequiresNew: A new transaction is created.

• Mandatory: We should already be in a transaction.

• Never: Method will not be part of any transaction.

There are many conditions for which we can be in a transactional context. See
Example 12-7.

Example 12-7 Declarative settings for transaction type Container

 <container-transaction>
 <method>
 <ejb-name>IMSPhoneSess</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getPhoneInfoSyncpt</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>

 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 <trans-attribute>Required</trans-attribute> <=========
 </container-transaction>
 <container-transaction>
 <method>
 <ejb-name>IMSPhoneSess</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>getPhoneInfo</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>

 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 <trans-attribute>Supports</trans-attribute> <=========
 </container-transaction>

Chapter 12. IMS Connector for Java 251

The location where the global transaction will be committed/aborted is where the
transactional context implicitly (based on the attribute) was set up.

– Programmatic (transaction type Bean/Component)

In this case, the transactional context is created by code. The J2EE application uses
the JTA javax.transaction.UserTransaction interface to demarcate a transaction
boundary to a set of changes to the protected resource programmatically.
Component-managed transactions can be used in both the servlet and the EJB
environment. For an EJB, you set the transaction attribute in its deployment descriptor
as TX_BEAN_MANAGED.

In the session bean method, after instantiating a UserTransaction object, a transaction
normally begins with a UserTransaction.begin() call. When the application component
is ready to commit the changes, it invokes a UserTransaction.commit() call to
coordinate and commit the changes. If the application component must roll back the
transaction, it invokes UserTransaction.rollback() and all changes are backed out.
Here, the global transaction demarcation is under the control of the program.

The code in Figure 12-8 shows how this can be coded. Remember that this can be
done both in a servlet, an EJB with a BEAN_MANAGED transaction type, and
eventually in code running in a client container.

Example 12-8 Code excerpt for controlling a UserTransaction in a servlet or an EJB

// Get User Transaction from EJB context
UserTransaction transaction = ejbcontext.getUserTransaction();
// Get User Transaction in a servlet
Context ic = new InitialContext();
UserTransaction ut = (UserTransaction)ic.lookup("java:comp/UserTransaction");
// Start transaction
transaction.begin();
// Make changes to the protected resources.
// For example, use the J2EE/CA’s CCI Interaction interface
// to submit changes to an EIS system(s)
interaction.execute(interactionSpec, input, output);
if (/* decide to commit */) {
 transaction.commit(); // commit the transaction
} else {
 /* decide to roll back */
 transaction.rollback(); // rollback the transaction
}

The sync point processing that is initiated by the application code or implicitly in case of
container_MANAGED transaction type can be two-phase commit (2PC) or one-phase
commit (1PC). When several resources are involved, it is 2PC, as shown in Figure 12-12
on page 253.

252 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 12-12 Commit mode 1 flow, sync level SYNCPT with multiple resources 2PC

The connection between the WebSphere platform on the left and the IMS platform will be
over TCP/IP. The local option (a program call) is also possible if both are in the same z/OS.
In Figure 12-12, you clearly see the begin commit in the coordinating system, which uses
the local RRS or XA to coordinate the local resources and drives over the session (TCP/IP
or PC) with IMS Connect, the sync point to IMS. IMS Connect acts as a remote
coordinator for IMS using the RRS on that platform.

If only one resource has been accessed, for example, only one IMS transaction,
WebSphere Application Server is able to apply some optimization and drive a one-phase
commit, as shown in Figure 12-13 on page 254.

WAS (Coordinator)Other RM IC4J IMS Connect

RRS

IMS

Any Platform (Windows, AIX 5L, z/OS, etc.) z/OS Platform

Begin Transaction

IMS TRX Send/Receive

Update any Resources ACK Send

Begin Commit

XA Phase 1
PREPARE

Prepare_Agent
_UR

Phase1_OKPhase1_OK

TRX Start
DB Update

XA Phase 2
COMMIT

DB Update

Commit_Agent
_UR

CommitCommit

End Transaction

End Commit

Phase2_OK Phase2_OK

WAS / IMS
UOW

USER
EXIT

RRS or XA

IC4J = IMS Connector for Java, WAS = WebSphere Application Server

Chapter 12. IMS Connector for Java 253

Figure 12-13 Commit mode 1, sync level sync point with one resource 1PC

The sync point processing is again driven by WebSphere Application Server but, as the
optimization has been detected, there is no interference with the local RRS or XA
coordinator. Remotely, it works as before.

To run a two-phase commit application, or even the one-phase commit, consider the
following suggestions:

– It is best to have as many MPP regions as possible running to ensure that two-phase
commit applications do not contend for a region, because a transaction that is within a
two-phase commit application uses an MPP region for the duration of the entire
two-phase commit transaction.

– To safeguard against a transaction that might be waiting for an extensive amount of
time for resources, we recommend that you set an appropriate timeout value for each
interaction taking place within the global transaction.

– Avoid having an excessive number of database interactions performed in one
two-phase commit transaction. If multiple IMS transactions are used within a
two-phase commit transaction, they might contend or lock in an attempt to update or
modify the same data. To avoid this, it is best to write an application that will prevent a
user from accessing duplicate entries within the same two-phase commit operation.

– If multiple interactions are performed using the same IMS transaction on the same IMS
database within a global transaction (unit of work), each interaction with that IMS
transaction must run on a separate MPP region. The IMS transaction must have a
SCHDTYP=PARALLEL and a PARLIM=0 value to indicate that the IMS transaction can
run on multiple MPP regions and that it will always meet the scheduling requirements
(the number of messages will be greater than zero) to process every interaction on a
new MPP region.

WAS (Coordinator) IC4J IMS Connect

RRS

IMS

Any Platform (Windows, AIX 5L, z/OS, etc.) z/OS Platform

Begin Transaction

ACK Send

Begin Commit

XA
COMMIT

Prepare_Agent
_UR

Phase1_OK

TRX Start
DB Update

Commit_Agent
_UR

Commit

End Transaction

End Commit

Phase2_OK

ICON acts over the 2PCICON acts over the 2PC

WAS / IMS
UOW

1PC Optimization

One of WAS function. If
only the1 RM is updated,
WAS will change it’s
commit from 2PC to 1PC.

1PC Optimization

One of WAS function. If
only the1 RM is updated,
WAS will change it’s
commit from 2PC to 1PC.

USER
EXIT

SYNC_SEND_RECEIVE

IC4J = IMS Connector for Java, WAS = WebSphere Application Server

254 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

– If an external transaction is calling an IMS transaction as part of a GUOW, consider
putting this call as close as possible toward the global commit/backout so that the
elapsed time of freezing the MPR and the locks on resources (DB2, DLI, WebSphere
MQ) are as short as possible.

– Avoid using global transactions if it is not required. Verify the transactional attributes of
the EJBs.

– All calls within a global transaction time frame do not have to participate in this global
transaction.

12.3.5 Summary
Figure 12-14 shows the different options possible for IMS Connector for Java.

Figure 12-14 Summary chart

Note the following information from Figure 12-14:

� Use option 1 for IMS update transactions that are not part of a global transaction.

This is only possible with commit mode 0 and only in non-transactional context. Verify the
timer options and eventually care for the retrieval of non-delivered output.

� Use option 2 when an IMS update transaction is part of a global transaction.

The transactional context has to be set up. Consider the consequences.

� Use option 3 for query only transactions.

This is really the fastest option. It is chosen by IMS Connector for Java for commit mode 1,
no transactional context.

Shareable Sockets Dedicated Sockets

Commit

0

1

TRX(b)

YES

YES

NO

NO

Non_MGT Non_MGT Managed Managed(c)

synclvl->syncpt

tpipe=clientID

tpipe= portnrtpipe= portnr

tpipe=clientIDtpipe=HWSxxxxtpipe=HWSxxxx
provide pooling(a)

tpipe= portnr

Synclevel is defined by Adapter
Only cases with text are applicable
(a)Tpipes are created with System generated names

program should provide pooling/reuse to avoid wildgrow
(b)Transaction means entered with Transactional Context
(c) Managed means Connection Factory obtained with lookup

synclvl->syncpt

tpipe= portnr

synclvl->confirm synclvl->confirm synclvl->confirm synclvl->confirm

synclvl->none synclvl->none

1

2

3

Chapter 12. IMS Connector for Java 255

Use sync point processing with one-phase commit if IMS is only participant; otherwise,
two-phase commit. This requires the most resources, can take a long time, and blocks and
locks several resources (message processing regions, locks on databases, and so on).

256 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 13. IMS Connector for Java rerouting
and timeout support

In Versions 2.2.3, 9.1.0.1.1, and 9.1.0.2, IMS Connector for Java introduced some
enhancements to the asynchronous messages support. These enhancements consist of:

� The option to automatically purge (discard) the asynchronous messages, instead of
queuing them.

� The option to automatically reroute the asynchronous messages to a Tpipe specified by
the client application, instead of queuing them under the Tpipe that is associated with the
IMS Connector for Java generated clientID.

� The option to build a specialized client to request asynchronous messages without the
need to poll the Tpipe continuously.

This chapter discusses this enhancements and the way you can implement them in your IMS
Connector for Java client application.

13

© Copyright IBM Corp. 2006. All rights reserved. 257

13.1 Asynchronous message processing
We define an asynchronous message as an item of information sent by IMS Connect to a
client asynchronously relative to its normal flow of execution.

In a normal send-receive interaction, the client application expects to read an IMS response
just after it has sent the actual transaction message. An IMS Connector for Java application
does not do anything explicit to get a transaction response. The execute() method of the
Interaction object takes care of:

� Sending the transaction to IMS Connect

� Getting the IMS response

� Sending, if needed, the positive acknowledgement (ACK) to IMS Connect so that the
response is dequeued (for commit mode 0 interactions) or the transaction is committed
(for commit mode 1 interactions)

� Reading the IMS Connect response to the ACK to check whether the process has ended
correctly

This flow of execution is based on the idea that the IMS transactions send messages to their
clients in a synchronous, predictable way. Unfortunately, this is not always the situation in
real applications:

� A transaction can insert a message intended for a third-party terminal or a client different
from the one that sent the original transaction. This is done at the IMS application level by
using an alternate PCB (ALTPCB) and issuing a sequence of Transaction Manager calls
against the alternate IOPCB (ALTPCB): CHNG, ISRT, and PURG. These messages are
asynchronous by their own nature, because the destination terminal or client cannot
predict when such an operation will take place.

� A transaction, or a sequence of transactions chained by means of program-to-program
switches, can insert more than one response to the originating terminal or client.
Excepting the first response, which will be read by the client in its normal flow of execution,
these messages are asynchronous, because the client has no way to know if the IMS
application will send more than one response.

� An interaction can timeout due to an exceptional high response time from IMS, for
example, when the transaction stays in the message queue for a long time before it gets
processed. In this case, when the transaction gets processed, the client will not be waiting
for the response any more.

Refer to 7.4, “Asynchronous output support” on page 100 for the full details about how to
retrieve the asynchronous messages. In this chapter, we take a deeper look in the ways that
those messages can be generated and routed before a client application can get them.

13.2 Messages inserted to ALTPCB
When an application program issues a CHNG call against an ALTPCB, it can use a
transaction code or an LTERM name as new destination. If the destination is a logical
LTERM, IMS lets you determine the real destination using the DFSYPRX0 and DFSYDRU0
exits. Refer to Chapter 9, “IMS Connect user exit support” on page 115 for the details. At this
point, we should just notice that:

� You can send the response to an OTMA client of your choice using the DFSYPRX0 exit.

� You can specify the final Tpipe destination of the message using the DRU0 exit (which can
be different for each OTMA client you use).

258 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

The DFSYPRX0/DRU0 combination gives you enough flexibility to manage the ALTPCB
output according to your needs. As simple suggestions, you can use DFSYPRX0/DRU0 to:

� Send all your ALTPCB output to a single (or a few) known IMS Connect Tpipe. The
messages get queued in the asynchronous hold queue of that Tpipe, and you could can a
specialized IMS Connector for Java client to retrieve them and send to the final clients.

� Send each ALTPCB output message to an IMS Connect Tpipe, according to the LTERM,
using a different Tpipe for each LTERM. In that case, each of your clients recover the
messages by themselves. Consider the memory requirements of each Tpipe if you choose
this option. The Tpipes use storage, and they do not free this storage when you stop using
them.

� Send all your ALTPCB output to another OTMA client, such as the IBM WebSphere MQ
IMS bridge, and use any WebSphere MQ client to retrieve the messages.

13.3 Multiple and timed out IOPCB responses
In this section, we discuss the actions you can instruct IMS Connect to take before queuing
the asynchronous messages under their destination Tpipe. Basically, you have the following
choices:

� You can do nothing, and the messages are discarded.

� You can discard the messages, so they do not get queued at all.

� You can tell IMS Connect to reroute the messages, changing the name of the Tpipe where
they will be queued.

The issues discussed in this section do not apply to the ALTPCB inserted messages. We
discuss the management of those messages in 13.2, “Messages inserted to ALTPCB” on
page 258.

13.3.1 Discarding the non-delivered messages
You can ask IMS Connector for Java to purge the asynchronous, undelivered output, setting
the Boolean property purgeAsyncOutput to true. This is a property of the IMSInteractionSpec
object and can be set in different ways, depending on the programming environment you are
using:

� You can set it specifically if you are coding your own Java client using the CCI interface
using the setter setPurgeAsyncOutput of the IMSConnectionSpec class.

� You can use the WebSphere Application Studio Developer Integration Edition or Rational
Application Developer wizards and property sheets to set this value. Figure 13-1 on
page 260 shows the WebSphere Studio Application Developer Integration Edition property
sheet.

Chapter 13. IMS Connector for Java rerouting and timeout support 259

Figure 13-1 WebSphere Studio Application Developer Integration Edition operation property sheet

In any case, you have to be aware of the restrictions summarized in Table 13-1.

Table 13-1 Results of enabling purgeAsyncOutput

Type of message Commit mode 1 Commit mode 0

Shareable connection Shareable connection Dedicated connection

Non-timed out insert to
IOPCB

Ignored Ignored. Runtime exception

Timed out insert to IOPCB The output message is lost.
Because IMS Connector for
Java uses sync
level=NONE, the
transaction is not rolled
back. The net effect is
equivalent to the message
being purged.

The message is purged. Runtime exception

Second or later insert to
IOPCB by second or later
transaction as result of
program-to-program switch

The message is purged.
The output of second and
later transactions is treated
as commit mode 0.

Non-predictable. See
13.3.2, “Rerouting the
non-delivered messages”
on page 261.

Runtime exception

Insert to IOPCB by a
transaction sent using a
SEND ONLY interaction

Not applicable. The message is not
purged, but queued under
the system-generated
clientID.

Runtime exception

260 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

13.3.2 Rerouting the non-delivered messages
If you let IMS Connector for Java and IMS Connect manage the non-delivered IOPCB
responses in their default way, and you want to retrieve those messages, you need to issue
RESUME TPIPE interactions to the same clientIDs that sent the original transactions. This
can be done in two different ways, depending on the kind of connections you are using:

� Using shareable connections
You must issue the SYNC_RECEIVE_ASYNCOUTPUT using the same Connection object
that you used to send the original transaction. The clientID for this type of connections is
automatically generated by IMS Connector for Java and is associated with each physical
Connection object.

� Using dedicated connections
You must issue the SYNC_RECEIVE_ASYNCOUTPUT interaction using whatever
Connection object you want, but you have to specify the same clientID that you used to
send the original transaction.

The two restrictions noticed above can make it impractical to use the same Tpipe you used to
send the original message to retrieve the asynchronous output. The first restriction means
that you should design your application in such a way that the
SYNC_RECEIVE_ASYNCOUTPUT interactions immediately follow the transmission of the
original transactions. One such application designs might use SYNCH_SEND interactions
(that is, SEND ONLY messages) to send the transaction to IMS and get all the output using
SYNC_RECEIVE_ASYNCOUTPUT (that is, RESUME TPIPE). Even in this case, you might
lose messages if the responses are delayed and the pool manager decides to destroy a
Connection instance with pending asynchronous output before the application has the
chance to retrieve it.

However, the second restriction imposes the burden of implementing a serialization algorithm
designed in such a way to avoid collisions (each clientID should be used just by one process
instance or thread), starvation (all clientIDs should be polled for asynchronous output in a
reasonable interval of time), and race conditions.

Starting with IMS Connector for Java Versions 2.2.3, 9.1.0.1, and 9.1.0.2, you can avoid this
problem using the reRoute flag and the optional reRoute destination name. You can set both
the flag and the destination name using the corresponding attribute setters, setReroute() and
setRerouteName(), of the IMSInteractionSpec object, or the Rational Application Developer
or WebSphere Studio Application Developer Integration Edition property sheet, as shown in
Figure 13-1 on page 260.

Restriction: If you are running your application in a managed environment (for
example, under WebSphere Application Server), you cannot be sure if you will again
get an instance of a Connection after you close it. In a managed environment, the
Connection instances are pooled, and the pool manager can decide to destroy a
specific one. In that case, you will not be able to retrieve any asynchronous output
queued under the Tpipe associated with that connection.

Restriction: You must take the appropriate precautions to make sure that one specific
clientID is used by just one application thread or instance at a specific moment of time.
If you are issuing a SYNC_RECEIVE_ASYNCOUTPUT against a clientID that is being
used at the same time to send a transaction to IMS Connect, you will get an exception.

Chapter 13. IMS Connector for Java rerouting and timeout support 261

The effects and restrictions of setting the reRoute flag are similar to the ones noted for
purgeAsyncOutput. Table 13-2 shows the resulting outcome.

The name of the Tpipe where a rerouted message is queued is determined as follows:

� If you specify a non-blank, valid value for reRouteName, that value is used as the Tpipe
name.

� If you leave reRouteName blank, then if the HWSCFGxx member contains a value for the
RRNAME, that value will be used as the Tpipe name.

� Otherwise, the value HWS$DEF will be used.

Table 13-2 Results of enabling reRoute

At the time of writing, the rules applied to decide if a commit mode 0 message will be rerouted
are based on the capability of IMS Connect of delivering the message to its client. If the
message is delivered, it will not be rerouted. IMS Connect considers a message to be
delivered if it gets an ACK or a NAK from the client. IMS Connector for Java sends an ACK for
the first response message to a transaction, and NAKs all the ulterior responses. IMS
Connect will try to send all the response messages until:

� It gets a NAK from IMS Connector for Java.
� The socket is disconnected.

Then, consider the following scenario:

1. IMS Connector for Java sends to IMS Connect a response mode IMS transaction
(TRANA), using commit mode 0, and requesting reRoute.

2. TRANA inserts another transaction (TRANB) using a program-to-program switch
(CHNG-ISRT-PURG against an ALTPCB).

3. TRANA writes its response to the IOPCB and terminates.

4. TRANB writes its response to the IOPCB and terminates.

5. IMS Connector for Java receives the TRANA response (RESPA).

6. IMS Connector for Java ACKs RESPA.

7. IMS Connector for Java issues a recv() after the ACK.

Type of message Commit mode 1 Commit mode 0

Shareable connection Shareable connection Dedicated connection

Non-timed out insert to
IOPCB

Ignored. Ignored. Runtime exception

Timed out insert to IOPCB The output message is lost.
Because IMS Connector for
Java uses sync
level=NONE, the
transaction is not rolled
back.

The message is rerouted. Runtime exception

Second or later insert to
IOPCB by second or later
transaction as result of
program to program switch

The message is rerouted.
The output of second and
later transactions is treated
as commit mode 0.

Not predictable. See below. Runtime exception

Insert to IOPCB by a
transaction sent using a
SEND ONLY interaction

Not applicable. Not rerouted. The message
gets queued under the
system-generated ClientId.

Runtime exception

262 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

The final outcome of RESPB depends on the order in which these events take place:

� If TRANB inserts RESPB after IMS Connector for Java issues the recv() following the
ACK, that recv() will time out, because there will be no message to retrieve at the time it is
issued. Consequently, IMS Connector for Java will not get RESPB. IMS Connect will
consider RESPB not deliverable, and thus will reroute it. Figure 13-2 depicts this case.

Figure 13-2 Sequence of events that lead to a rerouted secondary message

� If TRANB inserts RESPB before IMS Connector for Java issues the recv() following the
ACK, that recv() will get RESPB. Because IMS Connector for Java cannot deliver RESPB
to the application, it will send a NAK to IMS Connect. However, IMS Connect will consider
RESPB as delivered, because IMS Connector for Java actually received and NAKed it.
IMS Connect then will not reroute RESPB, which will be left enqueued under the Tpipe
associated with the original clientID. Figure 13-3 on page 264 shows this case.

IC4J

send(TRANA)

recv(RESPA)

ack(RESPA)

recv(TIMEOUT)

reroute(RESPB)

receive(RESPA)

schedule(TRANB)

enqueue(RESPB)

At this moment, there is no
message to deliver, so the
recv() following the ACK
gets a TIMEOUT

RESPB cannot be
delivered to IC4J, so ICON
requests OTMA to reroute it

TRANB inserts its response
AFTER the
recv() issued by IC4J following the
ACK to RESPA has timed out.

enqueue(TRANA)

ICON

receive(RESPA)

enqueue(TRANB)

schedule(TRANA)

enqueue(RESPA)

TRANA TRANBOTMA/IMS

IC4J = IMS Connector for Java

Chapter 13. IMS Connector for Java rerouting and timeout support 263

Figure 13-3 Sequence of events that lead to a non-rerouted secondary message

It is interesting to notice that this does not apply if the primary transaction (TRANA) is sent
using a commit mode 1 interaction. In that case, the secondary transaction (TRANB) will be
executed in commit mode 0. IMS Connector for Java uses sync level none for CM1
interactions, so there is no ACK, or a second recv() call. IMS Connect will not try to deliver
TRANB in any case, so it will be considered non-deliverable, and thus will be rerouted.

Restriction: Because the outcome of any secondary output sent using a CM0 interaction
and specifying the reRoute flag is not predictable, we do not recommend using this feature.
Periodically check the IMS Connector for Java Web site for changes and enhancements
related to the reRoute mechanism.

IC4J

send(TRANA)

recv(RESPA)

ack(RESPA)

recv(RESPB)
receive(RESPB)

OTMA/IMS

enqueue(RESPB)

IC4J gets RESPB in response
to its ACK to RESPA. IC4J
NAKs RESPB, but ICON
considers it delivered, so it
does not requeue it

enqueue(TRANA)

ICON

receive(RESPA)

enqueue(TRANB)

schedule(TRANA)

schedule(TRANB)

TRANA TRANB

nak(RESPB)

IIn this scenario, TRANB inserts
its response BEFORE the recv()
issued by IC4J after the ACK to
RESPA has timed out

enqueue(RESPA)

IC4J = IMS Connector for Java

264 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 14. Building roll your own clients

In this chapter, we describe how can you send transactions and commands to IMS using IMS
Connect, but without using IMS Connector for Java. We call these roll your own (RYO)
clients. We provide two detailed examples, written in the C and Java programming
languages. These examples are based on the IMS Connect sample code, which you can
download from the corresponding Web page, available at:

http://www.ibm.com/software/data/db2imstools/imstools/imsconnect.html

The sample code we provide is meant to be used as a base to build your own application.
Although we tried to make it useful, we do not pretend to cover all the functionality and
possibilities you can obtain from IMS Connect. Refer to IMS Connect Guide and Reference,
SC18-9287, to get the full details.

14

© Copyright IBM Corp. 2006. All rights reserved. 265

http://www.ibm.com/software/data/db2imstools/imstools/imsconnect.html

14.1 Basic structure of a simple IMS Connect client program
If you have any experience writing TCP/IP client programs, you will feel comfortable with the
IMS Connect programming model. It works in a similar fashion to an HTTP client. Let us take
a look at the logical flow of a simple IMS Connect client. This is, by the way, the flow used in
the sample applications mentioned earlier.

A simple IMS Connect client has to:

1. Obtain a stream socket connection to the IMS Connect server.

2. Build a header structure containing the parameters of the interaction we want to do with
IMS.

3. If needed, build a data structure that contains the transaction code and data we are
sending to IMS.

4. Write the header and the message data to the socket.

5. Get the response back.

6. If needed, build and send a positive acknowledgement (ACK) or a negative
acknowledgement (NAK) message to the server.

7. If needed, get the response from IMS Connect to the ACK or NAK.

8. Close the socket connection.

Figure 14-1 shows a high-level overview of an IMS Connect socket application.

Figure 14-1 Overview of an IMS Connect sockets based application

clients use SOCKETS API:
- Input message:

Formatted message header to
communicate with IMS Connect
Client message (can include
OTMA headers)

- Output message can consist of
one or more predefined structures

User Exits: HWSIMSO0,
HWSSMPL0, HWSJAVA0, ...
Optionally perform:
- Translation ASCII / EBCDIC
-Conversion between client msg

format and OTMA msg format
- Prepare output message
format

CLIENT IMS with OTMA
Establish
environment and
create Socket S

Connect socket S to
IMS Host (Port)

Data exchange on
Socket S

Close Socket S and
terminate

Socket()

Connect()

Write()
Read()
…..
Close()

Establish environment and
create socket S

Bind socket S to a local
address (Port)

Alert TCP/IP of the ability to
accept connection requests

Accept connection and
receive second Socket NS

Data exchange on
Socket NS

- process data
Close Socket NS

Close Socket S and
terminate

Socket()

Bind()

Listen()

Accept()

Read()

Write()

Receive the
OTMA message
....
process
...
Send the OTMA
output reply

- Receive msg
from TCP/IP

-Prepare and
send msg to IMS
in OTMA format

-Receive msg
from IMS
-Prepare msg in
client format

IMS Connect

266 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

As we will see later, this is the simplest way to talk to IMS Connect. Notice that this flow
corresponds to a non-connected protocol, in which the socket connection lasts only long
enough to complete one interaction. With IMS Connect, we can also use a connected
protocol, where we keep the socket open during more than one interaction. The basics,
however, are the same. The difference is that we would simply not close the socket after
sending the ACK.

IMS Connect interaction types
There are three basic types of interaction between a client and IMS Connect:

� Send-receive

This is the usual message interchange, in which the client application sends a message to
IMS Connect that contains a response mode IMS transaction. The client issues a write()
or send() call to the IP socket to send the message to IMS Connect and immediately does
a read() or recv() call to get the response. The message sent to IMS Connect contains the
IMS Request Message (IRM) prefix and at least one transaction segment. We provide a
full description of the IRM prefix in “IMS Request Message (IRM) prefix” on page 269.

� Send-only

In this case, we send IMS Connect a message that contains a non-response IMS
transaction, so the client application issues the send() call but does not follow it with the
corresponding recv() call. If the transaction sent does send any message through the
IOPCB, the response can be discarded or placed on an asynchronous hold queue,
depending on the combination of parameters used (commit mode, purge not delivered
output, and so on). In this case, as in the previous one, the message we send to IMS
Connect has the IRM prefix and at least one transaction segment.

� RESUME TPIPE

The term Tpipe comes from OTMA. Refer to Chapter 2, “Open Transaction Manager
Access” on page 7.

This interaction type is used to recover the undelivered output queued in the
asynchronous hold queue belonging to a Tpipe. Those messages can be created by:

– Messages written by an IMS application using an alternate PCB

– Normal transaction responses (written to the IOPCB) received by IMS Connect after
the timeout period expired for the message that generated them

– Messages sent to the IOPCB by any transaction in a program-to-program switch chain
when a previous transaction has already written to the IOPCB

This message consists of just the IRM prefix. The application issues a read() just after the
write(), and it will get the first (oldest) undelivered asynchronous message waiting in the
queue. There are several options to recover the rest of the messages, which we cover in
“IMS Request Message (IRM) prefix” on page 269.

There are also a few other types of interactions, which are always related to one of the three
we have just described:

� ACK/NAK (acknowledgement/negative acknowledgement)

Used in response to a message where synchronization level confirm was specified.

� CANCEL TIMER

Used to request the cancellation of the timer associated with the wait of data from IMS.
See 7.2.6, “The CANCEL TIMER request” on page 97 for details.

� DEALLOCATE

Used to terminate a conversation rather than complete it.

Chapter 14. Building roll your own clients 267

The type of interaction we want is determined by the content of one of the IRM prefix fields,
namely IRM_F4, which we cover in the next section.

14.2 IMS Connect message structures
The structure of an IMS Connect message is simple, as we just described. It is composed of
a message header followed by the message data. We now describe what is inside those
information blocks.

The first thing you need to know is that the header structures you use must correspond to
what the IMS Connect user message exit expects to find. In this chapter, we assume that the
sample exits provided with IMS Connect, HWSSMPL0 and HWSSMPL1, are in use. If your
installation uses a modified exit, ask your systems programmer if the message header
structures have been changed and modify the samples accordingly with those changes.

The big-endian order means that binary magnitudes longer than one byte must come with
their most significant byte first. This is the same order used on the IBM Eserver zSeries,
POWER™, PowerPC®, and SPARC machines, but it is just the opposite of the Intel® x86
convention. If you are using the C programming language, you can invoke the htons(), htonl(),
ntohs(), and ntohl() to convert short (16-bit) and long (32-bit) magnitudes from host (native) to
network format and back. If you are using the Java programming language, you are safe as
long you use the writeShort() and writeLong() methods of the DataOutputStream class to
write the data to the network connection.

We distinguish four types of messages:

� IMS Request Message (IRM)

These are the messages sent from the client to IMS Connect.

� Request Status Message (RSM)

This is the message returned by IMS Connect to the client when an error has occurred.
The RSM contains a return code and a reason code identifying the type of status.

� Complete Status Message (CSM)

IMS Connect sends this message as the last structure of an output message if the input
message was processed successfully.

� Request Mod Message (RMM)

IMS Connect returns the RMM as the first structure of an output message if the MFS MOD
name is requested and there is output data present.

14.2.1 The IMS Connect input message
Just to clarify, we are using the words “input” and “output” relative to the IMS Connect side.
Therefore, the input message is actually what the client application sends to IMS Connect,
and the output message what IMS Connect sends back to the client application.

The structure of the input message is always the same:

LLLL IRM LLZZdata1 LLZZdata2 ... 0004 0000

Note: IMS Connect expects to find the binary data in big-endian order, also called network
order.

268 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

That is:

� Four bytes containing the total size of the message

� The IRM structure, described later

� One or more optional data segments, each one beginning with a two-byte length and two
flag bytes, which should be zero

� An end of message indication, consisting of the four bytes 00040000

IMS Request Message (IRM) prefix
The IRM prefix contains the information needed by IMS Connect to process the message. It
establishes the type of message that we are sending and what options need to be applied to
it. Table 14-1 describes the IRM prefix as expected by the sample exits, HWSSMPL0 and
HWSSMPL1.

Table 14-1 IRM prefix structure for HWSSMPL0 and HWSSMPL1

Offset Length
(bytes)

Field Meaning

0 4 llll Total length of the message. This total includes
these four bytes.

4 2 IRM_LL Message prefix length, including itself.

6 1 IRM_ARCH Architectural level:
� X'00' Base support.
� X'01' Required space for IRM_REROUT_NM

field. See “IRM_REROUT_NM: Reroute name”
on page 274 for details about
IRM_REROUT_NM.

7 1 IRM_F0 Reserved. Initialize to binary zeros.

8 8 IRM_ID EXIT identifier. For HWSSMPL0, it should be
“*SAMPLE*”

16 4 IRM_RES Reserved. Must be zero.

20 1 IRM_F5 Input message type. See “IRM_F5: Input message
type” on page 270.

21 1 IRM_TIMER Time delay that IMS Connect will wait for IMS to
return data before a timeout occurs. See
“IRM_TIMER: Timeout control” on page 271.

22 1 IRM_SOCT Socket connection type. Use the following values:
� X'00' Transaction socket. The socket

connection lasts across a single transaction.
� X'10' Persistent socket. The socket connection

lasts across multiple transactions.
� X'40' Non-persistent socket. The socket

connection lasts for a single exchange
consisting of an input and an output.

23 1 IRM_ES Unicode encoding schema:
� X'01': UTF8
� X'02': UCS2
� X'02': UTF16
Set to binary zeros. See 14.3, “IMS Connect
Unicode support” on page 275.

Chapter 14. Building roll your own clients 269

IRM_F5: Input message type
This field is actually a bit map that we use to tell IMS Connect about some processing options
that we want it to apply to our message. Table 14-2 shows the available options.

Table 14-2 Values for IRM_F5

24 8 IRM_CLIENTID Unique identification for each client. See
“IRM_CLIENTID: clientID” on page 272 for details
and warnings about this field.

32 1 IRM_F1 MFS MOD name request. Use X'80' to request IMS
Connect to return a MOD name in the output
message.

33 1 IRM_F2 Commit mode. Use X'40' for commit mode zero and
X'20' for commit mode one.

34 1 IRM_F3 Sync level. Use the following values:
� X'00' for NONE
� X'01' for CONFIRM
� X'02' for SYNCPT
This field is also used to set the following options:
� X'04' for purge not deliverable
� X'08' for reroute request

35 1 IRM_F4 Message type. See description below.

36 8 IRM_TRNCOD IMS transaction code we want to execute.

44 8 IRM_IMSDESTID Name of the datastore, as defined in the IMS
Connect configuration member.

52 8 IRM_LTERM IMS LTERM override. See “IRM_LTERM: Logical
terminal override” on page 273.

60 8 IRM_RACF_USERID RACF user ID. Optional if IRM_ARCH = X'00'.

68 8 IRM_RACF_GRNAME RACF group name. Optional if IRM_ARCH = X'00'.

76 8 IRM_RACF_PW RACF PassTicket or password. Optional if
IRM_ARCH = X'00'.

84 8 IRM_APPL_NM RACF APPL name, defined to RACF on the
PKTDATA definition. This field is optional when
IRM_ARCH = X'00'.

92 8 IRM_REROUT_NM Reroute name for the client reroute request. See
“IRM_REROUT_NM: Reroute name” on page 274.
Optional if IRM_ARCH = X'00'.

Value Meaning

X'80' The client builds the OTMA headers. We usually will not do that in a user-written client
application, but IMS Connector for Java does.

X'40' Translation (ASCII/EBCDIC) done by client. Specify this if you are running on an
EBCDIC machine, or if you want to use a nonstandard translation table.

Offset Length
(bytes)

Field Meaning

270 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

The difference between AUTO and NO AUTO is related to the messages that might arrive
during the message retrieval (between the RESUME TPIPE sent to IMS Connect and the
retrieval of the last message present at that moment). If you are using the AUTO option, those
new messages will be delivered to your client. If you use the NO AUTO option, IMS Connect
will not deliver any new messages. For that reason, specify a short timeout value if you are
using NO AUTO, and a long timeout value for AUTO. It does not make sense to wait with NO
AUTO, while it makes sense to do it for AUTO.

IRM_TIMER: Timeout control
This field contains an encoded byte that specifies how much time IMS Connect will wait for
IMS to return data after a write() to the socket. The following functions support the
IRM_TIMER settings:

� TCP/IP SEND of a RESUME TPIPE
� TCP/IP SEND of an ACK or a NAK
� TCP/IP SEND of data
� PC SEND of a RESUME TPIPE
� PC SEND of an ACK or a NAK
� PC SEND of data

The actual timeout period depends on the specific value you have set, the default value
specified in the IMS Connect configuration member, and an internal IMS Connect default:

� If the IRM_TIMER is set to X'00', the following defaults are used:

– The default for all RESUME_TPIPE is two seconds.
– The default for all RESUME_TPIPE non-single ACK is 0.25 seconds.
– The TIMER setting in the configuration member is used for all other cases.

� The X'FF' value means WAIT FOREVER. It is intended to support the AUTO option of the
asynchronous output function (RESUME TPIPE).

� The X'E9' (character 'Z') value means NO WAIT. Nevertheless, IMS Connect only honors
the NO WAIT request on:

– SENDONLY transactions
– ACKs or NAKs associated with a RESUME_TPIPE with asynchronous option SINGLE

X'10' Single message with wait option. Applies only to RESUME TPIPE interactions. If no
message is present in the asynchronous hold output queue, IMS Connect waits for the
timeout value specified in IRM_TIMER for a new message to arrive and then sends it
to the client.

X'00' No option flow for messages. See the explanation for the X'04' value to understand
what this means. This is the default.

X'01' Single message. Applies only to RESUME TPIPE interactions. This means that we
only do one read() on the communication socket after issuing the write() with the
RESUME TPIPE request.

X'02' Auto flow of messages. Applies only to RESUME TPIPE interactions. This means that
the client application enters a loop of read() calls, each one of which will return a
message present at the asynchronous hold queue. The read() issued after getting the
last message waits for the next message according to the IRM_TIMER setting. Use
this only if the client is a dedicated output client.

X'04' No auto flow of messages. This means that the client application enters a loop of
read() calls, each one of which will return a message present at the asynchronous
hold queue. Use this only if the client is a dedicated output client.

Value Meaning

Chapter 14. Building roll your own clients 271

In any other case, IMS Connect enforces the NO WAIT option as follows:

– There is a two second delay for:

• RESUME TPIPE requests
• Conversational transactions (code and data)
• ACKs or NAKs associated with conversational transactions
• Non-conversational transactions (code and data)

– There is a 0.25 second delay for:

• ACKs and NAKs associated with non-conversational transactions commit mode 1
confirms

• ACKs and NAKs associated with non-conversational transactions commit mode 0
confirms

• ACKs and NAKs associated with RESUME TPIPEs with asynchronous options
AUTO or NOAUTO

Be careful about the use of the X'E9' value. Its misuse can result in several problems,
including socket disconnections, losing messages, and hang conditions due to IMS
Connect, the client, and OTMA being in different states, all of them waiting for input.

� The rest of IRM_TIMER values correspond to specific timeout settings, according to
Table 14-3.

Table 14-3 Specific IRM_TIMER values

IRM_CLIENTID: clientID
The clientID identifies one particular instance of work inside IMS Connect and OTMA. If you
are using commit mode 0, it is also used to build the name of the Tpipe that IMS uses for the
input and output messages.

IRM_F4: Message type
The content of this field defines what kind of interaction we have between our client and IMS
Connect. Table 14-4 on page 273 contains the possible values.

IRM_TIMER value Wait value

X'01' through X'19' Range from 0.01 to 0.25 second, 0.01 increments

X'19' through X'28' Range from 0.25 to 1 second, 0.05 increments

X'28' through X'63' Range from 1 to 60 seconds, 1 second increments

X'63' through X'9E' Range from 1 to 70 minutes, 1 minute increments

Important: It is your responsibility to make sure that in each moment a clientID is used
only once. This applies both to the SEND type interactions and the RESUME TPIPE ones.
If you use a clientID that is currently “alive” in IMS Connect, you get an error message (an
RSM with a decimal value of 56, DUPECLNT, in its reason code field).

272 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Table 14-4 Message and interaction types

IRM_LTERM: Logical terminal override
This is a character string value that contains the IMS LTERM override. You can set it to a valid
value or to blanks.

If you specify a non-blank value, the HWSSMPL* exit uses it as the LTERM name passed to
OTMA. OTMA then places this value in the IOPCB LTERM name, so it is seen by the IMS
host application as the LTERM name. If you fill this field with blanks, OTMA uses the Tpipe
name as LTERM name, with the values:

� The ClientId *(IRM_CLIENTID) if you are using commit mode 0.
� The port number (expressed in characters) if you are using commit mode 1.

If you specify your own value in IRM_LTERM, it must follow the rules governing valid IMS
LTERM names.

Value Meaning

' ' (blank) SEND. Transaction code and data (for conversational and non-conversational
response mode transactions) or just data (for conversational transactions) follows the
IRM prefix.

'S' SENDONLY. Transaction code and possibility data for a non-response mode
transaction follows.

'A' ACK: Positive acknowledgement. This is used in response to a message sent to the
client when sync level=confirm was specified in the input message. The ACK tells IMS
Connect that the message was successfully received, so the transaction can be
committed (when using commit mode 1), or the output message can be dequeued
(when using commit mode 0).

'N' NAK: Negative acknowledgement. Same as ACK. In this case, we tell IMS Connect
that we were unable to process the output message. If we are using commit mode 1,
IMS issues an abend 119 and rolls back the transaction. If we use commit mode 0, the
output message is placed in the asynchronous hold queue associated with the used
Tpipe so that it can be recovered using a RESUME TPIPE.

'D' DEALLOCATE. Use this value to terminate a conversation rather than a complete
transaction.

'R' RESUME TPIPE. Use this value to request asynchronous output data from IMS. The
commit mode must be zero. IMS Connect delivers one or more messages enqueued
in the asynchronous hold queue associated with the Tpipe corresponding to the
specified IRM_CLIENTID. The quantity of messages delivered depends on the value
of IRM_F5.

'C' CANCEL TIMER. Use this value to request to cancel the timer associated with the wait
of data from IMS.

Note: There are security issues regarding IRM_LTERM. If your system setup or your
applications restrict the access to transactions or to options within the transactions in base
of the LTERM name, you must be sure to control who and what can use a specific
IRM_LTERM value. One place you can do that is in the user message exits. See
Chapter 9, “IMS Connect user exit support” on page 115 for more details about the user
message exits.

Chapter 14. Building roll your own clients 273

IRM_REROUT_NM: Reroute name
This field is intended to contain an 8-character alternate Tpipe name, which is used if you
specify X'08' in IRM_F3. To use this field, you must also set IRM_ARCH to X'01'. If you
specify X'08' in IRM_F3, the undelivered asynchronous option goes to:

� The Tpipe you specify in IRM_REROUT_NM

� The Tpipe you specify for the RRNAME parameter in the IMS Connect configuration
member

� The default value, HWS$DEF, if you did not specify either

14.2.2 The IMS Connect output message
The structure of the output message (remember, output means information sent by IMS
Connect to the client) depends on whether we requested a MOD name to be present (setting
IRM_F1 to X'80') and the outcome (success or failure) of the interaction. We also have to take
into account that if we use the HWSSMPL1 exit, IMS Connect puts before the whole output
message a four-byte field with the total length, including those 4 bytes:

[LLLL] RMM LLZZdata1 LLZZdata2 ... CSM
[LLLL] LLZZdata1 LLZZdata2 ... CSM
[LLLL] RSM

These three formats correspond to:

� A successful interaction, with MOD NAME requested
� A successful interaction, without MOD NAME requested
� A non-successful interaction

Request Status Message (RSM)
The Request Status Message (RSM) contains the status and reason codes set by IMS
Connect when an interaction does not complete successfully. Table 14-5 describes the
structure of this block.

Table 14-5 Request Status Message (RSM)

Complete Status Message (CSM)
The Complete Status Message (CSM) structure appears at the end of the message IMS
Connect sends to the client when an interaction has completed successfully. Table 14-6 on
page 275 describes the structure.

Offset Length
(bytes)

Field Meaning

0 2 LL Length of RSM

2 1 RSM_FLG1 Flag byte one:
� X'80' Asynchronous message queued in IMS
� X'40' Conversational output message
� X'20' ACK/NAK required

3 1 Reserved Reserved (set to binary zeros)

4 8 IRM_ID Char value of *REQSTS*

12 4 RSM_RETCOD Return code

16 4 RSM_RSNCOD Reason code

274 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Table 14-6 Complete Status Message (CSM)

Request Mod Message (RMM)
The Request Mod Message (RMM) structure appears at the beginning of the message IMS
Connect sends to the client when the interaction has completed successfully and a MOD
name was requested. Table 14-7 describes this structure.

Table 14-7 Request Mod Message (RMM)

14.3 IMS Connect Unicode support
Unicode is a character encoding, established by the Unicode Consortium, that provides a
unique number for every character without depending on the platform, application, or
language. The Unicode Standard defines three encoding forms that allow the same data to
be transmitted in a byte, word, or double-word-oriented format (that is, in 8-, 16-, or 32-bits
per code unit). All three encoding forms encode the same common character repertoire and
can be efficiently transformed into one another without a loss of data. The Unicode Standard
has been widely adopted by industry leaders and it is used by modern standards such as
XML and Java. For more information about Unicode, the Unicode Consortium, and the
different encoding schemas, see:

http://www.unicode.org/

IMS Connect provides Unicode support in the form of allowing users to selectively send
Unicode data. The following areas are excluded from containing Unicode data:

� LLLL
� IRM
� LLZZ (all data length fields)
� OTMA HEADERS
� RMM
� CSM
� RSM

Offset Length
(bytes)

Field Meaning

0 2 LL Length of CSM

2 1 CSM_FLG1 Flag byte one:
� X'80': asynchronous message queued in

IMS.
� X'40': conversational output message
� X'20': ACK/NAK required

3 1 Reserved Reserved (set to binary zeros)

4 8 CSM_ID Char value of *CSMOKY*

Offset Length
(bytes)

Field Meaning

0 2 LL Length of RMM

2 2 ZZ Reserved (set to binary zeros)

4 8 ID Char value of *REQMOD*

12 8 MOD Char value of the requested MFS MOD name

Chapter 14. Building roll your own clients 275

http://www.unicode.org/

Only the data portion of the message can be of Unicode format, but the transaction code can
be ASCII, EBCDIC, or Unicode. (It depends on your IRM header setting.)

IMS Connect Unicode support includes following Unicode encoding schemas:

� UTF-8
� UTF-16
� UCS-2

IMS Connect supports the following language (script) groups:

� Group 1 (Western Europe and United States)
� Group 2 (Central Europe)
� Group 3 (Baltic)

Currently, IMS Connect supports ASCII and EBCDIC data steams from and to the client. The
input to IMS Connect from the client is translated to EBCDIC if ASCII data received; if the
input from the client is EBCDIC, no translation takes place. Output from IMS Connect to the
client is translated from EBCDIC to ASCII if ASCII data is received. This support allows, in
addition to ASCII and EBCDIC data to be received from the IMS Client by IMS Connect and
sent by IMS Connect to the client, the receipt of Unicode (UTF-8, UTF-16, or UCS-2) data.

There is not a transformation of output to the client by IMS Connect for Unicode messages
received from IMS. All IMS error messages, such as DFS555 and DFS0064, are sent as
EBCDIC or ASCII, based on the code type specified by the IRM_MSGID content of the IRM
received from the client. As an example, the IRM_MSGID of *SAMPLE*, which means
HWSSMPL0, will either be ASCII or EBCDIC, and that setting will determine the code type of
the IRM and OTMA header.

14.3.1 Transaction code translation
The IMS Connect user message exits will translate the IMS transaction code from Unicode to
EBCDIC when the client sends the transaction code as Unicode. A valid IMS transaction
code can be constructed from the following conditions:

� A though Z (uppercase only).
� Special characters #, $, @, and 0 to 9.
� It must begin with an alphabetic character.

It is assumed that any IMS application that supports Unicode is a new IMS application that
has the capability to process Unicode data and deal with an 8-byte transaction code.

IMS Connect transforms the IMS transaction code to EBCDIC if it is Unicode. The client
application can send an EBCDIC, ASCII, or Unicode IMS transaction code, but the
transaction code must be an 8-byte transaction code field (left justified and padded with
blanks), followed by Unicode data, in which case the IMS transaction code will only be
translated to EBCDIC, if sent as ASCII and if the Unicode data is sent to IMS.

Important: The Unicode support is based on the cooperation and understanding between
the client application and the IMS host application (such as a Java application running in
an IMS dependent region). Also, it s based on an understanding that both applications can
deal with Unicode data and that the two have agreements about the supported Unicode
encoding schema and the structure and content of the message being sent and received.

276 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

If the transaction code is sent as Unicode, the transaction code will be translated to EBCDIC.
The host application must define an 8-byte field to contain the transaction code. If the
installation wants to have a blank following the 8-byte transaction code field, it will be
delivered to the host application as a Unicode blank, not an EBCDIC blank.

14.3.2 Output message including Unicode data from IMS Connect
The data section of output message is not transformed for those outputs that are a result of
Unicode data received from the client. If Unicode data is sent to IMS Connect, the related
output is treated as Unicode. For RESUME TPIPE requests, the client must specify in the
IRM if the output is to be treated as Unicode or non-Unicode. For message switching, it is the
IMS host application’s responsibility to ensure that the output message is formatted using the
correct Unicode encoding schema or EBCDIC for the destination. All IMS error messages (for
example, DFS555I) are sent as either ASCII or EBICDIC. The client application uses the
IRM_MSGID field of the IRM to tell IMS which type to send. IMS Connect does not transform
messages to Unicode. For example, if IRM_MSGID is specified as EBCDIC, the IMS error
message (DFSnnnn) is sent as EBCDIC; if IRM_MSGID is specified as ASCII, the IMS error
message (DFSnnnn) is translated from EBCDIC to ASCII by the user exit.

14.3.3 Message structures for Unicode support
Table 14-8 shows new fields and flags in the IRM header have been defined for Unicode
support.

Table 14-8 New fields and flags in IRM header for Unicode support

For Unicode data, the input message structure sent by the client must adhere to the structure
shown in Table 14-9.

Table 14-9 The input message structure for Unicode support

Field Value Meaning

IRM_F1 field (has new flags).

IRM_F1_UC X'20' Unicode message

IRM_F1_UCTC X'10' Unicode transaction code

IRM_ES field (This is a new field. Previous name was IRM_RSV02, reserved field.)

IRM_ES_UTF8 X'01' UTF8 encoding shcema

IRM_ES_UCS2 X'02' UCS2 encoding shcema

IRM_ES_UTF16 X'02' UTF16 encoding shcema

Message structure contents Consideration

LLLL (full word total length) It must be binary.

IRM header It cannot be Unicode. It must be:
� The binary data for defined binary fields.
� The data fields defined as character fields

and can be either ASCII or EBCDIC.

OTMA headers If your own user exit provides OTMA header, it
cannot be Unicode. It must be:
� The binary data for defined binary fields.
� The data fields defined as character fields

and can be either ASCII or EBCDIC.

Chapter 14. Building roll your own clients 277

For Unicode data, the output message structure sent by the client must adhere to the
structure shown in Table 14-10.

Table 14-10 The output message structure for Unicode support

LL (halfword message data length) It must be binary.

ZZ (halfword reserved field) It must be binary zeros.

IMS transaction code It can be either:
� Unicode and must be defined as an

8-character transaction code field, left
aligned, and padded with blanks.

� ASCII and must be defined as an 8-character
transaction code field, left aligned, and
padded with blanks.

� EBCDIC and can be defined as an
8-character transaction code field, left
aligned, and padded with blanks.

User Data Unicode data for the supported Unicode encoded
schema.

LL (halfword message data length) It must be binary.

ZZ (halfword reserved field) It must be binary zeros.

User Data Unicode data for the supported Unicode encoded
schema.

Message structure contents Consideration

RMM It cannot be Unicode. It must be:
� The binary data for defined binary fields.
� The data fields defined as character fields

and can be either ASCII or EBCDIC.

LLLL (full word total length) It must be binary.

LL (halfword message data length) It must be binary.

ZZ (halfword reserved field) It must be binary zeros.

User Data Unicode data for the supported Unicode encoded
schema.

LL (halfword message data length) It must be binary.

ZZ (halfword reserved field) It must be binary zeros.

User Data Unicode data for the supported Unicode encoded
schema.

CSM It cannot be Unicode. It must be:
� The binary data for defined binary fields.
� The data fields defined as character fields

and can be either ASCII or EBCDIC.

RSM It cannot be Unicode. It must be:
� The binary data for defined binary fields.
� The data fields defined as character fields

and can be either ASCII or EBCDIC.

Message structure contents Consideration

278 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

14.4 Complete pseudocode samples
In this section, we provide you complete pseudocode for several useful execution flows. In
14.5, “Detailed code examples” on page 282, we provide two implementations of these
programming models in the C and Java programming languages.

14.4.1 Commit mode 1 send-receive programming
In this sample, we assume that you are interested in writing a program to send one
transaction to an IMS system using IMS Connect, under the commit mode 1
(send-then-commit) protocol, acknowledging the response (synchronization level confirm),
and using a transaction socket.

This program model corresponds to the simplified example presented at the beginning of the
chapter. Example 14-1 shows the pseudocode to implement this model.

Example 14-1 Pseudocode for a commit mode 1, sync level confirm, transactional socket

PROGRAM send_receive_cm1(host, port, datastore, transaction_data)
socket := open_socket(host, port) 1.
IRM := build_irm(commit_mode=1, synch_level=CONFIRM, data_store=datastore, 2.

type=SEND_RECEIVE, transaction=transaction_data);
send(socket,IRM);
response := receive(socket); 3.
if (response is a RSM) 4.

print_error_details(response.RSM_data);
else

if (response contains a CSM)
process_response(response.segment_data);
if (response.ack_needed) 5.

IRM := build_irm(commit_mode=1, synch_level=CONFIRM, data_store=datastore,
type=ACK, transaction=NULL);

send(socket,IRM);
response := receive(socket); 6.
if (response.RSM IS NOT “deallocate commit”)

print_error_details(response.RSM_data);
<prepare abnormal termination>

else
<everything OK, prepare normal termination>

endif
endif

else
print_error_details(response.RSM_data);
<prepare abnormal termination>

endif
endif
close(socket); 7.

END send_receive_cm1;

The following numbers correspond to the numbers in Example 14-1:

1. To communicate to IMS Connect, we need to create and open a TCP socket bound to the
host and port where IMS Connect is listening.

2. Next, we prepare and send the input message structure, according to 14.2.1, “The IMS
Connect input message” on page 268.

3. Now, we read the response from the socket. IMS Connect waits for OTMA up to the
maximum time we specified in the IRM_TIMER field of the IRM prefix. We can also use
the TCP/IP timeout features to avoid blocking too much time.

Chapter 14. Building roll your own clients 279

4. If the interaction ended normally, IMS Connect sends us a CSM structure; otherwise, we
receive an RSM. If we receive an RSM, we will probably want to notify the user with an
appropriate error message.

5. If we receive a CSM, we can process the output message from IMS. We also check if we
need to send an ACK, looking at the corresponding bit flag, according to 14.2.2, “The IMS
Connect output message” on page 274. In this sample, we use sync level=confirm, so we
always need to ACK a correct response. However, it is a good programming practice to
check the flag, so if in the future we modify the program to use another sync level, it will
not stop working.

6. We have to read the IMS Connect response to our ACK. IMS Connect answers with an
RSM that we must examine to know if the transaction was committed successfully. In that
case, the return code is X'04' and the reason is X'61' (decimal 97, “deallocate commit”). If
the commit was not successful, the reason code is X'62' (decimal 98, “deallocate abort”).

7. Because we are using a transaction socket, we close the communication with IMS
Connect. Actually, at this point, IMS Connect has already closed its side of the socket.

14.4.2 Commit mode 0 send-receive programming
Now, we take a look at a program to use commit mode 0 and a permanent socket. This
program has to take into account the possibility of IMS sending more than one response
message to a transaction. The sync level we use is imposed by the commit mode 0 protocol
and has to be confirm.

Example 14-2 shows the pseudocode for a interactive program that prompts for transactions
until the user signals it to end the process.

Example 14-2 Pseudocode for a commit mode 0 interaction, permanent socket

PROGRAM send_receive_cm0(host,port,datastore)
socket := open_socket(host, port) 1.
prompt_user(transaction_data, end_flag); 2.
while (not end_flag)

IRM := build_irm(commit_mode=0, synch_level=CONFIRM, data_store=datastore,
type=SEND_RECEIVE, transaction=transaction_data);

send(socket,IRM);
response := receive(socket); 3.
while(response is NOT a RSM) 4.

display_response(response.segments);
if (response.ack_needed) 5.

IRM := build_irm(commit_mode=0, synch_level=CONFIRM, data_store=datastore,
type=ACK, transaction=NULL);

send(socket,IRM);
endif
response := receive(socket); 6.

endwhile
if (response.RSM is not “timeout expired”); 7.

print_error_details(response.RSM_data);
endif
prompt_user(transaction_data, end_flag);

endwhile
close(socket); 8.

END send_receive_cm0;

The following numbers correspond to the numbers in Example 14-2:

1. To communicate to IMS Connect, we need to create and open a TCP socket bound to the
host and port where IMS Connect is listening.

280 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

2. Next, enter a loop to send the messages to IMS Connect. We prompt the user for a
transaction, prepare the IRM structure according to 14.2.1, “The IMS Connect input
message” on page 268, and send the IRM to IMS Connect.

3. Now, we read the response from the socket. IMS Connect waits for OTMA up to the
maximum time we specified in the IRM_TIMER field of the IRM prefix. We can also use
the TCP/IP timeout features to avoid blocking too much time.

4. IMS Connect tries to send us all the output generated by the sent transaction and any
other transaction chained by it using program-to-program switch, so we must loop reading
responses until IMS Connect notifies us that there are no more using an RSM block.

5. Because we are using commit mode zero, we must ACK each response to tell IMS
Connect to dequeue the messages from the output queue, but it is a good programming
practice to check the corresponding bit in the CSM structure.

6. We try to get the next response from IMS Connect and loop again.

7. When there are no more messages to get or an error has occurred, IMS Connect sends
us an RSM, which signals the end of the loop. If the reason for sending the RSM was
simply the end of pending messages, the RSM contains a return code of X'20' or X'24',
meaning that a timeout has occurred. If the return code is not X'20' or X'24', we have to
deal with an error condition and notify the user accordingly.

8. Because we are using a permanent socket, we do not close until the main loop has ended.

14.4.3 Commit mode 0 RESUME TPIPE programming
In this example, we show the pseudocode for a dedicated asynchronous message reader
client. This program is intended to be run as a started task, in z/OS terminology, or a daemon,
in UNIX terms, continuously waiting for asynchronous messages in a specific Tpipe.

This kind of a client can only be used to recover messages sent to a dedicated Tpipe by
means of ALTPCB messages or rerouted non-delivered messages. See Chapter 13, “IMS
Connector for Java rerouting and timeout support” on page 257 for an explanation about the
different types of asynchronous messages. It must not be used to recover asynchronous
output sent to ordinary clients. The reason is that this program will be continuously waiting for
messages. This means that the clientID for which it is waiting will not be usable to send
transactions. IMS Connect will refuse to send a transaction to that clientID and will issue a
DUPECLNT error.

Example 14-3 shows the pseudocode for a dedicated asynchronous message processor.
This program would continue to run until IMS reports an error, or the program is cancelled or
killed. If you plan to build this type of client, you should provide a way to shut down the
program in an ordered way. In a UNIX environment, that can be done using a signal trap. In
an z/OS environment, you can use the console interface.

Example 14-3 Pseudocode for a dedicated asynchronous message processor

PROGRAM process_asynchronous(host,port,datastore,clientid);
socket := open_socket(host,port); 1.
IRM := build_irm(commit_mode=0, synch_level=CONFIRM, data_store=datastore, 2.

type=SEND_RECEIVE, transaction=NULL, client=clientid,
flow=AUTO, timeout=x’FF’);

send(socket,IRM);
response := receive(socket); 3.
while (response is NOT a RSM);

process_response(response.segments);
if (response.ack_needed); 4.

IRM := build_irm(commit_mode=0, synch_level=CONFIRM, data_store=datastore,
type=ACK, transaction=NULL, timeout=x’FF’);

Chapter 14. Building roll your own clients 281

send(socket,IRM);
endif;
response := receive(socket); 5.

endwhile;
close(socket);

END process_asynchronous;

The following numbers correspond to the numbers in Example 14-3 on page 281:

1. To communicate to IMS Connect, we need to create and open a TCP socket bound to the
host and port where IMS Connect is listening.

2. Next, we prepare and send an IRM to IMS Connect, specifying that we want to retrieve
asynchronous output using the AUTO flow control and a X'FF' or “wait forever”
IRM_TIMER. This combination of values tells IMS Connect to send every message
present in the asynchronous hold queue in the moment that we send the IRM and to wait
forever for further messages. See 14.2.1, “The IMS Connect input message” on page 268
for details about the IRM structure.

3. Now, we read the first asynchronous message from the socket. If there is no such
message waiting to be retrieved, IMS Connect waits until there is one. This wait proceeds
forever, due to the AUTO flow control we specified in the IRM. Afterward, we enter a loop
until IMS Connect sends us an RSM, indicating that a error has been detected.

4. Because we are using commit mode zero, we must ACK each response to tell IMS
Connect to dequeue the messages from the output queue, but it is a good programming
practice to check the corresponding bit in the CSM structure.

5. We try to get the next response from IMS Connect and loop again.

14.5 Detailed code examples
After providing the basics about the execution flow of an IMS Connect client, we take a more
deeper look at two code examples. The first code sample is written in the C programming
language and should compile under any reasonably standard environment. The second code
sample is written in the Java language and should compile and run under a JVM™ with a
version equal to or later than 1.4.2.

We wrote both samples trying to make them functionally equivalent. Both are invoked the
same way, and both can send any arbitrary transaction to an IMS Connect host or send a
RESUME TPIPE command:

sample -h hostName -p portNumber [-d datastoreName] [-u userId [-g groupName]
[-w password]] [-c clientid] [-t ltermName] [-o timer]
[-x] [-y [reRouteName]]
[-m {0|1}] [-l {N|C|S}] [-s] [-n] trancode trandata...

sample -h hostName -p portNumber [-d datastoreName] [-u userId [-g groupName]
[-w password]] [-o timer] -c clientId -r [-n]

The -s switch makes the interaction SEND ONLY. The -m switch enables you to select commit
mode 0 or commit mode 1, and the -l switch lets you specify the sync level (none, confirm,
synch). The -n switch forces a NAK, unless the sync level is set to none. You can specify a
value for the IRM_TIMER field using the -o flag and its hexadecimal, encoded value as
specified in “IRM_TIMER: Timeout control” on page 271. The -x flag enables the purge
asynchronous output feature, and the -y flag allows you to ask the asynchronous output to be
rerouted and, optionally, to specify the reroute name.

282 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Of course, you must add the java command at the beginning of the line and capitalize the
name of the program (Sample instead of sample) when you execute the Java version of the
program.

14.5.1 C example
The complete listing of the source code is in Example A-1 on page 470. In this section, we
review some excerpts of the code that are relevant to this chapter.

Compiling and linking the C sample program
This program should compile, link, and run in any reasonable POSIX-compliant system. That
includes Linux, IBM AIX 5L, the Berkeley Software Distribution (BSD)-based systems, and
Mac OS X. It will not run as is in the UNIX System Services environment of z/OS: The
HWSSMPL0 will expect to find the data coded in ASCII, and UNIX System Services is
EBCDIC based.

If you want to run the sample under Microsoft Windows, will need a POSIX layer emulator
such as Cygwin. You can download Cygwin from the following Web site:

http://www.cygwin.com

To compile the sample program, place it into a directory of your choice, change (cd) to that
directory and issue the following command:

cc -o client client.c

Change cc to the name of the C compiler in your system. For example, if you are using Linux,
you must type:

gcc -o client client.c

That should leave you with a client executable, which can be run using the syntax described
earlier in this section, 14.5, “Detailed code examples” on page 282. Remember to add the
current directory prefix to the command if your execution PATH does not include if (./client).

Structure of the program
This program shows the general structure presented in 14.1, “Basic structure of a simple IMS
Connect client program” on page 266. Lets see which part of the code corresponds to each
step described there.

Obtain a stream socket connection to the IMS Connect server
This is done in the function sample_connect, as shown in Example 14-4.

Example 14-4 Opening a socket connection to IMS Connect in C

int sample_connect(struct sampletran *sample) {
 int sockfd;
 struct hostent * host;
 struct sockaddr_in socketAddress;

 /* get host info */
 if ((host = gethostbyname(sample->hostName)) == NULL) { 1.
 perror("gethostbyname"); (A)

Note: Cygwin is licensed under an free software license (GNU General Public License, or
GPL). This license contains provisions that govern its use and distribution in a commercial
environment. Carefully check those conditions before using or deploying Cygwin.

Chapter 14. Building roll your own clients 283

http://www.cygwin.com

 exit(1);
 }

 /* initialize the socket descriptor */
 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) { 2.
 perror("socket");
 exit(1);
 }

 /* set some socket address values */
 socketAddress.sin_family = AF_INET;
 socketAddress.sin_port = htons(sample->portNumber); /* network byte order */
 socketAddress.sin_addr = *((struct in_addr *)host->h_addr);
 memset(&(socketAddress.sin_zero), 0, 8); /* zero out the rest of the struct */

 /* connect the socket */ 3.
 if (connect(sockfd, (struct sockaddr *)&socketAddress, sizeof(struct sockaddr)) == -1)
 {
 perror("connect");
 exit(1);
 }

 /* return the socket descriptor */
 return sockfd;
}

This function is fairly standard, and its structure will be recognized by anyone who has written
a TCP/IP client program. The following numbers correspond to the numbers in Example 14-4
on page 283:

1. We translate the host name to a binary IP address using the gethostbyname() function.

2. We prepare to create a STREAM socket using the IP address we just obtained and the
port number specified in the call.

3. Finally, we open a connection with the IMS Connect server and get a socket descriptor.

Preparing and sending the message to IMS Connect
The function sample_send() prepares the whole message in a dynamically allocated buffer
and sends it to the server in a single send() call. If you use multiple calls to send the data, you
have to be aware that the z/OS TCP/IP stack is by default configured to wait for 200
milliseconds before sending back each ACK. In that case, we would incur in a great
performance penalty doing several send() calls. The best way to prevent this is to use a single
send(). If you must do multiple send() calls, be sure that the TCP/IP NODELAYACK option is
in use.

Example 14-5 shows the source code for the sample_send() function. This function can send
IMS Connect any kind of interaction, based on the value of the msgType parameter. In the
sample, code we are only sending ' ' (SEND), 'A' (ACK), 'S' (SEND ONLY), and 'R' (RESUME
TPIPE) interactions.

Example 14-5 Preparing and sending a message to IMS Connect in C

/*
 * Sends the input data to the host
 *
 * Parameters:
 * sockfd Connected socket descriptor
 * sample Address of a sampletran structure with the interaction data
 * msgType Value of IRM_F4 (' ', 'A', 'R')

284 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

 *
 * Notice: This code has been modified to send all the data to IMS Connect in a
 * single write to enhance performance. The old IMS Connect sample does a write for
 * each field. YOU SHOULD NOT DO THAT. Build first the whole message in memory and
 * send it in one call.
 */

void sample_send(int sockfd, struct sampletran *sample, char msgType) {
 int totalLength, totalLengthBE;
 short segmentLength;
 short prefixLength = PREFIX_LENGTH;
 char irm_f3 = (char) 0;
 char irm_arch = (char) 0x01; /* Arch level 1 to use Reroute Name */
 char *message = NULL;
 char *currPtr = NULL;
 int zero = 0; /* need this so we can pass a pointer to zero */

 /* +4 for first LL, ZZ and final LL, ZZ */
 totalLength = 4 + PREFIX_LENGTH + 4; 1.

 /* add in segment length, if segment is defined */
 if (sample->tranText != NULL) {
 totalLength += strlen(sample->tranText) + 12; /* +12 for LL, ZZ, tranCode */
 }

 /* Compute the IRM_F3 value */
 irm_f3 = sample->syncLevel; 2.
 if (sample->purge) {
 irm_f3 |= SL_PURGE;
 }
 if (sample->reroute) {
 irm_f3 |= SL_REROUTE;
 }

 message = malloc(totalLength); 3.
 if (message == NULL) {
 perror("Could not allocate memory for the whole message.");
 exit(32);
 }
 memset(message, 0, totalLength); /* Clean up the new allocated space */
 currPtr = message; /* Current write pointer set to beginning of message space */

 /* convert lengths to big endian */
 totalLengthBE = htonl(totalLength);
 prefixLength = htons(prefixLength);

 /* Build the message structure in the allocated buffer */ 4.
 /* Build the IRM prefix first */
 currPtr = addBuffer(currPtr, &totalLengthBE, 4); /* Total message length */
 currPtr = addBuffer(currPtr, &prefixLength, 2); /* IRM_LL */
 currPtr = addBuffer(currPtr, &irm_arch, 1); /* IRM_ARCH */
 currPtr = addBuffer(currPtr, &zero, 1); /* IRM_F0 */
 currPtr = addBuffer(currPtr, sample->exitID, 8); /* IRM_ID */
 currPtr = addBuffer(currPtr, &zero, 4); /* IRM_RES */
 currPtr = addBuffer(currPtr, &zero, 1); /* IRM_F5 - No option flow */
 currPtr = addBuffer(currPtr, &sample->timer, 1); /* IRM_TIMER */
 currPtr = addBuffer(currPtr, &zero, 1); /* IRM_SOCT - Transaction socket
*/
 currPtr = addBuffer(currPtr, &zero, 1); /* IRM_ES */
 currPtr = addBuffer(currPtr, sample->clientID, 8); /* IRM_CLIENTID */

Chapter 14. Building roll your own clients 285

 currPtr = addBuffer(currPtr, &zero, 1); /* IRM_F1 - No MODNAME request */
 currPtr = addBuffer(currPtr, &sample->commitMode, 1);/* IRM_F2 - Set commit mode */
 currPtr = addBuffer(currPtr, &irm_f3, 1); /* IRM_F3 - Set sync level... */
 currPtr = addBuffer(currPtr, &msgType, 1); /* IRM_F4 - Set message type */
 currPtr = addBuffer(currPtr, sample->tranCode, 8); /* IRM_TRNCOD */
 currPtr = addBuffer(currPtr, sample->datastoreID, 8);/* IRM_IMSDESTID */
 currPtr = addBuffer(currPtr, sample->ltermName, 8); /* IRM_LTERM */
 currPtr = addBuffer(currPtr, sample->racfUserID,8); /* IRM_RACF_USERID */
 currPtr = addBuffer(currPtr, sample->racfGroupName,8);/* IRM_RACF_GRPNAME */
 currPtr = addBuffer(currPtr, sample->password,8); /* IRM_RACF_PW */
 currPtr = addBuffer(currPtr, BLANK8, 8); /* IRM_APPL_NM */
 currPtr = addBuffer(currPtr, sample->rerouteName,8); /* IRM_REROUT_NM */

 /* Add the transaction segment (trancode + trantext) just for IRM_F4 = ' ' or 'S' */ 5.
 if (msgType == ' ' || msgType == 'S') {
 /* + 12 for LL and ZZ and trancode */
 segmentLength = (short) (strlen(sample->tranText) + 12);
 /* convert to big endian */
 segmentLength = htons(segmentLength);
 currPtr = addBuffer(currPtr, &segmentLength, sizeof(short)); /* Transaction LL */
 currPtr = addBuffer(currPtr, &zero, sizeof(short)); /* Transaction ZZ */
 currPtr = addBuffer(currPtr, sample->tranCode, 8); /* Transaction code*/
 currPtr = addBuffer(currPtr, sample->tranText, strlen(sample->tranText)); /* data*/

 }

 /* send final LL ZZ to signal no more data to IMS Connect */ 6.
 segmentLength = 4;
 /* convert to big endian */
 segmentLength = htons(segmentLength);
 currPtr = addBuffer(currPtr, &segmentLength, sizeof(short)); /* End of message LL */
 currPtr = addBuffer(currPtr, &zero, sizeof(short)); /* End of message zeros*/

 /* Send the built message to IMS Connect and free the malloc() */ 7.
 send(sockfd, message, totalLength, 0);
 free(message);
}

The following numbers correspond to the numbers in Example 14-5 on page 284:

1. First, we compute the length of the whole message. For a starter, we know the IRM
PREFIX length, which, as we can see in Table 14-1 on page 269, is exactly 96 bytes (the
offsets that you can see in Table 14-1 on page 269 are relative to the beginning of the
message and have not yet accounted for the four-byte length field). We have to add to this
96 bytes:

– Four bytes for the total message length prefix.

– Four bytes for the trailing 0004 0000 block.

– If we are sending data, 12 bytes for its LL, ZZ (2 bytes each) and the transaction code
(8 bytes more).

– The actual length of the data we are sending.

2. IRM_F3 is a bit map value, and we must build it combining the bit values of the appropriate
flags.

3. When we know the total length, we allocate heap memory to build the message we want
to send to IMS Connect.

As explained in 14.2, “IMS Connect message structures” on page 268, IMS Connect
expects the binary quantities to be expressed in big endian byte order. We use the htonl()

286 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

and htons() macros to put integers and shorts, respectively, in the correct representation.
Those macros take care of the details of the architecture in which we are running our
program, so the bytes are swapped only when it is needed.

4. We build the IRM prefix field by field. To accomplish this, in this sample, we use an utility
function (addBuffer) that copies a number of bytes to an specified address and returns the
address to which we should copy the next block. See Example A-1 on page 470 for the
code for that function. There you will find also the definition for the structure sampletran,
which we use to keep all the interaction parameters.

5. If we are doing a SEND or SEND ONLY interaction (IRM_F4 is blank, or 'S'), we need to
add the actual transaction data to our message. Notice how, once again, we use htons() to
put the length of the segment in network, that is, big endian order.

6. If we need to send more than one segment in our message, do it at this point. In this
sample, we are sending a unique segment, so we signal IMS Connect that there are no
more segments to process, just sending four bytes with the values X'00040000', that is,
the big endian representation of the length (4 bytes) and two binary zero octets.

7. At this point, we can send the message through the opened socket. For the message
length, be sure to use a variable that holds that magnitude in the native byte order, or the
results will be unpredictable. We also have to be careful with the dynamically allocated
memory and free whatever buffer we used malloc with previously.

Getting the IMS Connect response
Unless we requested a SEND ONLY interaction, we should request and wait for a response
from IMS Connect. This response will be formatted according to what we see in 14.2.2, “The
IMS Connect output message” on page 274. We have to be prepared to get a success
response, which will be composed by one or more data segments followed by a CSM, or a
failure response, which will be formed by a single RSM.

In this sample, we did not request a MOD name, so we can safely ignore the RMM structure
(we will never get that one), but we coded the corresponding support just to make it easier to
add that capability to the sample program.

Example 14-6 shows the source code for the sample_receive() function, which takes care of
all this issues.

Example 14-6 Obtaining the IMS Connect response in C

/*
 * Receive the data from the host, and parses it into segment strings
 * We are using HWSSMPL0, so we don't have a total-length prefix.
 * If we were using HWSSMPL1 we shoult take that into account.
 *
 * Parameters:
 * sockfd Connected socket descriptor
 * sample Address of a sampletran structure with the interaction data
 *
 * Warning: if you are adapting this code to be used in a production
 * program, please notice that this function DOES NOT free the heap

Note: The Intel x86 architecture used in the IBM Eserver xSeries® and common
PC-compatible machines uses little endian order, while the zSeries, POWER,
PowerPC, and SPARC processors are big endian. Nevertheless, do not rely on what
you know about the target architecture for your application and instead make use of the
aforementioned htonl(), htons(), ntohl(), and ntohs() macros to make your program
more easily portable.

Chapter 14. Building roll your own clients 287

 * memory it allocates, namely the array sample->response and its
 * components.
 */
void sample_receive(int sockfd, struct sampletran *sample) {
 int totalLength, recordLength, segmentIndex, returnCode, reasonCode;
 char xsm_flg;
 char reserved;
 char * * segments;
 char * identifier;
 char * modName;
 char * segment;
 int done = 0;

 sample->nakRequired = 0;
 sample->ackRequired = 0;
 /*
 * malloc() up the segment array 1.
 */
 segments = (char * *) malloc(sizeof(char *) * MAX_SEGMENTS);
 for (segmentIndex = 0; segmentIndex < MAX_SEGMENTS; segmentIndex++)

segments[segmentIndex] = NULL;
 segmentIndex = 0;

 /* read total length */ 2.
 recv(sockfd, &totalLength, sizeof(short), 0);
 /* read flags byte */
 recv(sockfd, &xsm_flg, sizeof(char), 0);
 /* read reserved byte */
 recv(sockfd, &reserved, sizeof(char), 0);

 /* convert total length from big endian */
 totalLength = ntohs(totalLength);

 /* read identifier (exitID) */ 3.
 if (totalLength < 12) {
 identifier = (char *) malloc(sizeof(char) * (totalLength - 4) + 1);
 memset(identifier, 0, sizeof(char) * (totalLength - 4) + 1);
 recv(sockfd, identifier, totalLength - 4, 0);
 } else {
 identifier = (char *) malloc(sizeof(char) * 8 + 1);
 memset(identifier, 0, sizeof(char) * 8 + 1);
 recv(sockfd, identifier, 8, 0);
 }

 /* check first segment for possible errors / alerts */ 4.
 if (strcmp(identifier, "*REQMOD*") == 0) {
 /* read mod name */
 modName = (char *) malloc(sizeof(char) * 8);
 recv(sockfd, modName, 8, 0);
 /* add mod name to segment array */
 segments[segmentIndex++] = modName;
 } else if (strcmp(identifier, "*REQSTS*") == 0) { 5.
 /* read return code and reason code */
 recv(sockfd, &returnCode, sizeof(int), 0);
 recv(sockfd, &reasonCode, sizeof(int), 0);
 /* convert them from big endian */
 returnCode = ntohl(returnCode);
 reasonCode = ntohl(reasonCode);
 /* add them to the segment array */
 segments[segmentIndex] = (char *) malloc(sizeof(char) * 20);

288 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

 sprintf(segments[segmentIndex++], "RETURN CODE: %i", returnCode);
 segments[segmentIndex] = (char *) malloc(sizeof(char) * 20);
 sprintf(segments[segmentIndex++], "REASON CODE: %i", reasonCode);
 done = 1;
 /* return since there should be no more data */
 /* return segments; */
 } else { 6.
 if (totalLength <= 12)
 segments[segmentIndex++] = identifier;
 else {
 /* read in the rest of the segment data */
 segment = (char *) malloc(sizeof(char) * (totalLength - 12) + 1);
 /* + 1 for trailing zero */
 memset(segment,0,sizeof(char) * (totalLength - 12) + 1); /* Clear buffer */
 recv(sockfd, segment, sizeof(char) * (totalLength - 12), 0);
 segments[segmentIndex] = (char *) malloc(sizeof(char) * (totalLength - 4));
 sprintf(segments[segmentIndex++], "%s%s", identifier, segment);
 }
 }

 /* continue trying to read in data till we come across *CSMOKY* */ 7.
 if (done == 0) {
 while ((strcmp(segment, "*CSMOKY*") != 0) && (done == 0)) {
 /* read next segment */
 /* read LL */
 recv(sockfd, &recordLength, sizeof(short), 0);
 /* read ZZ */

 /* read flags byte */
 recv(sockfd, &xsm_flg, sizeof(char), 0);
 /* read reserved byte */
 recv(sockfd, &reserved, sizeof(char), 0);

 /* convert record length from big endian */
 recordLength = ntohs(recordLength);
 /* read in segment data */
 segment = (char *) malloc(sizeof(char) * (recordLength - 4) + 1);
 /* + 1 for trailing zero */
 memset(segment,0,sizeof(char) * (recordLength - 4) + 1);/* Clear buffer */
 recv(sockfd, segment, sizeof(char) * (recordLength - 4), 0);
 /* add it to the segment vector */
 segments[segmentIndex++] = segment;
 if (segmentIndex >= MAX_SEGMENTS) { 8.
 fprintf(stderr,"Maximum number of segments exceeded.\n");
 done = 1;
 sample->nakRequired = 1;
 }
 }
 }
 if (sample->nakRequired == 0) { 9.
 /* Now we have reached the CSM or the RSM */
 /* Check if ACK required */
 if (xsm_flg & 0x20) {
 sample->ackRequired = 1;
 } else {
 sample->ackRequired = 0;
 }
 }
 sample->response = segments; 10.
 free(identifier);

Chapter 14. Building roll your own clients 289

}

The following numbers correspond to the numbers in Example 14-6 on page 287:

1. First, we must allocate storage in which to get the response. Because we are using the
HWSSMPL0 exit, we do not know how much space we will need, or how many output
segments will we get. In this sample application, we guess that we will have, at most, 100
segments, so we allocate an array of 100 pointers, which will support each segment. In a
real-world application, we can use a linked list to avoid guessing the maximum segment
number. If we run out of space and do not get all the data, we will have issues, so do not
do it in a production environment.

2. Now, we read the header of the first segment. We read two length bytes, which come in
network order and have to be translated to host order using ntohs(), the flags byte, which
can be a CSM_FLG or RSM_FLG, and one reserved byte.

3. At this point, the next 8 bytes we read might be a message identifier, or might just be part
of the IMS output message. In any case, we have to allocate storage to read those 8 bytes
or whatever quantity of information follows.

4. If the segment we received is an RMM, we allocate more storage to get the MOD NAME,
read it, and store it as the response first segment. In a real-world application, we might
want to do some treatment based on the MOD NAME.

5. If the segment is an RSM, IMS Connect is informing us about an error condition. We get
the return and reason codes, which are integers in big endian order. After translating them
to host order, we allocate storage for two lines of text, which will contain the formatted
error text. In this sample, we just print the numeric codes in decimal. A more sophisticated
error handling routine can print a more informative text.

If there is an RSM in a message, it is the only component, so we set the done variable to a
non-zero value.

6. If we reach this point, we know that our first segment is actually an output data segment.
We allocate storage enough to contain the information, plus one byte for the required
trailing zero (we assume we are dealing with character string data), and put into the newly
allocated buffer the first 8 bytes we got previously, concatenated with the rest of this first
data segment.

7. Now, we have processed the first segment, so we enter a loop until we find the CSM, or
run out of space in the segments array. We know any segment we read will be a data
segment or a CSM, so we keep reading until we find the *CSMOKY* literal.

8. If we run out space in the segments array, we stop reading and take note in the sampletran
structure to send a NAK back to IMS Connect. Of course, we do not really know if we will
have to send an actual NAK, because we have not read yet the CSM, and we will not.
Therefore, the main function logic takes into account what is our sync level and does only
send the NAK if it is not NONE.

9. At this point, we have just read a CSM, an RSM, or we ran out of segment space. In the
first two cases, we can look at the CSM_FLG or RSM_FLG fields to check if we need to
send an ACK to IMS Connect.

10.Finally, we reference the segments array in our sampletran structure and free the memory
we allocated for the segment identifier (which was copied into the first of out segments if
needed).

Building and sending the ACK or NAK
The sample_send function, described in detail in “Preparing and sending the message to IMS
Connect” on page 284, can send any kind of messages, including ACK for positive
acknowledgements and NAK for negative acknowledgements.

290 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Closing the socket connection
To close the socket connection, use the close() function using the socket descriptor as a
parameter.

In the sample program, we use a transaction socket. That means that the IMS Connect host
will close the connection as soon as the transaction has completed. Therefore, if we try to
send a second transaction to IMS, we receive an input output error, because we are trying to
write to a socket that has the remote end closed. If we want to send more than one
transaction without reopening the socket, we use a permanent socket. See Chapter 7, “IMS
Connect programming model” on page 91 to learn more about transaction and permanent
sockets.

If you have used IMS Connector for Java, you are familiar with shared and dedicated
connections. This concept has nothing to do with non-IMS Connector for Java clients, and it is
specific to the JCA implementation.

14.5.2 Java example
The complete source code listing is in Example A-2 on page 484. In this section, we review
some code excerpts that are relevant to this chapter.

Program structure
The Java sample consists on a single class (Sample), which contains methods to prepare,
send, and receive information to and from IMS Connect, and a static main method to parse
the command line to get parameters and data to build the transaction. Even though this is not
the correct way of doing things in Java, it will suffice to show you the IMS Connect
programming specifics so that you can build on it.

Obtain a stream socket connection to the IMS Connect server
This is straightforward in Java. Example 14-7 shows the way to do it. The Socket constructor
takes care of the host name translation and returns an opened, ready-to-use socket object
reference.

Example 14-7 Opening a socket connection in Java

/**
 * Establish a socket connection with the IMS Connect host
 */
public void connect() {

try {
// open a socket for the transaction
socket = new Socket(hostName, portNumber);

} catch (Exception e) {
System.err.println(e);
System.exit(1);

}
}

Preparing and sending the message to IMS Connect
Example 14-8 shows the code we use to send a message to IMS Connect in Java. This code
is very similar to the code we reviewed in Example 14-5 on page 284. The only relevant
differences are:

� We do not need to do any translation between the network and host byte orders. We use a
DataOutputStream object to prepare the IRM, and the write() method of that Class already
converts the binary integers to big endian order.

Chapter 14. Building roll your own clients 291

� We use ByteArrayOutputStream as a buffer to build and hold the message until it is
complete so that we can send it to the IMS Connect server in a single write().

� Of course, we do not have to worry about memory management: The garbage collector
takes care of that.

Example 14-8 Preparing and sending a message to IMS Connect in Java

/**
 * Build and send a message to IMS Connect
 * This method sends the message using a single write() call
 * to improve efficiency and performance.
 * The z/OS TCP/IP stack can be configured in such way that
 * there is a 200ms delay for every ack message (TCP ack, not
 * IMS Connect ACK). If such is the case, then you should expect
 * a severe performance penalty if you use multiple write() calls.
 * The old IMS Connect sample used a write for each field. DO
 * NOT DO THAT.
 * @param msgType Value for the IRM_F4 field (' ','R','A','N')
 */
public void send(char msgType) {

int totalLength;
String segment = null;
response = null;
byte irm_f3 = 0;

if (msgType == ' ')
segment = this.tranText;

// Compute the total length of the message. 1.
// In java we don't care about byte order, since the write() methods
// of DataOutputStream always work in network order.

// +4 for first LL, ZZ and final LL, ZZ
totalLength = 4 + prefixLength + 4;

// add in segment length, if segment is defined
if ((segment != null) && (segment.length() > 0)) {

totalLength += segment.length() + 12; // +12 for LL, ZZ, tranCode
}

try {
// Allocate a conveniently sized byte stream. 2.
ByteArrayOutputStream messageBuffer =

new ByteArrayOutputStream(totalLength);
// Associate a DataOutputStream to this newly created byte stream.
DataOutputStream out = new DataOutputStream(messageBuffer);
// Prepare another DataOutputStream to send the real message
// to our IP socket.
DataOutputStream outsocket =

new DataOutputStream(socket.getOutputStream());

// Compute the IRM_F3 byte 3.
irm_f3 = syncLevel;
if (purgeAsync) {

irm_f3 |= SL_PURGE;
}
if (reRoute) {

irm_f3 |= SL_REROUTE;
}

292 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

// Build the IRM prefix 4.
out.writeInt(totalLength); // total message length
out.writeShort(prefixLength); // IRM_LL
out.writeByte(0x01); // IRM_ARCH
out.writeByte(0x00); // IRM_F0
// out.writeShort((short) 0); // IRM_RSV
out.writeBytes(exitID); // IRM_ID
out.writeInt(0); // IRM_RES
out.writeByte(IRM_F5_SINGLE); // IRM_F5
out.writeByte(timer); // IRM_TIMER
out.writeByte(0x40); // IRM_SOCKET - Transaction socket
out.writeByte(0); // IRM_ES
out.writeBytes(clientID); // IRM_CLIENTID
out.writeByte(0); // IRM_F1 - No MODNAME request
out.write(commitMode); // IRM_F2 - Set commit mode
out.write(irm_f3); // IRM_F3 - Set sync level et al
out.writeByte(msgType); // IRM_F4 - Set message type
out.writeBytes(tranCode); // IRM_TRNCOD
out.writeBytes(datastoreID); // IRM_IMSDESTID
out.writeBytes(ltermName); // IRM_LTERM
out.writeBytes(racfUserID); // IRM_RACF_USERID
out.writeBytes(racfGroupName); // IRM_RACF_GRPNAME
out.writeBytes(password); // IRM_RACF_PW
out.writeBytes(" "); // IRM_APPL_NM
out.writeBytes(reRouteName); // IRM_REROUT_NM

// Add the transaction segment (trancode + trantext) if required 5.
if (msgType == ' ' || msgType == 'S') {

// 12 for LL and ZZ and trancode
short recordLength = (short) (segment.length() + 12);
out.writeShort(recordLength); // Transaction LL
out.writeShort((short) 0); // Transaction ZZ
out.writeBytes(tranCode); // Transaction code
out.writeBytes(segment); // Transaction data

}

// send final LL ZZ to signal no more data to IMS Connect 6.
out.writeShort((short) 4); // send LL
out.writeShort((short) 0); // send ZZ

// Send the built message to IMS Connect 7.
out.flush();
outsocket.write(messageBuffer.toByteArray());
outsocket.flush();

} catch (Exception e) {
System.err.println(e);
System.exit(1);

}
}

The following numbers correspond to the numbers in Example 14-8 on page 292:

1. First, we compute the length of the whole message. For a start, we know the IRM PREFIX
length, which, as we can see in Table 14-1 on page 269, is exactly 96 bytes (the offsets
that you can see in Table 14-1 on page 269 are relative to the beginning of the message
and have not yet accounted for the four-byte length field). We have to add to this 96 bytes:

– Four bytes for the total message length prefix.

– Four bytes for the trailing 0004 0000 block.

Chapter 14. Building roll your own clients 293

– If we are sending data, 12 bytes for its LL, ZZ (2 bytes each) and the transaction code
(8 bytes more).

– The actual length of the data we are sending.

2. We want to send all the data using a single write, so we create an output stream based on
a byte array in which we will build the IRM prefix and the transaction data. The constructor
we use allocates the entire array at once. This is convenient for performance reasons, but
it is not required, because Java can grow the buffer as needed.

3. We build the IRM_F3 value using the bit values of the flags we want to apply.

4. We build the IRM prefix using the ByteArrayOutputStream. Notice that we do not care
about byte order transformation, because the write(short) and write(long) methods always
use big endian order.

5. We add the transaction data, in LLZZdata format, to the output message.

6. If we need to send more than one segment in our message, do it at this point. In this
sample, we are sending a unique segment, so we signal IMS Connect that there are no
more segments to process, just sending four bytes with the values X'00040000', that is,
the big endian representation of the length (4 bytes) and two binary zero octets.

7. Now that we have built our message using the ByteArrayOutputStream, all we need is to
flush the buffer and write the message to the real OutputStream, associated with the IMS
Connect socket.

Getting the IMS Connect response
Unless we requested a SEND ONLY interaction, we should request and wait for a response
from IMS Connect. This response is formatted according to what we saw in 14.2.2, “The IMS
Connect output message” on page 274. We have to be prepared to get a success response,
which will be composed by one or more data segments followed by a CSM, or a failure
response, which will be formed by a single RSM.

In this sample (Example 14-9), we did not request for a MOD name, so we can safely ignore
the RMM structure (we will never get that one), but we coded the corresponding support just
to make it easier to add that capability to the sample program.

Example 14-9 Obtaining the IMS Connect response in Java

/**
 * Read and parse the response from IMS Connect
 * We are using HWSSMPL0, so we won't have a total-length
 * prefix. If we were using HWSSMPL1 instead, wer should have
 * taken that into consideration.
 */
public void receive() {

byte xsm_flg = 0; // Flag byte
boolean done = false; // End of loop indication

// initialize segment vector
Vector segments = new Vector();

RSM = false;
try {

DataInputStream in = new DataInputStream(socket.getInputStream());

// read total length. We don't care about byte order 1.
int totalLength = (int) in.readShort();
// read flags
xsm_flg = in.readByte();
// read and ignore reserved byte

294 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

in.readByte();

// read identifier 2.
byte[] identifierBytes = null;
if (totalLength < 12) {

identifierBytes = new byte[totalLength - 4];
} else {

identifierBytes = new byte[8];
}
in.readFully(identifierBytes);
String identifier = new String(identifierBytes);

// check first segment for possible errors / alerts
if (identifier.equals("*REQMOD*")) { // Parse RMM 3.

// read mod name
byte[] modBytes = new byte[8];
in.readFully(modBytes);
String modName = new String(modBytes);
// add mod name to segment vector
segments.add("MOD NAME: " + modName);

} else if (identifier.equals("*REQSTS*")) { // Parse RSM 4.
// read return code and reason code
RSM = true;
returnCode = in.readInt();
reasonCode = in.readInt();
done = true; // No more data after RSM

} else {
if (totalLength <= 12) 5.

segments.add(identifier);
else {

// read in the rest of the segment data
byte[] segmentBytes = new byte[totalLength - 12];
// identifier was actually
in.readFully(segmentBytes);
// part of the data. So we add it
segments.add(identifier + new String(segmentBytes));

}
}

String segmentData = "";
// continue trying to read in data till we come across *CSMOKY* 6.
while (!segmentData.equals("*CSMOKY*") && !done) {

// read next segment
// read LL, XSM_FLG and reserved byte
short recordLength = in.readShort();
xsm_flg = in.readByte();
in.readByte();
// read in segment data
byte[] segmentBytes = new byte[recordLength - 4];
in.readFully(segmentBytes);
segmentData = new String(segmentBytes);
// add it to the segment vector
segments.add(segmentData);

}

// At this point, we have just read an RSM or a CSM. 7.
// Check if an ACK will be required

if ((xsm_flg & 0x20) == 0x20)
ackRequired = true;

Chapter 14. Building roll your own clients 295

} catch (Exception e) {
System.err.println(e);
System.exit(1);

}

// return segment vector
this.response = segments;

}

The following numbers correspond to the numbers in Example 14-9 on page 294:

1. First, we read the header of the first segment. We read two length bytes, which come in
network order, and are correctly read by the readShort() method, the flags byte, which can
be a CSM_FLG or RSM_FLG, and one reserved byte. Notice that if we were using
HWSSMPL1, we should first read the 4-byte total length prefix.

2. At this point, the next 8 bytes we read might be a message identifier, or might just be part
of the IMS output message. In any case, we have to allocate storage to read those 8 bytes
or whatever quantity of information follows.

3. If the segment we just received is an RMM, we allocate more storage to get the MOD
NAME, read it, and store it as the response first segment. In a real-world application, we
would probably want to do some treatment based on the MOD NAME.

4. If the segment is an RSM, IMS Connect is informing us about an error condition. We get
the return and reason codes, which are integers in big endian order. In this sample, we
move the return and reason codes to a pair of attributes of the Sample class.

5. If we reach this point, we know that our first segment is actually an output data segment.
We allocate storage enough to contain the information and put into the newly allocated
buffer the first 8 bytes we got previously, concatenated with the rest of this first data
segment.

6. Now, we have processed the first segment, so we enter a loop until we find the CSM or run
out of space in the segments array. We know any segment we read will be a data segment
or a CSM, so we just keep reading until we find the *CSMOKY* literal.

7. At this point, we have just read a CSM, an RSM, or we ran out of segment space. In the
first two cases, we can look at the CSM_FLG or RSM_FLG fields to check if we need to
send an ACK to IMS Connect.

296 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 15. IMS Connect client diagnostics

In this chapter, we discuss some issues you might encounter developing and using IMS
Connect and IMS Connector for Java client applications.

If you have IMS Connect Extensions installed on your system, refer too to 11.7, “IMS Connect
problem determination” on page 205.

15

© Copyright IBM Corp. 2006. All rights reserved. 297

15.1 No response from IMS or IMS Connect
We distinguish the following different situations for which we do get the response for which
we are waiting: hanging clients, TCP/IP socket timeouts, and IMS Connect execution
timeouts.

15.1.1 Hanging clients
This case is usually related to some kind of client programming error. The most common
causes are:

� You are specifying an incorrect length for the message you are sending. If you specify a
length greater than the actual length of the message, IMS Connect will block waiting for
the data it thinks you are still going to send. If you specify a length shorter than the actual
length you send, IMS Connect will read the first two additional bytes and interpret them as
the length of the following message. It can result in a protocol error status being returned
or a blocking condition occurring.

� You specified a value of X'FF' (wait forever) for the IRM_TIMER field in a RESUME TPIPE
interaction with a flow control other than AUTO or SINGLE_WAIT. In this case, IMS
Connect will not send you any message because of the flow option, but you will not get a
timeout notification.

� Your program has lost the protocol synchronization with IMS Connect. Both your client
program and IMS Connect are blocked in a recv() operation, waiting for the other end to
send something through the socket.

� Your program has a logic error, such as a loop or an erroneous recovery after an I/O error.
Use the debugging tools available in your client platform to diagnose and fix the problem.

Usually, the first thing you will want to know if you find yourself dealing with an apparently
hung client is determine if your program has reached IMS Connect or if it is in some sort of
internal loop. To know if your program is already talking to IMS Connect, you can use the
VIEW PORT command. Example 15-1 on page 299 shows the command issued as an z/OS
MODIFY command. The corresponding IMS Connect command would be issued to the IMS
Connect WTO reply number (nnn):

nnn,VIEWPORT 7003

Tip: One way to view the contents of the messages that are sent back and forth
between IMS Connector for Java and IMS Connect is to enable WebSphere Application
Server tracing, set the trace specification to com.ibm.connector2 .ims.*=all=enabled in
WebSphere Application Server Version 5 or com.ibm.connector2 .ims.*=enabled in
WebSphere Application Server Version 6, and set the trace level to 3
(RAS_TRACE_INTERNAL) in the J2C connection factory.

Alternatively, you can use a TCP/IP tracing tool to see the messages actually being
sent on the wire, but be aware of your company’s policy regarding the use of such tool,
because it can be considered a security risk.

Tip: If you have IMS Connect Extensions, the trace report is the best tool to diagnose
this kind of problem. See Chapter 11, “IMS Connect Extensions” on page 155 for
details. If you do not have IMS Connect Extensions, the IMS Connect recorder trace
combined with the information you can get from a TCP/IP trace can help you to
diagnose this situation.

298 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 15-1 Using the VIEW PORT command to look for an active client

/F IMSGCONN, VIEW PORT NAME(7003)

HWSC0001I PORT=7003 STATUS=ACTIVE
HWSC0001I CLIENTID USERID TRANCODE STATUS SECOND CLNTPORT IP-ADDRESS
HWSC0001I JORDI IVTJJ CONN 500 4879 009.001.039.119
HWSC0001I TOTAL CLIENTS=1 RECV=0 CONN=1 XMIT=0 OTHER=0

In this example, we can see just one active client, using the clientID JORDI, active from the IP
address 9.1.39.119. This client has been active for 500 seconds, so we know that our
program has at least established communication with IMS Connect and has sent it a request
to execute a transaction whose transaction code is IVTJJ. We can also tell from the
connection status that IMS Connect has sent the transaction request to IMS and is still
waiting for the output from that transaction to be returned by IMS.

Of course, this a relatively easy case to spot. If we were trying to locate an IMS Connector for
Java client that was using a generated clientID (in other words a client using a sharable
persistent socket) in a heavily used environment, we might have found several active clients
to identify our hung program.

15.1.2 TCP/IP socket timeouts
A socket timeout occurs when the maximum wait time for a socket operation to complete is
exceeded. You can specify this maximum wait time in several ways. If you are using IMS
Connector for Java:

� If your application is built with generated code, you can set the socket timeout property
value in the Web Services Description Language (WSDL) for the application or in the J2C
connection factory.

� If you are coding directly to the CCI API, you can set the socket timeout value for an
interaction using the setSocketTimeout() method of the IMSInteractionSpec.

If a timeout then occurs, your program will get the exception shown in Example 15-2.

Example 15-2 Exception thrown when a socket timeout occurs

javax.resource.spi.CommException: ICO0113E:
com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@7f462c4a.receive() error. Socket
Timeout has occurred for this interaction. The Socket Timeout value specified was [50]
milliseconds. [java.net.SocketTimeoutException: Read timed out]

� You can use the setSoTimeout() method of a Socket object if you are programming a
non-IMS Connector for Java client in the Java programming language.

Example 15-3 shows the exception thrown by the Socket class when the socket timeout in
the Socket class is triggered. Your program should catch and handle this exception
appropriately.

Example 15-3 Exception thrown by the socket class when a timeout exception occurs

java.io.InterruptedIOException: Read timed out

� You can also use the setsockopt() function with the SO_SNDTIMEO and SO_RCVTIMEO
options if you are writing a C client program in a UNIX or UNIX-like environment.

If a socket timeout occurs, your recv() call will return fewer bytes than requested, or you
will get an error with errno=EWOULDBLOCK if there were no bytes to read.

Chapter 15. IMS Connect client diagnostics 299

� Finally, you can use the equivalent function in your programming and execution
environment.

If you choose to use socket timeouts, be aware that IMS Connect ignores disconnect
requests when its own timeout period (set using the IRM_TIMER field) is still active. Design
your application considering the socket timeout as a safety net protecting against delays
caused by the network, not delays caused by IMS Connect or IMS.

15.1.3 IMS Connect execution timeouts
Figure 15-1 depicts a non-IMS Connector for Java client scenario in which you will get an IMS
Connect timeout notification. The situation depicted corresponds to a commit mode 1
interaction, in which the value specified for IRM_TIMEOUT was X'2C', corresponding to 5
seconds. In this case, an execution timeout has occurred, so the commit mode 1 output,
when it is available from OTMA, will be NAKed by IMS Connect and then discarded by
OTMA.

Figure 15-1 IMS Connect timeout

Depending on the interface you use to access IMS Connect, you will get notified of a
execution timeout in the following ways:

� If you are using IMS Connector for Java, the adapter throws an exception, as shown in
Example 15-4 on page 301. If the value shown as executionTimeout is zero, the timeout
was based on the default value specified in the IMS Connect configuration member
(HWSCFGxx). Notice that in this case we specified a value of 1 millisecond, but IMS
Connect used 10, due to the manner in which timeout values are converted by IMS
Connect. See the IMS Connector for Java execution timeout documentation, which
describes how IMS Connect converts the execution timeout value specified into the actual
timeout value that it uses. Access this documentation at:

http://www.ibm.com/software/data/db2imstools/imstools-library.html#imsconjav-lib

Important: Set the value for the socket timeout to be greater than the timeout specified in
the IMS Connect IRM_TIMER. In this way, your application receives an IRM timeout
message (or an Execution Timeout message in the case of IMS Connector for Java) if IMS
Connect fails to receive a response from IMS, rather than a socket timeout message. This
enables your application to differentiate between an IRM or execution timeout caused by
IMS not returning an output message and a socket timeout due perhaps to network
problems. Failure to do so can result in unpredictable behavior in IMS Connect, which
might be difficult to diagnose, possibly including duplicate client errors.

Non-IC4J client
Connect

Write
(CM1,sync=conf)

Read()

IMS Connect IMS
HWSCFGxx
TIMEOUT = 3600 sec

IRM - 5 sec
Sched problem
e.g., suspend Q

RSM - timed out At some point,
the transaction
is scheduled

TXN B
GU, IOPCB
ISRT, IOPCB

NAK
U0119

SYNC=CONFIf SYNC=NONE, then syncpoint proceeds

IC4J = IMS Connector for Java

300 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

http://www.ibm.com/software/data/db2imstools/imstools-library.html#imsconjav-lib

Example 15-4 Exception thrown when a execution timeout occurs

javax.resource.spi.EISSystemException: ICO0081E:
com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@25cdec5c.processOutputOTMAMsg(byte[],
IMSInteractionSpec, int) error. Execution timeout has occurred for this interaction. The
executionTimeout value specified was [1] milliseconds. The value used by IMS Connect was
[10] milliseconds.

� If you are using a non-IMS Connector for Java client with the socket interface, you will get
an RSM block, with the following content:

– The RSM_RETCOD value will be X'20' or X'24'. The latter value means that the
timeout specified was X'00' or an invalid value, so the default value from the IMS
Connect configuration member was used. The former indicates that the specified
value, after conversion by IMS Connect, was used.

– RSM_RSNCOD contains the value that was specified for IRM_TIMER.

Notice that, even if you are using the Java programming language, you will not get an
exception in this case, just a return code and a reason code in the RSM block of the
response message. It is up to the client code to determine whether or not to throw an
exception based on the contents of the response message. You will also find a message
in the SYSPRINT of the IMS Connect JOB or STC, as shown in Example 15-5.

Example 15-5 Message on the IMS Connect JES2 log after an execution timeout

HWSD0252W UNABLE TO SEND RESPONSE FROM DS=IMSG TO CLIENT=HWSWKY5E; R=4, S=LATEMSG ,
M=DREC

Perform the following steps to diagnose a situation where multiple execution timeouts occur:

1. Check if the default TIMEOUT value specified in the IMS Connect configuration member is
adequate for the usual transaction response times that you have in your system.
Remember that the value is specified in hundredths of seconds. A value of 500 means 5
seconds. The default value needs to be:

– Greater than the response time of your slowest transaction
– Lower than the value used for the socket timeout (if any)

If you experience abnormal transaction response times, consider modifying the IMS
Connect TIMEOUT value and recycle your IMS Connect. If you are using IMS Connect
Extensions, you also consider using its pacing feature to diminish the IMS workload,
rejecting the overload before it gets into IMS and thus allowing the accepted transactions
to complete in a reasonable time.

2. Check if the client application is using an appropriate value for IRM_TIMER. The
exception message or the RSM values will tell you what value was used to determine the
timeout period. If you find that the value is too low, change the application or the
application configuration. Set the value for IRM_TIMER using the same reasoning as was
used for the default TIMEOUT value specified in IMS Connect configuration member.

3. Check if the transactions you are experiencing problems with are in a correct state. Use
the IMS commands /DIS TRANSACTION and /DIS PROGRAM to verify that the
transaction and the application program are active and ready to be scheduled. If an IMS
application program ends abnormally (abend), IMS stops both the transaction and the
program. If the transaction is STOPPED, you get DFS065 messages. However, if the
transaction is started but the program is stopped, the transaction will not be scheduled.

Chapter 15. IMS Connect client diagnostics 301

4. Check if IMS is experimenting global problems. The IMS troubleshooting procedures are
beyond the scope of this book. If you know that the IMS problems will not be solved in a
short period of time, and you are experiencing a lot of execution timeouts, lengthening the
IMS Connect TIMEOUT value or using the IMS Connect Extensions pacing feature to
diminish the IMS workload should alleviate this problem.

Unless you find a configuration problem, there are very few things that can be done on the
IMS Connect side to fix an execution timeout situation. The problem will be either in IMS or on
the application side. However, ensure that the timeout values used in your applications and in
IMS Connect are set appropriately.

15.2 Error messages from IMS
You can get IMS error messages in the form of literals, which begin with an error code,
expressed as DFSnnnn, where nnnn is a code that specifies the kind of error.

If you are using IMS Connector for Java, the way DFS messages are handled is depends on
the type of imsRequestType that was used for the interaction. If the imsRequestType was
IMS_REQUEST_TYPE_IMS_ COMMAND or
IMS_REQUEST_TYPE_MFS_TRANSACTION, DFS messages are treated as normal output
and, assuming that there are no other problems with the output, no exception is thrown. If the
imsRequestType was IMS_REQUEST_TYPE_IMS_ TRANSACTION, DFS messages are
treated as errors. In this last case, IMS Connector for Java throws an exception, as shown in
Example 15-6.

Example 15-6 Exception thrown when IMS sends a DFSxxxx message

com.ibm.connector2.ims.ico.IMSDFSMessageException: ICO0079E:
com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@4b7cac41.getOutputData(InteractionSpec
) error. IMS returned DFS message: DFS065 17:58:27 TRAN/LTERM STOPPED

If you are using the socket interface with a non-IMS Connector for Java client, you will get the
DFS message as a normal IMS response (followed by the CSM block). However, there is an
important difference between a normal IMS response and some of the DFS status messages:
In some cases, you must not send an ACK after you get a DFS message. That is the reason
why the recommended way to decide if you need to send an ACK is to check the flag byte
present both in the CSM and RSM blocks, instead of relying on your own program logic.

15.3 Wrong status codes from IMS Connect
IMS Connect uses the RSM message structure to notify non-IMS Connector for Java client
applications of any special situation. This refers not only to error or exception situations, but
also to informational codes associated with a normally ended interaction. The RSM structure
contains a return code and a reason code that describe the detected situation.

In this section, we analyze some of the error conditions reported in an RSM, the method to
diagnose it, and the measures you can take to correct the situation.

302 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

15.3.1 Duplicate clientID (reason code 56)
This error occurs when you send IMS Connect an interaction on a given port using a clientID
that is already in use on that port. There can be several reasons that this can occur:

� You are executing two concurrent interactions using the same clientID. This can happen
when you are running more than one instance of an application in the same or different
machines, or in cloned environments, especially if you are using dedicated persistent
sockets, which require user-specified clientIDs, with IMS Connector for Java.

You must ensure that the same clientID is not associated with more than one connection
to a given IMS Connect port. In particular, it is not possible to both send transactions and
recover asynchronous output messages (RESUME TPIPE) on different connections to the
same IMS Connect port using the same clientID at the same time. For example, if you are
executing a receive asynchronous output interaction (RESUME TPIPE) using clientID
12345abc on a socket connected to PORT 5678 of IMS Connect ICON01, you are not able
to submit transaction requests using the clientID 12345abc on another socket connected
to PORT 5678 of IMS Connect ICON01.

Note that it is possible to use the same clientID on two different sockets connected to the
same IMS Connect, provided that the sockets are connected to different ports on that IMS
Connect.

� You are executing an interaction with a clientID that is the same as that used by another
interaction that ended as a result of a socket timeout. If this new interaction is received by
IMS Connect while IMS Connect is still waiting for a response from IMS for the original
interaction that received the socket timeout, a duplicate clientID error might occur.

This can happen if you set the socket timeout to a value that is less than the timeout set by
the IRM_TIMER (or ExecutionTimeout in the case of IMS Connector for Java) or the IMS
Connect default timeout set in the HWSCFGxx member if that is the timeout being used
for the original interaction. IMS Connect is not aware that the original socket has been
disconnected as a result of the socket timeout until it does a subsequent read on that
socket, so it would consider the original socket still active, even though that socket has
already been disconnected from the client end. Figure 15-2 on page 304 shows the
sequence of events that lead to this problem. After you get to this situation, you will receive
DUPECLNT errors until:

– The IRM_TIMER expires on the IMS Connect side.

– You issue a STOPCLNT command to kill the client on the IMS Connect side. A
DELETE PORT command also kills the client, but we do not recommend this, because
it disables that port for all clients.

Example 15-7 shows the message IMS Connect writes in the system log when a
DUPECLNT occurs.

Example 15-7 IMS Connect JES2 DUPECLNT error message

HWSS0742W MESSAGE FAILED, ORIGIN=7003 _CLIENT01 TO DESTID=IMSG ; R=8, S=DUPECLNT,
M=SRE4

Chapter 15. IMS Connect client diagnostics 303

Figure 15-2 Duplicate clientID caused by an erroneous timeout setting

APARs PQ96500 and PQ96501 introduce a way to circumvent this problem for non-IMS
Connector for Java applications, as shown in Figure 15-3. In the event that you receive a
DUPECLNT error response from IMS Connect caused by the premature disconnection of
a socket while the IRM_TIMER timeout is still active, you can send IMS Connect a new
type of interaction, CANCEL TIMER, setting IRM_F4 to C.

For example, when IMS Connect sees a CANCEL TIMER command on a socket with
clientID CLIENT01, it “pops” the IRM_TIMER on the original CLIENT01 socket, attempts
to send a timeout error back on the original CLIENT01 socket, sends a “CANCEL TIMER
success” response back on the socket from which the CANCEL TIMER command was
issued, and then disconnects that socket from which the CANCEL TIMER command was
issued.

The attempt by IMS Connect to send a timeout error back on the original CLIENT01
socket will, of course, fail because the socket has already been disconnected from the
client end. As a result, IMS Connect will go through its disconnect processing to clean up
all of its resources associated with that socket. At this point, both CLIENT01 sockets, the
original one and the one that was used for the CANCEL TIMER request, will have been
disconnected, so you are able to create and use another connection with clientID
CLIENT01.

Figure 15-3 CANCEL TIMER used to avoid DUPECLNT after premature disconnect

The response for the original, pending interaction is considered non-deliverable, so:

– If the original interaction was running under commit mode 1, and the sync level was set
to NONE, the transaction is committed and the response is discarded.

Connect

Write

Read

IMS Connect
IMS

HWSCFGxx
TIMEOUT = no timeout

Sched problem
e.g., suspend Q

At some point,
the transaction
is scheduled

TXN x
GU, IOPCB
ISRT, IOPCB

Client gets timed
out or needs to
disconnect before
IRM timer of 5 sec
value expires

Close

Connect

Write

Duplicate client

IRM - 5 sec

IMS Connect

IMS

HWSCFGxx
TIMEOUT = 3600 sec

Duplicate client
(client01)
but sees cancel
timer

Connect
Write

(set local timer)

Read

(local timer ends
- timeout)

IRM - 5 sec

IRM
cancel timer

Timeout
RC=2C, RS=59

client 01

client 01

Close

Connect
Write (cancel timer)

Read
Close

New code to
support the
cancel timer
capability{
Back to the
original code

Socket timout value should be set to a value greater than the IRM timer
value to allow the IRM timer to fire when IMS does not return a response
within that timeout. IRM timer value should be set to a reasonable value to
allow the transaction to run and the response to be returned to IMS Connect
under heavy load conditions.

304 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

– If the original interaction was running under commit mode 1, and the sync level was set
to CONFIRM or SYNCPT, the transaction is backed out and the region abends with
U0119.

– If the original interaction was running under commit mode 0, the transaction is
committed and the response will be deemed undeliverable. The response is:

• Purged (discarded) if you specified PURGE NOT DELIVERABLE in the IRM
header.

• Rerouted to the specified or default destination if you specified REROUTE in the
IRM header.

• Queued to the asynchronous hold queue of the Tpipe corresponding to the clientID
used for the interaction.

15.3.2 OTMA protocol error (reason code 36)
You will encounter this error when your program sends a message to IMS Connect that is out
of sequence with the input that IMS Connect expects. For example, IMS Connect will send
this error if you send a new request when it is waiting for an ACK for the previous request.

Example 15-8 shows an example of such an error, as it appears in the IMS Connect system
log.

Example 15-8 IMS Connect JES2 log OTMA protocol error message

HWSP1495E OTMA PROTOCOL VIOLATION; R=20, C=CLIENT01, M=SDRC

If you have IMS Connect Extensions installed, use its trace analysis features to diagnose this
problem. If you do not have IMS Connect Extensions, you can use the recorder trace to learn
the sequence of events previous to the error.

15.3.3 Other errors
In general, the steps to diagnose a failing IMS Connect application are more or less the
same:

� Look at the SYSLOG and the SYSPRINT of the IMS Connect you are using. If you find an
error message there, look for this message in IMS Connect Guide and Reference,
SC18-9287.

Note: The CANCEL TIMER mechanism is intended to free a clientID that is blocked
because a client program was prematurely disconnected, perhaps because of a
network failure. Do not rely on CANCEL TIMER to avoid the DUPECLNT error after a
socket timeout caused by an incorrect timeout value. Always set the socket timeout to a
value greater than the IRM_TIMER value. If you use CANCEL TIMER to systematically
address problems due to the incorrect settings of the socket timeout, IRM
TIMER/ExecutionTimeout, or IMS Connect TIMEOUT, you will encounter performance
problems.

Note: If you are using IMS Connector for Java Version 2.2.2 or earlier, you will see this
error message (and the corresponding IMS Connector for Java exception) if you send a
transaction that generates multiple IOPCB responses under commit mode 0. Update your
IMS Connector for Java resource adapter to Version 2.2.3, 9.1.0.2, 9.1.0.1.1, or later.

Chapter 15. IMS Connect client diagnostics 305

� Try to reproduce the problem after enabling the IMS Connect recorder trace (see
Chapter 5, “IMS Connect operations” on page 63 for details) and analyze the trace
records.

� If you are using IMS Connector for Java in WebSphere Application Server, try to
reproduce the problem after enabling WebSphere Application Server tracing for IMS
Connector for Java (see the “Logging and tracing with the IMS resource adapter” topic in
the online help of WebSphere Studio Application Developer Integration Edition or Rational
Application Developer. This document can also be found in PDF format on the IMS Web
site under IMS Connector for Java → Publications:

http://www.ibm.com/ims

� Use a TCP/IP packet logger to analyze the network traffic between your client machine
and IMS Connect.

� Use the trace analysis features of IMS Connect Extensions (see Chapter 11, “IMS
Connect Extensions” on page 155 for details).

If you decide to report the error to IBM, you need to provide the following material:

� IMS Connect recorder trace log
� IMS Connector for Java and J2EE Connector architecture (J2C) trace logs if applicable

To enable the IMS Connector for Java and J2C trace logs, perform the following steps:

� If you are running your application under the development environment (for example,
WebSphere Application Developer Studio Integration Edition), you must open the Server
perspective and double-click your test environment server to open the configuration page.
Then, select the Trace notebook. Ensure that the Enable trace check box is selected
and add the following string to the Trace String:

com.ibm.connector2.ims.*=all=enabled:com.ibm.ejs.j2c.*=all=enabled

The first part of the string enables tracing in the IMS Connector for Java classes, while the
second part enables tracing in the J2C classes. This string can be added to or replace the
existing Trace String.

306 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

http://www.ibm.com/ims

Next, select the J2C notebook and highlight (select) the IMS Connector for Java resource
adapter and then the connection factory you are using. Scroll down to TraceLevel under
Resource Properties and set the value to 3, as shown in Figure 15-4.

Figure 15-4 Setting the trace level in the IMS Connector for Java J2C adapter

If you are using the default values, your trace.log files will be under your workspace
directory in:

${WORKSPACEDIR}\.metadata\.plugins\com.ibm.etools.server.core\tmp0\logs\server1

The log file can grow very fast, so you will want to reset the trace settings after collecting
the required trace data.

Chapter 15. IMS Connect client diagnostics 307

� If you are running your application in a WebSphere Application Server production
environment, you must enable the traces using the administrative console. Select
TroubleShooting → Logs and Trace and then select your server instance name and
Diagnostic Trace, as shown in Figure 15-5.

Figure 15-5 Enabling the traces using the WebSphere Application Server Administrative Console

As in the previous example, you must ensure that the Enable Trace check box is selected
and add the following values to whatever is present in the Trace Specification text box:

com.ibm.connector2.ims.*=all=enabled:com.ibm.ejs.j2c.*=all=enabled

After that, set the trace level to 3 in the connection factory properties page (expand the
Resources → Resource Adapters and then select the IMS Connector for Java resource
adapter and the connection factory that you are modifying, as shown in Figure 15-6 on
page 309. Scroll down the property list until you find the Trace Level property and set it
to 3.

308 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 15-6 Setting the trace level using the WebSphere Application Server Administrative Console

15.4 Exceptions in IMS Connector for Java applications
If you are using the IMS Connector for Java J2C adapter, IMS Connect will not send an RSM.
IMS Connector for Java will detect IMS Connect error messages and throw exceptions that
your code should catch and analyze. For example, Example 15-9 shows the exception
received by the client when a duplicate clientID error occurs.

Example 15-9 Exception thrown when a DUPECLNT error occurs

javax.resource.spi.EISSystemException: ICO0001E:
com.ibm.connector2.ims.ico.IMSTCPIPManagedConnection@43f76c57.processOutputOTMAMsg(byte [],
InteractionSpec, Record) error. IMS Connect returned error: RETCODE=[8],
REASONCODE=[DUPECLNT]. Duplicate client ID was used; the client ID is currently in use.

The tools and procedure to diagnose IMS Connector for Java exceptions are exactly the
same as you would use for a non-IMS Connector for Java client. Refer to 15.3, “Wrong status
codes from IMS Connect” on page 302 for details. In this section, we cover only the IMS
Connector for Java specific exceptions.

15.4.1 Naming (JNDI)-related errors
Java Naming and Directory Interface (JNDI) is the technology and API used to resolve logical
names to specific objects in a Java runtime environment, such as the WebSphere Application
Server execution environment.

Chapter 15. IMS Connect client diagnostics 309

In an IMS Connector for Java application, you use JNDI to look up and get a reference to an
instance of the connection factory that you use to obtain the IMSConnection objects needed
to send requests to IMS Connect.

To do this, you need to use two different names (although you can assign the same value to
both names):

� A string, which we call the “resource reference name,” that is internal to your application,
and that is used in your Java classes to do the lookup. This string can be either
hard-coded in the source file, or obtained from a resource file or similar source.

� Another string, which we call the “connection factory JNDI name,” that is external to your
application and that is defined at the connection factory level when the administrator
deploys the IMS Connector for Java resource adapter.

The binding between the applications, resource reference names, and the connection factory
JNDI names is done in the deployment descriptor and can be changed by the package builder
through the application assembly tools, the application deployer using the deployment
interface (scripted or administrative console-based), or the WebSphere Application Server
administrator using the administrative console. Figure 15-7 shows the components involved in
the JNDI name definition and their relationship.

Figure 15-7 JNDI names and configuration elements

Two different exceptions can occur related to the JNDI names and binding. Example 15-10 on
page 311 shows the exception thrown when the resource reference name is not found.

Note: You need to recycle the server instance if you modify the JNDI bindings of a
deployed application. You need to do this even if you undeploy and then redeploy an
application after changing the JNDI bindings.

...

ConnectionFactory cf =
ctx.lookup(“resource.ref”);

...

...

ConnectionFactory cf =
ctx.lookup(“resource.ref”);

...

<resource-ref id="ResourceRef_1084798405067">
<description></description>
<res-ref-name>

resource.ref
</res-ref-name>
<res-type>javax.resource.cci.ConnectionFactory</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>

<resource-ref id="ResourceRef_1084798405067">
<description></description>
<res-ref-name>

resource.ref
</res-ref-name>
<res-type>javax.resource.cci.ConnectionFactory</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>

<resRefBindings xmi:id="ResourceRefBinding_1084798405067" jndiName="eis/IMSGS">
<bindingResourceRef href="META-INF/ejb-jar.xml#ResourceRef_1084798405067"/>

</resRefBindings>

<resRefBindings xmi:id="ResourceRefBinding_1084798405067" jndiName="eis/IMSGS">
<bindingResourceRef href="META-INF/ejb-jar.xml#ResourceRef_1084798405067"/>

</resRefBindings>

Java source file

ejb-jar.xml

ibm-ejb-jar-bnd.xmi

ICJ4 connection factory definition

IC4J = IMS Connector for Java

310 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 15-10 Exception thrown when the JNDI reference name is not found

javax.naming.NameNotFoundException: Name
"com/ibm/sg246794/sample/ProcessTxBean/IC4JShareable" not found in context "java:comp/env".

To fix this problem, look at the deployment descriptor using the assembly tools, the
administrative console, or the development tools and check that the reference name used in
the code is exactly the same as the one used in the descriptor. If you cannot use one of these
tools, you can look at the descriptor itself, in a file named ejb-jar.xml, and search the resource
reference definitions, similar to the one shown in Example 15-11.

Example 15-11 A JNDI resource reference definition

<resource-ref id="ResourceRef_1084798405067">
<description></description>
<res-ref-name>com/ibm/sg246794/sample/ProcessTxBean/IC4JShareable</res-ref-name>
<res-type>javax.resource.cci.ConnectionFactory</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>

In this case, the code should be looking for:

java:comp/env/com/ibm/sg246794/sample/ProcessTxBean/IC4JShareable

The development tools usually generate the correct resource reference names, so unless you
edited the deployment descriptors by hand, the usual cause of this problem is a change in the
Java code without regenerating the deployment descriptor or a mistake in an external
resource file containing resource reference names.

The second kind of JNDI problem you can find is related to the JNDI connection factory
name. If JNDI cannot find it at run time, you will get the exception shown in Example 15-12.

Example 15-12 Exception thrown when the JNDI connection factory name is not found

Reference Factory Class Name: com.ibm.ws.util.ResRefJndiLookupObjectFactory
Reference Factory Class Location URLs: <null>
Reference Class Name: java.lang.Object
Type: ResRefJndiLookupInfo
Content: com.ibm.ws.util.ResRefJndiLookupInfo@a1b467 ResRefJndiLookupInfo: Look up
Name="com/ibm/sg246794/sample/ProcessTxBean/IC4JShareable";JndiLookupInfo:
jndiName="eis/IMSGS"; providerURL=""; initialContextFactory=""

Exception data follows:
javax.naming.NameNotFoundException: Context: localhost/nodes/localhost/servers/server1,
name: eis/IMSGSA: First component in name IMSGSA not found. Root exception is
org.omg.CosNaming.NamingContextPackage.NotFound:
IDL:omg.org/CosNaming/NamingContext/NotFound:1.0

In this case, we bound the following resource reference name:

java:comp/env/com/ibm/sg246794/sample/ProcessTxBean/IC4JShareable

This resource reference name is bound to the following JNDI connection factory name:

java:comp/env/eis/IMSGSA

The latter name was not found by the JNDI run time. Usually, the problem is that the person
who deployed the application made a mistake at the JNDI binding phase. Check also that the
IMS Connector for Java resource adapter has been properly deployed in the target runtime

Chapter 15. IMS Connect client diagnostics 311

environment and that the connection factory you are intending to use has been correctly
created in that environment.

You will typically use the WebSphere Application Server administrative console to check and
fix this error by deploying the missing connection factory, changing the JNDI name of the
connection factory, or correcting the application bindings. Remember to recycle the
application server instance after applying changes to the JNDI naming and binding.

15.4.2 Connection pool-related errors
If you are using IMS Connector for Java in a managed environment such as WebSphere
Application Server, the creation and destruction of the physical connection objects is done by
a connection manager. When you invoke the getConnection() method of the
ConnectionFactory instance you obtained through JNDI, the Connection Manager gets one of
the existing connections from the connection pool for that connection factory, or creates a
new connection if dictated by the connection pool properties and status.

This can lead to a situation in which:

� All the existing connections in the pool are being used by other applications or threads in
your application.

� The connection pool properties do not allow the pool manager to create an additional
connection to satisfy your request.

In this event, the thread that is requesting the connection waits for the time specified in the
Connection Timeout of the connection pool properties for that connection factory. If that time
period ends without being able to get a connection, you get an exception, as shown in
Example 15-13.

Example 15-13 Exception thrown when IMS Connector for Java cannot obtain a connection

com.ibm.websphere.ce.j2c.ConnectionWaitTimeoutException: Connection not available, Timed
out waiting for 30003

To help you better understand the reason for this error and the measures you can take to
prevent it, a brief description of the connection pool properties follows.

Connection pool properties
The WebSphere Application Server administrator can set the connection pool properties
using the administrative console. Figure 15-8 on page 313 shows the connection pool
properties window in a WebSphere Application Server Version 5.1 administrative console. As
you can see, each field has an explanation in the right column.

Note: Be careful if you change the JNDI connection factory name, because it might be
used by another application. If you change it, the other application will continue to work
only until you recycle the application server instance.

312 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 15-8 Connection pool properties in the WebSphere Application Server administration console

Let us look at the values configured in this example:

� We set a Connection Timeout value of 10 seconds. This means that when we run out of
connections, the application threads will wait for up to 10 seconds before throwing the
exception in Example 15-13 on page 312.

� The value for Max Connections is 10. This means that the connection manager will
respond to demand, creating connections as necessary until the number of live
connections totals 10. At this point, new requests are queued and wait for the Connection
Timeout setting of 10 seconds.

� The value for Min Connections is 1. The connection manager can destroy (delete) unused
connections until there is just one connection left in use or in the connection pool.

� The value for Reap Time is 10. This means that the pool maintenance thread will run at 10
second intervals, checking the pool status (and deleting any unused or aged connections).

� We set the Unused Timeout value to 20. This value tells the connection manager to
destroy any connections that have not been used for 20 or more seconds.

� The value for Aged Timeout is 30. This means that the connections older than 30 seconds
will be destroyed at the next reap time as soon as they are free, regardless of the length of
time they have been idle.

Chapter 15. IMS Connect client diagnostics 313

� The Purge Policy is set to EntirePool. This means that when a severe connection error
occurs, the entire pool will be purged on the assumption that the same error will occur on
the other connections.

You will probably want to adjust your connection pool values according to the following
guidelines:

� Set Max Connections and Min Connections to the same value. Use a value not greater
than:

– The maximum number of threads in your application server.

– The number of message processing regions in your IMS or set of IMS systems, unless
you prefer to have IMS transaction queues instead of WebSphere Application Server
threads waiting for connections.

– The MAXSOC parameter value specified in the IMS Connect configuration member for
the TCP port this connection factory uses. If you set a value greater than MAXSOC,
the connection will be created but will not be able to establish communication to IMS
Connect and will then be put into a wait state. See 15.5, “Diagnosing problems related
to sockets” on page 319.

� Set Reap Time to a value that is less than both Unused Timeout and Aged Timeout. The
Reap Time interval affects the accuracy of the Unused Timeout and Aged Timeout
settings. The smaller the interval, the greater the accuracy. If Reap Time is greater than
the Unused Timeout and Aged Timeout values, the Reap Time will effectively override the
two timeout values. The Reap Time interval also affects performance. Smaller intervals
mean that the pool maintenance thread runs more often and degrades performance.

� The value of Unused Timeout will make no difference if you set Max Connections and Min
Connections to the same value. Otherwise, use a value for Unused Timeout that will let
the number of connection in a pool decrease slowly to avoid having to create new
connections at peak times. Use your knowledge about the transaction arrival pattern in
you installation to compute a good value. For example, if you have peaks every hour, set
Unused Timeout to 2 hours, so your connections will survive two valleys without being
purged and having to be re-created a short time later.

� You should set the value of Aged Timeout to zero unless you use Sysplex Distributor. If
you use Sysplex Distributor, configure your Aged Timeout and Reap Time so that the pool
maintenance thread periodically removes aged connections. This allows the connection
manager to automatically redistribute connections from more heavily loaded servant
regions and IMS Connect instances to those that are less heavily loaded. Determine the
appropriate value as function of your workload. If your workload follows a day shift/night
shift pattern (you have a high workload during normal business hours, and lower workload
after business hours with peaks around each hour), a good value Aged Timeout might be
90 minutes and a good value for Reap Time might be 30 or 45 minutes.

Connection pool monitoring
You can use IBM Tivoli® Performance Monitor, included in the Windows version of
WebSphere Application Server to monitor the connection pools. You can see how the different
pools evolve (or all pools as a whole) using a numerical, historical display or a real-time
graph.

Note: The sample values are far too low and have ben set for demonstration purposes
only. You will want to have as many available connections as possible. Of course, it does
not make sense to have more connections than possible threads in your WebSphere
Application Server servant process, so adjust Max Connections to no more than the
maximum number of threads.

314 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

To use Tivoli Performance Monitor, you must enable the Performance Monitoring Service in
your WebSphere Application Server, using the administrative console. To do so, select your
server by clicking Servers → Application Servers and then your server name. Scroll
through the list of server properties until you find and then click the Performance Monitoring
Service entry. Figure 15-9 shows the window that opens and the values you should set to
enable the standard monitoring levels.

Figure 15-9 Enabling Performance Monitoring Service using the administrative console

You must also know the port number assigned to the WebSphere Application Server SOAP
service. Using the administrative console, find the End Points entry in the Server Attribute list,
as you did for Performance Monitoring Service. Click the Server Attribute list and you will
find a list of services or “End Points” defined in your WebSphere Application Server instance.
Click SOAP CONNECTOR ADDRESS and take note of the Port number shown, as shown in
Figure 15-10 on page 316.

Note: You must recycle your server in order for any changes you make in this configuration
window to take effect.

Chapter 15. IMS Connect client diagnostics 315

Figure 15-10 Finding the SOAP Port number using the administrative console

After you know the port number (and the IP address of your server), you can start the Tivoli
Performance Viewer and select the JCA connectors section to look at your connection pools.
You will find one entry for each active connection factory, which you can select individually.
You can also select all the factories of a JCA adapter (such as IMS Connector for Java) or all
factories active in this server instance.

Figure 15-11 on page 317 shows a graph corresponding to a well-behaved application. In this
example, a “burst” of 55 transactions was sent using 11 concurrent threads. You can see in
the graph how the number of connections goes from zero to 10 (the scale is multiplied by 5).
The grey line shows the number of allocated connections (connection handles) going from
zero to almost 10, and after that, going back to zero. That means that the application correctly
returns the connections to the pool so that they can be reused. The number of free
connections (red line) climbs to 10 after the activity burst has ended, and after some time (set
by the Unused Timeout parameter value) the unused connections are freed.

316 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 15-11 A well-behaved application seen through Tivoli Performance Monitor

Figure 15-12 on page 318 shows the graph for an ill-behaved application. In this case, the
application does not return the connections to the pool. The application does not invoke the
close() method for the Interaction or the Connection objects, so the connection manager does
not know if the application will reuse the same objects later, and thus does not mark them
free. In this graph, you can see the pool size increasing to 10, which is the Max Connections
value. Then, you can see that some threads start to wait (pink line), and start to get
connection timeouts (Num faults line). This is a symptom of a poorly-written program or
poorly-configured resource. You should check:

� The use of close() for the Interaction and Connection objects is necessary to reuse the
connections.

� If you are using bean-managed transactions, you should commit() them.

Chapter 15. IMS Connect client diagnostics 317

� Be careful to not own a connection handle outside the scope of a transaction. That can
happen if you save a reference to a Connection object as a class or object variable, or if
you save it in the session object or application context. You should not save references to
Connection objects in a managed environment. It is a much better programming practice
to leave the job of reusing and recycling connections to the connection manager in a
managed environment. If you want to manage your connections in your own code, you
should be using non-managed connections. Otherwise, there is a high probability that
what you do will conflict with the what the connection manager is doing, leading to
possible severe errors and performance problems.

Figure 15-12 An ill-behaved application seen through Tivoli Performance Monitor

318 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

15.5 Diagnosing problems related to sockets
If the IMS Connect environment appears to be suspended or if the Java application or servlet
(using a valid host name and port for the target IMS Connect system) fails to make a
connection to the IMS Connect system, you might have reached the maximum number of
sockets. The maximum number reached can either be due to incorrect parameter definitions
in IMS Connect, IMS Connector for Java, or in z/OS UNIX System Services.

15.5.1 IMS Connect and IMS Connector for Java parameters for sockets
The number of sockets that can exist between a Java client (a Java application or servlet) and
the host component, IMS Connect, is controlled by two parameters that need to be
synchronized. These parameters are MAXSOC in the TCPIP statement of the IMS Connect
configuration member and Max Connections, a property of the connection factory, as shown
in 15.4.2, “Connection pool-related errors” on page 312:

� MAXSOC
The maximum number of sockets for an IMS Connect port. MAXSOC applies to all of the
ports associated with an instance of IMS Connect. MAXSOC is displayed in the MAXSOC
field of the IMS Connect commands VIEWHWS and QUERY MEMBER. The default value
for MAXSOC is 50.

The value displayed in the MAXSOC field includes one socket dedicated to the Listen
State and the remainder available for connections. For example, if MAXSOC is 50, only 49
can be used by connections from Java clients (Java applications or servlets).

When the MAXSOC limit is reached, IMS Connect enters a wait state and returns at
regular time intervals to check for available sockets. If the Java applications or servlets are
not releasing their sockets, your environment can appear to be suspended. If this situation
occurs, take one of the following actions:

– Consider increasing the maximum number of sockets.

– Make sockets available by cancelling one or more of the Java applications or servlets
that are holding sockets to the particular IMS Connect instance.

– Assign a non-zero value to the Aged Timeout or Unused Timeout of the connection
pool, or both.

� Max Connections

This is a property of the connection pool properties of the connection factory and applies
only when you are running your application in a managed environment, such as in
WebSphere Application Server. See 15.4.2, “Connection pool-related errors” on page 312
for information about this and other connection pool properties.

Example: If a particular host machine has a single instance of IMS Connect with two
ports, and if MAXSOC is 50, each port can have 49 sockets (connections) from Java
clients, yielding a maximum of 98 sockets into the IMS Connect instance.

Recommendation: We recommend that you set Max Connections to a value less than
MAXSOC.

Chapter 15. IMS Connect client diagnostics 319

15.5.2 z/OS UNIX System Services parameters for sockets
There are also some z/OS UNIX System Services parameters that you need to review if IMS
Connect is unable to open new socket. These parameters usually reside in the BPXPRMxx
member in SYS1.PARMLIB. The parameters MAXFILEPROC and MAXSOCKETS are critical
in order to be able to open socket connections. You should also review the other parameters,
but these two are the most common source for problems when opening socket connections.
Consult with your system programmer responsible for these parameters to ensure that these
parameters have values that are large enough to accommodate your maximum projected
workload.

� MAXFILEPROC

MAXFILEPROC specifies the maximum number of files that a single user is allowed to
have concurrently active or allocated. Because the socket is considered a generic file in
UNIX, the MAXFILEPROC setting applies to sockets as well as files. That means that one
user, in our case, the IMS Connect address space, might reach the MAXFILEPROC value
if the value is set too low. This is more likely to happen in cases when persistent sockets
are used (because persistent sockets are longer lasting by their nature).

You can view the actual value of MAXFILEPROC by using the D OMVS,O command and
the you can change the value dynamically using the SETOMVS command. For more
information about these commands, refer to z/OS V1R6.0 MVS System Commands,
SA22-7627.

� MAXSOCKETS

MAXSOCKETS specifies the maximum number of sockets that can be opened by the
users of a particular TCP/IP stack. It is specified in the network statement for a TCP/IP
stack’s physical file system and should be set large enough to allow new sockets to be
opened as needed. Note that this number limits the number of sockets of all users of a
particular TCP/IP stack. Exceeding MAXSOCKETS is also more likely to happen if the
socket connections are long-lasting. You can reach this number even if there are not many
IMS Connect sockets if there are other users such as Telnet sessions.

You can display the actual value of MAXSOCKETS by using the D OMVS,P command.
Note that the command output also includes a field showing the highest number of
concurrent sockets (HIGHUSED) used since the start of this TCP/IP stack. If HIGHUSED
is equal to MAXSOCKETS, it indicates that you have experienced a situation where new
sockets were unable to be opened. In this case, consider increasing the MAXSOCKET
value.

For more information about setting the MAXSOCKETS value, refer to z/OS V1R6.0 CS: IP
Configuration Reference, SC31-8776.

320 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 16. IMS MFS Web Services

IMS MFS Web Services lets you define a service from a Message Format Service (MFS)
source and then deploy it to WebSphere Application Server and make it available as an EJB
service and a Java service.

You build an MFS-based service by importing MFS source files into the WebSphere Studio
Application Developer Integration Edition and generating Web Service Definition Language
(WSDL) files. The WSDL files are based on application interface information that is stored in
the MFS source. The WSDL files contain details about the service including:

� Interface elements that expose the operations and messages provided by the service

� Provider-specific binding elements that describe how the service interface is implemented

� Service and port elements that enable client applications to locate the service

In this chapter, we provide an overview of MFS Web Services.

16

© Copyright IBM Corp. 2006. All rights reserved. 321

16.1 IMS MFS Web Services introduction
MFS Web Services are built by generating Web Service Definition Language (WSDL) files.
The MFS WSDL files contain only device information. For the input part of the WSDL
message, only device fields that map to input message fields are used; and on the output
side, only device fields that map to output message fields are used.

A Web services client, which can be a Java or EJB application using a Web Services
Invocation Framework (WSIF), looks up the WSDL file generated from the MFS importer.
Based on the WSDL, the Web services client starts the service. The service request then
invokes the MFS Adapter.

The MFS Java or EJB clients use the MFS Adapter to translate a service message into a byte
stream to input to IMS Connector for Java and also to translate a response in byte stream to a
service message, as shown in Figure 16-1.

Figure 16-1 MFS Web Services in WebSphere Application Server

16.2 IMS MFS Web Services development process overview
The following steps show the typical development processing steps for IMS MFS Web
Services:

1. Download valid MFS source files from z/OS and place them in a directory that is
accessible to WebSphere Studio Application Integration Edition. If the MFS source is not
available, you can create it from MFS format libraries by running the IBM IMS Message
Format Services Reversal Utility. For more information, see IMS Message Format
Services Reversal Utilities for z/OS User's Guide, SC27-0823.

2. Import the MFS source files into the workbench and generate the service:

a. The Create Service wizard generates the service WSDL files (Interface WSDL, Binding
WSDL, and Service WSDL).

WebSphere Application Server

OS/390

IMS

Control
Region

MPP/IFP/BMP

Transactional
Application
Program

IMS Connect

Byte stream

MFS Adapter

DEV MSG
XML XML

MSG Byte
XML stream

 XMI

ConverterMapper

WSIF

Java Proxy

EJB Proxy

WSIFDynamic Provider_IMS

JCAMFSOperation
I
C
4
J

322 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

b. The MFS Importer wizard specifies the input and output messages for your new
operation. The wizard reads the MFS source file and parses it. If the MFS source file
successfully parses, the MFS Importer wizard generates XML Metadata Interchange
(XMI) files. The XMI files represent information about the application interface that is
encapsulated by the MFS source, including:

• Input and output message fields (MID/DIF, MOD/DOF)
• Display information
• MFS flow control
• Device characteristics
• Operation semantics

c. The MFS Importer wizard populates the input and output XML Schema Definition
Language (XSD) fields in the interface WSDL file and adds binding information to the
binding WSDL file.

3. Generate the deploy code for the service. The deploy code includes the session bean that
handles client requests to the service and deploy classes that allow your session bean to
operate on an EJB server.

4. Deploy the service and supporting files to a production server and publicize the service by
a Universal Description, Discovery, and Integration (UDDI) registry. Client applications can
then use the service to access information in your MFS-based transaction.

16.3 IMS MFS Web Services supported features
IMS MFS Web Services supports the following MFS features:

� Application output with MOD name

At runtime, an application program can change the format that is used to map the current
output message by passing back a MOD name. The MFS runtime component uses this
MOD name to format the output.

� Logical pages

You can select a specific logical page that is associated with the MID to use for input. For
output, an output message is defined with one or more logical pages (LPAGE). Each
LPAGE relates one segment, or a series of segments, produced by an application program
to a corresponding device format.

� Physical pages

A logical page can contain one or more physical pages. Physical paging allows data from
a logical page to be displayed in several physical pages on the device. For display devices,
the size of a physical page is defined by the screen capacity (the number of lines and
columns that can be referred to).

� Message option 1 and 2 (input)

Message option 1 depends on whether a fill character of NULL has been defined. When
NO field in an option 1 message is defined as having a fill character of null:

– The message always contains the defined number of segments.
– Each segment is of the defined length and contains all defined fields.
– All fields are filled with data, data and fill characters, or fill characters.

Chapter 16. IMS MFS Web Services 323

When fields in an option 1 message are defined as having a fill character of null:

– Each field with null fill and no input data from the device is eliminated from the
message segment. If all fields in a segment are eliminated in this manner and no
literals (explicit or default) are defined, the segment is eliminated; otherwise, the length
of the segment is reduced and relative position of succeeding fields in the segment is
altered.

– Fields with null fill that receive data that does not fill the field are not padded. The
number of characters received for the device field becomes the number of characters
of the input data. This alters the length of the segment and the relative position of all
succeeding fields in the segment.

Message option 2 formats messages in the same way that option 1 does, unless the
segment contains no input data from the terminal after the literals have been removed. If a
segment does not contain any data and there are subsequent segments that contain data,
a null segment is created. A null segment contains only a X'3F' character.

� Message option 1 and 2 (output)

All fields in option 2 output segments are defined as fixed length and fixed position. The
data in the fields can be truncated or omitted by two methods:

– Inserting a short segment
– Placing a null character (X'3F') in the field

Fields are scanned from left to right for a null character. The first null character that is
encountered terminates the field. If the first character of a field is a null character, the field
is omitted (depending on the fill character used). Positioning of all fields in the segment
remains the same regardless of null characters. Fields truncated or omitted are padded as
defined to the MFS Language Utility.

If ATTR=YES is specified in the MFLD definition, and if X'3F' is the first or second byte of
the attribute portion of the field, the field is omitted and the attributes that are specified on
the device field (DFLD) statement are used.

� System literals for date, time, and LPAGENO

MFS Web Services supports system literals for date, time, and LPAGENO.

� Function keys that map to literal data

MFS Web Services supports function keys that map to literal data. MFS Web Services
does not support PF keys that map to control functions or PA keys. If an IMS command is
specified as a PF key that maps to literal data, the command must be supported by IMS
OTMA.

� Double-byte character sets (DBCS)

Double-byte character sets (DBCS) are graphical character sets in which each character
is represented by two bytes. The valid DBCS code range is X'4040' or X'41' through X'FE'
for byte 1, and X'41' through X'FE' for byte 2. DBCS is used when the number of
characters in some written languages is more than 256 characters.

Because DBCS is a subset of the Extended Graphic Character Set (EGCS), DBCS fields
are specified by using EGCS keywords and parameters, and they are treated by MFS in
much the same way as EGCS data. However, DBCS data can be used in two field types, a
DBCS field and a mixed DBCS and EBCDIC field. The DBCS field accepts only DBCS
data and no special control characters are needed with this type of field. But, in a mixed
field, where DBCS data is mixed with EBCDIC data, the DBCS data must be enclosed by
Shift Out (SO) and Shift In (SI) control characters. To specify a DBCS and EBCDIC mixed
field, the keyword MIX or MIXD should be used for the EATTR parameter in a DFLD
statement.

324 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Because the WebSphere Studio Integration Application Integration tools for building
enterprise services target local and LAN files, download MFS source files (which normally
reside on z/OS) to a workstation or LAN server, and then import the source files into the
workbench. You can download MFS source files in either binary or text format; however, if
an MFS source file contains double-byte characters, you must download the file in binary
format. Downloading a DBCS file in text format will result in a parser error when the source
file is parsed by the MFS Importer wizard.

16.3.1 Supported device types
The MFS Transformer only supports MFS source formats for 3270 and 3270-An devices.

16.3.2 Supported MFS statements
The following MFS statements are supported:

� MSG
� LPAGE
� PASSWORD
� SEG
� MFLD
� FMT
� DEV
� DIV
� DPAGE
� DFLD
� TABLE
� IF

The following statements are not modeled but implicitly supported through parser:

� ALPHA
� COPY
� DO
� END
� ENDDO
� EQU
� FMTEND
� MSGEND
� RESCAN
� STACK
� TABLEEND
� UNSTACK

16.4 IMS MFS Web Services limitations
The following features are not supported:

� Conditional logical paging
� EGCS (NLS Support)
� IMS system-generated MFS parameters such as PAGDEL
� Magnetic strip reading device
� Message option 3
� MFS Bypass
� MFS Buffer Pool

Chapter 16. IMS MFS Web Services 325

� MFS Field Exit routine
� MFS Pool Manager
� MFS Segment Exit routine
� Multiple physical page input
� Operator control table
� Operator logical paging
� PA2 key to advance to the next message
� PA3 key (copy to the local printer)
� Password
� PF keys defined for anything besides transactions and commands
� Programmed symbols (for example, scientific or technical symbols)
� Selector pen
� System Control Area (SCA)
� System literal defined for anything other than date and time
� $$IMSDIR (resident directory)

The following types of messages are not supported:

� Asynchronous messages (due to IMS Connector for Java restriction)
� Conversational transactions (due to IMS Connector for Java restriction)

16.5 Adding operations, messages, and bindings
For adding operations, messages, and bindings from MFS source, refer to the WebSphere
Studio Application Developer Integration Edition Information Center, available at:

http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp

To find this topic, navigate with your Web browser as follows:

1. Click WebSphere Studio.
2. Expand Developing → Expand Enterprise services → IMS services → Developing

your application → Expand Building an IMS service → Generating an enterprise
service for an IMS transaction.

3. Select Adding operations, messages, and bindings from MFS source.

16.6 Creating an enterprise service
For creating an enterprise service for an MFS-based IMS transaction, refer to the WebSphere
Studio Application Developer Integration Edition Information Center, available at:

http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp

To find this topic, navigate with your Web browser as follows:

1. Click WebSphere Studio.
2. Expand Developing → Expand Enterprise services → Expand IMS services →

Expand Samples.
3. Select Creating an enterprise service for an MFS-based IMS transaction.

326 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp

16.7 Deploying an MFS-based IMS enterprise service
For deploying an MFS-based IMS enterprise service to a production server, refer to the
WebSphere Studio Application Developer Integration Edition Information Center, available at:

http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp

To find this topic, navigate with your Web browser as follows:

1. Click WebSphere Studio.
2. Expand Developing → Expand Enterprise services → Expand IMS services →

Expand Samples.
3. Select Deploying an MFS-based IMS enterprise service to a production server.

Chapter 16. IMS MFS Web Services 327

http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp

328 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 17. IMS MFS Web Enablement

IMS MFS Web Enablement modernizes existing MFS-based IMS transactions in a
business-to-consumer (B2C) environment. The support Web-enables existing or new IMS
MFS-based applications in IBM WebSphere Application Server and interactively renders
them for display in standard browsers such as Microsoft Internet Explorer and Mozilla Firefox.

First, we describe the user experience of MFS Web Enablement. Then, we look at the details
of the MFS Web Enablement tooling and the runtime components. The MFS Web
Enablement tooling utility support consists of the MFS XML Utility and the MFS Importer.
MFS Web Enablement runtime support consists of application instance servlets, sample
cascading style sheets, the MFS Servlet, and the MFS Adapter.

17

© Copyright IBM Corp. 2006. All rights reserved. 329

17.1 How does IMS MFS Web Enablement work?
At development time, the IMS MFS XML Utility invokes the MFS Importer to parse MFS
source files of existing MFS-based IMS transactions and generates Java classes and
metadata files for runtime processing. The Java classes are packaged into a Web application
archive (WAR) file and deployed on WebSphere Application Server.

During run time, the HTTP request from a browser is sent to the Web application, which
works in conjunction with the IMS MFS Web Enablement runtime component. If this request
is the initial request, a new HTTP session is created and the initial Web page is returned,
which simulates the 3270 type terminal blank screen. Subsequent requests containing input
data, which can be transaction or command, are transformed into an input byte stream to be
sent across to the IMS host application. The output byte stream coming back from the
application is transformed into XML data objects that are stored in the HTTP session. The
XML data object contains one or more physical pages to be displayed as Web pages. Web
pages are returned in the HTTP response, one page per 3270-PA1-equivalent paging
request.

As depicted in Figure 17-1, the IMS Installation Verification Program Phonebook application
is invoked to display a phonebook entry. The input request, coming in from the Web browser,
is transformed into an input byte stream and sent to the IMS host application. The output byte
stream is transformed, and the Web page containing output data is generated and returned.

Figure 17-1 IMS IVP Phonebook application as an MFS Web-enabled Web service

17.2 IMS MFS XML Utility
The MFS XML Utility invokes the MFS Importer to parse MFS source files and generates XML
Metadata Interchange (XMI) files for each message input descriptor (MID) or device input
format (DIF) pair, message output descriptor (MOD), or device output descriptor (DOF) pair,
and MFS table.

IMS

Assembler
Transactional

Application
Program
REXX

Transactional
Application
Program
Cobol

Transactional
Application
Program

llzzIVTNO DISPLAY
LAST1

llzzIVTNO DISPLAY
LAST1 FIRST1
8-111-2222D02/R02

ENTRY WAS DISPLAYED

IMS

MFS

Web

Enablement

330 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

17.2.1 Overview of the MFS XML Utility
The MFS XML Utility is a command line development-time tool that runs on an
MS-DOS-based command prompt. This utility generates all of the necessary files needed to
Web enable MFS-based IMS transactions. It takes MFS source files as input and produces
metadata XMI files and Web application archive (WAR) files as output. In addition, the utility
provides FTP client support to transport the generated output to an application server such as
WebSphere Application Server.

17.2.2 User modes
You can run the MFS XML Utility in three different modes:

� Novice

Novice mode is the default user mode. In novice mode, you are prompted on each input
instruction until all instructions are complete. Novice mode is designed for new users and
users that prefer more guidance.

� Expert

In expert mode, you have the flexibility of specifying all of the input values as flag
parameters in one command. To use expert mode, you must know the device type and
device feature in advance. If you do not know the available device types and features from
the parse result of the MFS source files, run in novice mode so that you can see the
available selections. Each input field is specified by a flag that precedes the value. The
expert mode set of parsing uses the parameters shown in Table 17-1.

Table 17-1 MFS XML Utility step 1 expert mode parameters

All of the parameters shown in Table 17-1 are required except for the Device
Characteristics Table, which is optional. All of the required parameters have a default value
except for the MFS source files. You can also see more detailed information by typing
/help on the command prompt after step 1 is selected in the MFS XML Utility menu. The
expert mode uses the set of servlet flag parameters shown in Table 17-2.

Table 17-2 MFS XML Utility step 2 expert mode parameters

Input Syntax

Device Characteristics Table (optional) -d or -deviceTableFile

Binary source files (True or False) -b or -binarySource

Host codepage -hc or -hostCodepage

Source codepage -sc or -sourceCodepage

Device type -dt or deviceType

Device feature -df or -deviceFeature

Output directory -o or -outputDirectory

MFS source files -f or -sourceFile

Input Syntax

Name of the instance servlet -n or -instanceServletName

Platform where WebSphere Application Server is located -sp or -serverPlatform

Name and location of style sheet -ls or -localStylesheet

Chapter 17. IMS MFS Web Enablement 331

� Batch

In batch mode, you can rerun previously saved commands from Step 1: Generating XMI
files from MFS source files or Step 2: Generating the instance servlet and the web.xml
files to generate the XMI and instance servlet files.

17.2.3 Invoking the MFS XML Utility
The MFS XML Utility is invoked by starting the mfsxml.bat file using an MS-DOS-based
command prompt window.

Step 1: Generating XMI files from MFS source files
The MFS XML Utility invokes the MFS Importer and uses the Eclipse Modeling Framework to
serialize each MID/DIF pair, MOD/DOF pair, and MFS TABLE into an XMI file. The XMI files
contain all of the application metadata information from the MFS source, including the input
and output device descriptors, message descriptors, MID-MOD chaining, device
characteristics, and operation semantics. The generated XMI files are transferred to an XMI
repository on WebSphere Application Server and are read for data transformation during run
time.

The optional device characteristics table file specifies the screen size of certain device types.
Transfer the file in binary format from MVS™ to the system running the MFS XML Utility. You
can transfer the MFS source files from MVS in either text or binary format. Because of this,
you must indicate which mode you are using to transfer the files.

The MFS Importer is invoked after you specify the host codepage. If the parsing of a specific
MFS source file results in a warning, the XMI files will still be generated. However, if the
parsing resulted in errors, the XMI files will not be generated, and you return to the MFS XML
Utility menu. Example 17-1shows the MID, MOD, DIF, and DOF blocks in an MFS source file.

Example 17-1 MID, MOD, DIF, and DOF blocks in an MFS source file

IVTNOMI1 MSG TYPE=INPUT,SOR=(IVTNOF,IGNORE),NXT=IVTNO
….
IVTNOMI2 MSG TYPE=INPUT,SOR=(IVTNOF,IGNORE),NXT=IVTNO
….
IVTNO MSG TYPE=OUTPUT,SOR=(IVTNOF,IGNORE),NXT=IVTNOMI1
….
IVTNOF FMT
….

Name of the host machine -ht or -hostname

Port number -p or -port

IMS name -i or -ims

RACF user name (optional) -u or -rUserName

RACF group name (optional) -g or -rGroup

RACF password (optional) -pw or -rPassword

Trace level for IMS Connector for Java (optional) -t or -traceLevel

Execution timeout for IMS Connector for Java (optional) -e or -executionTimeout

Socket timeout for IMS Connector for Java (optional) -s or -socketTimeout

Input Syntax

332 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Parsing this file, three XMI files are generated:

� IVTNOMI1.xmi containing MID (IVTNOMI1) and DIF (IVTNOF) metadata
� IVTNOMI2.xmi containing MID (IVTNOMI2) and DIF (IVTNOF) metadata
� IVTNO.xmi containing MOD (IVTNO) and DOF (IVTNOF) metadata

After the XMI files are parsed, you are prompted to select a device type and feature. The
output directory specifies where to save the generated XMI files on the local system.

Step 2: Generating the instance servlet and the web.xml files
In step 2, you generate the instance servlet class files and web.xml files for packaging into a
Web application archive (WAR) file in step 3. Note that you can run through step 2 multiple
times to generate different connection settings.

Here is some information about the different parameters in step 2. These parameter values
are stored in the web.xml file, which is packaged into the WAR file for deployment on
WebSphere Application Server:

� Server platform

The server platform is the platform where WebSphere Application Server is located.
Select 1 for a Microsoft Windows-based server or select 2 for UNIX-based server.

� MFSStyleSheet

The style sheet URI to use for rendering the HTML page.

� hostname

The IMS host name to which to connect.

� portNumber

The port number of the IMS host.

� dataStore

The datastore of the IMS host.

� traceLevel

The trace level settings for IMS Connector for Java:

– Trace level 0: IMS trace level RAS_TRACE OFF for no tracing.
– Trace level 1: Lists only errors and exceptions.
– Trace level 2: Adds entry and exit methods.
– Trace level 3: Prints the contents of buffers sent to and received from IMS Connect.

If the trace level is set 1, 2, or 3, the trace output is sent directly to WebSphere Application
Server's trace log file.

� executionTimeout (optional)

The IMS resource adapter execution timeout. The execution timeout value for the IMS
resource adapter is defined as the maximum amount of time allowed for IMS Connect to
send a message to IMS and receive a response from IMS. The execution timeout value is
represented in milliseconds and must be a decimal integer in the range of 1 to 3600000.
The recommended value is 5000 milliseconds.

� socketTimeout (optional)

The IMS resource adapter socket timeout. The socket timeout is the maximum amount of
time IMS Connector for Java will wait for a response from IMS Connect before
disconnecting the socket and returning an exception to the client application.

With the socketTimeout parameter, you can set individual timeout values for a particular
interaction using a socket. The value, in milliseconds, can be set on the socketTimeout

Chapter 17. IMS MFS Web Enablement 333

parameter in IMSInteractionSpec. If the socketTimeout property is not specified for an
interaction or if it is set to zero milliseconds, there is no socket timeout and the connection
will wait indefinitely. The default socket timeout value is zero. The recommended value is
5000 milliseconds.

� userName (optional)

The RACF user name.

� password (optional)

The RACF password.

� groupName (optional)

The RACF group name.

Example 17-2 provides a sample web.xml file.

Example 17-2 Sample web.xml file

<!DOCTYPE web-app (View Source for full doctype...)>
<web-app>
<servlet>
<servlet-name>PhoneBookServlet</servlet-name>
<servlet-class>PhoneBookServlet</servlet-class>
<init-param>
<param-name>hostName</param-name>
<param-value>www.example.com </param-value>
</init-param>
<init-param>
<param-name>dataStore</param-name>
<param-value>IMS1</param-value>
</init-param>
<init-param>
<param-name>portNumber</param-name>
<param-value>9999</param-value>
</init-param>
<init-param>
<param-name>serverPlatform</param-name>
<param-value>2</param-value>
</init-param>
<init-param>
<param-name>MFSStyleSheet</param-name>
<param-value>file:/c:/stylesheets/exampleIEN6.xsl</param-value>
</init-param>
<init-param>
<param-name>traceLevel</param-name>
<param-value>3</param-value>
</init-param>
<init-param>
<param-name>executionTimeout</param-name>
<param-value>5000</param-value>
</init-param>
<init-param>
<param-name>socketTimeout</param-name>
<param-value>5000</param-value>
</init-param>
<param-name>userName</param-name>
<param-value>KEVIN</param-value>
</init-param>
<init-param>
<param-name>Password</param-name>

334 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

<param-value>LO</param-value>
</init-param>
<init-param>
<param-name>groupName</param-name>
<param-value>KGROUP</param-value>
</init-param>
</servlet>
<servlet-mapping>
<servlet-name>PhoneBookServlet</servlet-name>
<url-pattern>/PhoneBookServlet</url-pattern>
</servlet-mapping>
</web-app>

Step 3: Generating the Web application archive (WAR) file
In step 3, the MFS XML Utility generates a Web application archive (WAR) file from one or
more instance servlets and the web.xml file that you generated in step 2.

The MFS XML Utility packages the generated instance servlets and deployment descriptor
web.xml files into a J2EE-compliant WAR file that is deployable on WebSphere Application
Server. The deployment web.xml file stores a specific style sheet, XMI repository, host
connection information, and timeout settings related to the IMS resource adapter (IMS
Connector for Java). The J2EE-compliant WAR file contains one or more Java files, class
files, and web.xml files.

Example 17-3 shows an example of what the J2EE-compliant WAR files generated by the
MFS XML Utility can contain.

Example 17-3 WAR files generated by the MFS XML Utility

/WEB-INF/classes/servlet1.class
/WEB-INF/classes/servlet2.class
/WEB-INF/classes/servlet3.class
/WEB-INF/classes/servlet1.java
/WEB-INF/classes/servlet2.java
/WEB-INF/classes/servlet3.java
.
.
/WEB-INF/web.xml

Step 4: Uploading WAR and XMI files using an FTP client
The MFS XML Utility provides an FTP client for uploading the Web application archive (WAR)
and XML Metadata Interchange (XMI) files onto WebSphere Application Server. To use the
FTP client, you must know the host name, user ID, password, server-side directory path, and
directory that contains the files to upload.

Step 5: Running a batch file (optional)
The MFS XML Utility lets you use a previously-saved batch file for “Step 1: Generating XMI
files from MFS source files” on page 332 and “Step 2: Generating the instance servlet and the
web.xml files” on page 333, instead of repeatedly invoking these steps.

Chapter 17. IMS MFS Web Enablement 335

17.3 IMS MFS Web Enablement runtime support
MFS Web Enablement runtime support consists of the instance servlets, MFS Servlet, and
MFS Adapter. The support runs on WebSphere Application Server and requires IMS Connect
and IMS Connector for Java.

� MFS instance servlet

Instance servlets are generated by the MFS XML Utility tool. An instance servlet records
user-specified IMS Connector for Java connection properties, MFS style sheet file path,
MFS XMI repository file path, and WebSphere Application Server platform information.
The specifications are used by the MFS Servlet.

� MFS Servlet

The MFS Servlet is the super class of all MFS instance servlets. The MFS Servlet handles
HTTP requests and responses to and from Web browsers. The MFS Servlet is responsible
for the connection state management, interaction with the MFS Adapter, and the rendering
of MFS XMI objects using the style sheet to dynamically generate Web pages.

� MFS Adapter

The MFS Adapter loads metadata XMI files into XML data objects for data transformation
to and from byte stream that IMS applications understand. It works in conjunction with the
MFS Servlet and IMS Connector for Java to supply input and to handle output for
MFS-based IMS transactions.

Figure 17-2 on page 337 depicts data flowing through MFS Web Enablement runtime
components, IMS Connector for Java, and IMS Connect to IMS application programs and
back.

336 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 17-2 Data flowing through MFS Web Enablement runtime components

17.3.1 MFS Web Enablement features and functions
The following core MFS features are supported:

� 3270 type devices

� Attribute bytes

� Cursor positioning

� Extended attributes bytes (blinking only supported in Mozilla)

� Multiple physical pages input

� Multiple logical and physical pages output

� Message options 1 and 2 only for input and output

� PA1 key equivalent to advance to the next physical page

� PF keys with literal data (transaction code and two commands, /FOR and /EXIT, and two
control functions, EXTPP (next physical page) and ENDMPPI (end multiple physical pages
input)

� System literals only for date, time, and LPAGENO

Chapter 17. IMS MFS Web Enablement 337

� System default MIDs and MODs, including DFSMI1, DFSMI2, DFSMO1, DFSMO2,
DFSMO3, DFSMO5, and the blank screen

Other functional characteristics of MFS Web Enablement include:

� Conversation support

The host connection is created and managed by the MFS Servlet for the duration of the
HTTP session. The connection object is reused in a conversation for the same session.
MFS Web Enablement runtime support handles /EXIT command requests to properly
terminate the conversation on the host.

� Instance servlet Web application archive (WAR) file

The generated WAR file is deployable to WebSphere Application Server. Each WAR file
contains a deployment descriptor file and one or more instance servlets, which contain
WebSphere Application Server platform information, specific IMS Connector for Java
connection properties, XMI repository location, style sheet location, and the IMS
Connector for Java interaction properties execution timeout and socket timeout.

� Style sheet

The two sample MFS style sheets render the XML data stream into HTML for display in a
Web browser. One style sheet contains templates for generating 3270-like Web pages and
the other style sheet is for generating stylized Web pages.

WebSphere Application Server provides the following features:

� Xalan Extensible Stylesheet Language Transformation (XSLT)

The XSLT processor converts XML data into HTML by applying an XSL cascading style
sheet, which is a well-formed XML file that contains template information.

� Secure Sockets Layer (SSL) and HTTPS

SSL can be configured to encrypt the data transmitted between the Web browsers and the
Web server.

� User authentication

User authentication can be configured so that clients accessing a particular servlet for the
first time must log in.

17.3.2 MFS Servlet
The MFS Servlet works with HTTP session objects to:

� Load state information associated with the unique session ID. Create a new session if the
request comes in with new session ID.

� Manage and update the state information in each HTTP request.

� Invalidate sessions when an HTTP session becomes unbound (upon logout, browser
closed, or session timeout).

Upon receiving the HTTP request, the MFS Servlet checks if this request is associated with
an existing HTTP session. If a match cannot be found, the HTTP session is created and the
initial Web page, simulating the 3270 blank screen, is generated and returned, as shown in
Figure 17-3 on page 339.

338 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 17-3 Initial Web page

From the initial Web page, you can enter the following inputs:

� RACF user ID, password, and group name

The RACF credentials specified by the user while running the MFS XML Utility are
displayed as the default value. You can choose to supply a different set of credentials. The
supplied credentials are valid for the entire session. The session is terminated after you
log out, close the browser, or the session times out. When new credentials are specified,
the previously active connection and pending conversation are automatically terminated,
and a new IMS Connector for Java connection object created. The RACF user ID,
password, and group name are converted to uppercase text by the MFS Adapter.

� /FOR or /FORMAT modname command

The format command is processed by the MFS Adapter, which attempts to load the MOD
/DOF XMI file, based on the modname, from the XMI repository. The MFS Servlet then
renders the DOF metadata with the MFS style sheet and returns the formatted Web page
to the client browser. If the specified modname cannot be found, the system returns the
message IXFT003E: REQUESTED XMI NOT FOUND: MODNAME using system default
DFSMO3.xmi.

Chapter 17. IMS MFS Web Enablement 339

� Transaction code followed by data

The transaction code and optional data are written to the input byte array and are then
sent to IMS. Trancode is converted to uppercase text by the MFS Adapter. The data
remains unchanged (mixed cased allowed). The output execution follows the same flow as
in the processing execution in “transaction data” from a Web page other than the initial
page.

� /EXIT command

The exit (/EXIT) command is processed by the MFS Servlet and the MFS Adapter to end
the current pending conversation. The MFS Servlet determines if the client is in the middle
of a conversation. To end a conversational message, the MFS Adapter sets the
SYNC_END_CONVERSATION in the IMSInteractionSpec, and then sends an empty
request through IMS Connector for Java to terminate the host conversation. The system
returns one of the following messages:

– If in a conversation:

DFS058I HH:MM:SS EXIT COMMAND COMPLETED.

– If not in a conversation:

DFS180 HH:MM:SS NO ACTIVE CONVERSATION IN PROCESS, CANNOT PROCESS COMMAND.

From a Web page other than the initial page, you can enter the following inputs:

� Transaction data

The MFS Servlet sends the user's input data in one or more physical pages to the MFS
Adapter. If multiple physical pages of input (MPPI) is specified for the device page in the
MFS source file, the MFS Servlet displays one physical page at a time to collect the data
belonging to the same device page and sends them all at once to the MFS Adapter.

� MFS function keys

The MFS Servlet supports function keys defined from PF1 to PF36. If the request is a
function key request, the MFS Servlet either fills the literal value into a device field, as
specified in the function key definition, or performs the specified control function. The
literal value can be field data, format, or exit commands. The supported control functions
are next physical page and end multiple physical pages input.

� MFS paging

The MFS Servlet supports the NEXT PAGE paging request similar to PA1 on a 3270
terminal. The MFS Servlet keeps track of the current logical and physical page position
and displays one physical page at a time for every NEXT PAGE request. If the MFS
Servlet receives a NEXT PAGE request on the last physical page on a logical page, it
returns the next logical page's first physical page and iterates through until the last
physical page of the last logical page. When a NEXT PAGE request is received on the last
logical and physical page, the same page is displayed.

� Reset

Upon receiving the reset request, the MFS Servlet clears the current state and redirects
the user to the initial blank page.

� Logout

Upon receiving the logout request, the MFS Servlet invokes MFS Adapter to end the
conversation if in a conversation, closes the connection, dumps all state data associated
with the session ID, and redirects the user to the logout page.

340 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

17.3.3 MFS Adapter
The MFS Adapter runs inside WebSphere Application Server and transforms data between
MFS device data and message data. The MFS Adapter is invoked by the MFS Servlet. Using
the Eclipse Modeling Framework, the MFS Adapter loads the appropriate MFS XMI resource
from the repository, invokes the transformer routine to handle the data conversion, and
submits the IMS transaction using the IMS Connector for Java Common Client Interface (CCI)
method calls.

Based on the information contained in the DIF/MID XMI file, the transformer routine first maps
the input device data into message data, and then into an input byte array. The input byte
array is sent across using IMS Connector for Java. Upon successful execution, the output
byte array comes back on the return route. The MFS Adapter then loads the DOF/MOD XMI
file, specified in mapName (capable of handling the case with the application program
switches the MODNAME), and invokes the transformer routine to first map the output byte
array into message data, and then into output device data. The resulting data object is
returned to the MFS Servlet.

The MFS Adapter transformer routine implements both the J2EE CCI Record and Streamable
interfaces. The javax.resource.cci.Record interface is the base interface for the representation
of an input or output to the execute methods defined on a J2EE interaction. The
javax.resource.cci.Streamable interface enables a resource adapter to extract data from an
input record or set data into an output record as a stream of bytes. Table 17-3 describes
various scenarios that the MFS Adapter supports.

Table 17-3 Supported MFS Adapter scenarios

Note: MFS Web Enablement does not support asynchronous send-only message
requests.

Scenario Description

MFS Adapter receives format request. Loads and returns specified modname XMI file
(load DFSMO3 if not found).

MFS Adapter receives exit request. Ends the conversation and returns the status
using DFSMO2.

Adapter receives transaction request. Loads and parses using the input MID XMI file.

MFS Adapter receives transaction response
where the IMS application does not replace
modname.

Loads and processes using the input MID next
MOD XMI file (default is DFSMO2 if unspecified).

MFS Adapter receives transaction response
where the IMS application replaces modname.

Loads and processes using MOD XMI file
specified in the InteractionSpec's mapName.

MFS Adapter receives transaction response
where the output byte array begins with “DFS”.

Loads and processes using DFSMO1 (for single
segment output) or DFSMO5 (for multiple
segment output) XMI file.

MFS Adapter receives transaction response
where a runtime exception occurred (MFS
Adapter, IMS Connect, IMS Connector for Java,
or IMS).

Loads and processes using DFSMO2.

Chapter 17. IMS MFS Web Enablement 341

17.4 Installing the instance servlet WAR file
To install the instance servlet WAR file:

1. Start WebSphere Application Server.

2. Open the WebSphere administrative console.

3. Expand Applications and select Install New Application.

4. Click Browse, and then under Local path, select the WAR file that you want to deploy.

5. Enter the Context Root. The text you enter will be a part of the URL.

6. Click Next to go to the next window and accept the default values.

7. Click Next to go to the Application Security Warnings window.

8. Click Continue to go to the Install New Application window and accept the default values.

9. Click Next and accept the defaults three more times.

10.Click Finish. You should get the message “Application [application name] installed
successfully,” as shown in Figure 17-4.

Figure 17-4 Application installed successfully

11.Click the Save to Master Configuration link to go to the Save window.

12.Click Save.

13.To start the application, select Enterprise Applications.

14.Select the WAR file that you installed, and click Start.

342 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

15.You should get the message “Application [application name] on server [server name] and
node [node name] started successfully,” as shown in Figure 17-5. The application status
color changes from red to green.

Figure 17-5 Application started successfully

17.5 Accessing the deployed instance servlet
Before accessing the deployed instance servlet, make sure that your Web server is running.
To access the instance servlet:

1. From a Microsoft Internet Explorer or Mozilla Firefox browser, enter the URL of the
instance servlet (for example, https://localhost:9080/test/testServlet). If user
authentication is on, proceed to step 2; if not, proceed to step 4.

2. Enter your user ID and password.

3. If the user authentication is on the Security Alert prompt opens. Click Yes to indicate that
you want to proceed.

4. After WebSphere Application Server authenticates, you are then redirected to the initial
Web page.

5. You can now enter your RACF information, command, or transaction request in the same
way that you would using a 3270 type terminal. The RACF information displayed defaults
to the information specified in the web.xml file. However, you can choose to overwrite the
default values. The RACF information is used for creating a connection to IMS Connect.
The servlet is timed out in fixed intervals. Make sure that you properly log out to release
the connection when you are finished.

Chapter 17. IMS MFS Web Enablement 343

Browser-specific tips:

� Microsoft Internet Explorer

If you open a new browser window by pressing Control+N or by clicking File → New →
Window, and then go back to using the previous browser window, you will get the Session
ID Error page. However, this restriction does not apply to browser windows that are
opened by double-clicking the Microsoft Internet Explorer icon, because a new session ID
will be associated with every new instance of the browser.

� Mozilla Firefox

If you open a new browser window to access the same instance servlet, and then go back
to using the previous browser window, you will get the Session ID Error page. This
restriction does not apply when you are using multiple Mozilla browsers, each invoking a
different instance servlet.

17.6 Sample MFS style sheets
The sample MFS style sheets are provided for demonstration purposes and are
customizable. The MFS Servlet loads an MFS style sheet to render Web pages using the
XSLT processor. The MFS style sheets supply information about how to render the data in a
Web browser. The MFS style sheets provide functionality similar to that of using a 3270 type
terminal, including:

� A Submit button on the top of the page that is analogous to pressing the Enter key on a
3270 type terminal.

� The Next Page button, which is equivalent to the PA1 function. Clicking this button
advances you to the next physical page. When you get to the last physical page, clicking
the Next Page button simply displays the same page.

� The PF keys PF1 through PF36 are displayed as buttons on the HTML pages. Only PF
keys with literal data (transaction code and the two commands, /FOR or /FORMAT, and
/EXIT and the two control functions, NEXTPP (next physical page), and ENDMPPI (end
multiple physical pages input), are supported.

� A Clear Fields button that clears the contents of all input fields.

� A Reset button that enables you to return to the blank page.

� A Logout button that closes all connections and exits.

� A Help button opens the MFS Web Enablement Version 9.1.0 User's Guide and
Reference.

� Attribute bytes support, including:

– Protected

Data cannot be entered into this field. Setting this attribute to true changes it into a
label text field.

– Modified

Data in this field can be modified. Setting this attribute to true changes it into an input
text field.

– High-intensity

Data displayed in this field appears in bold font (default).

344 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

– Non-displayable

Data entered into this field is non-displayable. In the case of label text field, the
foreground color is set to the background color. In the case of input text field, the input
type is set to hidden.

� Extended attribute bytes support:

– Highlighting:

• Default: This field gets the default font and color assignments.
• Blink: This field is blinking.
• Reverse video: This field's foreground and background colors are reversed.
• Underline: This field is underlined.

– Color

• Sets a field's color. Eight colors are used, as described in Table 17-4.

Table 17-4 Extended attribute colors

– Outlining

• Sets a border around a field.
• Box: Sets the border over, under, left, and right. This overrides other outlining

extended attributes.
• Over: Sets the border on the top of the field.
• Under: Sets the border on the bottom of the field.
• Left: Sets the border to the left of the field.
• Right: Sets the border to the right of the field.

Two types of sample MFS style sheets are provided:

� Classic 3270 type terminal simulation

The following page is rendered with the sample classic 3270 type terminal simulation and
shows the IMS installation verification procedure (IVP).

� Stylized 3270 type terminal

This displays a Web page interface.

The customizable attributes of the MFS style sheets are:

� Font attributes:

– Color
– Family

Color name Color displayed on a classic
3270 type terminal simulation

Color displayed on a stylized
3270 type terminal

Blue Blue Blue

Red Red Red

Green Lime green rgb(33,70,40)

Turquoise Aqua rgb(53,126,124)

Yellow Yellow rgb(244,122,0)

Pink Fuchsia rgb(160,50,140)

Default Aqua rgb(100,50,0)

Neutral White rgb(111,111,111)

Chapter 17. IMS MFS Web Enablement 345

– Size
– Weight

� Background color.

� Button style.

� JavaScript™ code can be added.

You can specify additional graphics in the style sheet and add them into the WAR file. Do not
modify the rest of the code in the style sheets.

17.7 Instructions to Web-enable IMS Phonebook application
This section provides step-by-step guidelines to Web-enable, generate, deploy, and invoke
the IMS IVP Phonebook application Phonebook MFS source file. The text under each step
shows the instruction displayed by the utility.

17.7.1 Step 1: Parsing the MFS source file with MFS XML Utility
To parse the MFS source files:

1. From the MFS XML Utility window, choose selection 1 and press Enter:

Please enter your selection here: 1
Step 1: Generate XMI files that represent MID/DIF and MOD/DOF of the MFS source
This step requires the following information:
-MFS source files
-Device Characteristics Table file (Optional)
-Whether source files are in text or binary format (default to text)
-Codepage for source files (default to MS950)
-Codepage for host environment (default to Cp037)
-Device type to format (default to 3270-A02)
-Device feature to enable (default to ignore)
-Output directory for generated XMI files (default to installation directory)

2. Press Enter to run in novice mode:

Enter arguments here or press enter to run novice mode. Type '/help' for more
information or 'q' to quit anytime: >>
Beginning Step 1: Generating XMI files...

3. Specify c:\MFSXMLUtility+\dfsivf1.mfs as the MFS source files and press Enter:

Specify MFS source files or directory containing MFS source files:
c:\MFSXMLUtility+\dfsivf1.mfs
You selected c:\MFSXMLUtility+\dfsivf1.mfs

4. Press Enter to indicate no Device Characteristics Table:

Specify device characteristics table (Optional):
No device characteristics table selected

5. Press Enter to indicate the default value of n:

Is the source in binary mode (y|n ; Default is no):
>> You entered no by default

6. Press Enter to specify the source codepage as Cp1252 (default based on system locale):

Specify codepage for source (your system default is Cp1252):
>> You entered MS950 by default.

346 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

7. Press Enter to specify the host codepage as Cp037 (for EBCDIC United States):

Specify codepage for host (Default is Cp037):
>> You entered Cp037 by default.

8. Specify PHONEBOOK as the output directory and press Enter:

Specify output directory (Default is C:\MFSXMLUtilityGA\): PHONEBOOK
>> You entered C:\MFSXMLUtilityGA\PHONEBOOK\ Parsing files...

9. Press Enter to select the default device type:

Choose one of the following device features (Default is Ignore):
1) Ignore
=>
You selected Ignore
parsing c:\MFSXMLUtility+\dfsivf1.mfs
Writing to C:\MFSXMLUtilityGA\device_types.log completed

10.Press Enter to specify that you do not want to see the parse output:

Parse successfully. Would you like to see the parse output? (y|n; default is no):
Parse output log will be created.
Writing to C:\MFSXMLUtilityGA\parse.log completed
The following XMI files were generated: C:\MFSXMLUtilityGA\PHONEBOOK\IVTNOMI1.xmi
C:\MFSXMLUtilityGA\PHONEBOOK\IVTNO.xmi XMI files generated.

11.Type y and press Enter to indicate that you want to save your input values to a batch file:

Do you wish to save your input values to a batch file? (y|n ; Default is no) y
Writing batch file to C:\MFSXMLUtilityGA\PHONEBOOK\IVTNOMI1_step1.txt...
Step 1 batch file created
The following batch file was generated: C:\MFSXMLUtilityGA\PHONEBOOK\IVTNOMI1_step1.txt
Step 1 completed.

17.7.2 Step 2: Generating an instance servlet
In step 2, you generate the PHONEBOOK instance servlet.

To generate an instance servlet:

1. From the MFS XML Utility window, select 2 and press Enter:

Please enter your selection here: 2
Step 2: Generate and compile instance servlet used during runtime for the backend MFS
application;
This step requires the following information:
-Name of the this instance servlet
-Platform (Windows or Unix based System) where WebSphere Application Server is located
-Location of XMI repository on web server (default to last value)
-Name and location of stylingsheet on local machine to copy to web server (default to
last value)
-Host name or IP address of IMS (default to last value)
-Port number of host (default to last value)
-IMS datastore name (default to last value)
-RACF username (optional)
-RACF group (optional)
-RACF password (required if RACF username is specified)
-Trace Level of IMS Connect for Java (default to 0)
Begin Servlet Generation....

2. Press Enter to generate the servlet in novice mode:

Press Enter to generate servlet in novice mode, otherwise enter servlet arguments for
expert mode or type '/help' or 'q':
>>

Chapter 17. IMS MFS Web Enablement 347

3. Enter PHONEBOOK as the name of your instance servlet and press Enter:

Please enter the name of this instance servlet:PHONEBOOK

4. Specify the output directory for your instance servlet and press Enter (the last output
directory specified or the MFS XML Utility installation directory):

Specify output directory (default is C:\MFSXMLUtilityGA\PHONEBOOK\):
You have selected an existing directory! Files with the same name will be over-written
without warnings!
Continue? (y|n; default is yes)
>> You entered C:\MFSXMLUtilityGA\PHONEBOOK\

5. Specify 1, Windows platform, as the platform where WebSphere Application Server is
located and press Enter:

Please select the platform where WebSphere Application Server is located:
1) WINDOWS
2) UNIX Systems (AIX, Linux, Solaris, and so forth)
>> 1
You chose WINDOWS.

6. Specify /c:\xmi as the file path URI of the XMI repository on WebSphere Application
Server and press Enter:

Specify target location of XMI repository on web server ('?' for help): c:\xmi
>> You entered file:/c:\xmi

7. Specify c:\$Projects\MFSXML\source\sample3270.xsl as the target location of your style
sheet on WebSphere Application Server and press Enter:

Specify location of styling sheet ('?' for help):
c:\$Projects\MFSXML\source\sample3270.xsl
>> You entered file:/c:\$Projects\MFSXML\source\sample3270.xsl

8. Specify ecdb31.svl.ibm.com as the IMS host name or IP address and press Enter:

Specify IMS hostname or IP address ('?' for help): ecdb31.svl.ibm.com
>> You entered ecdb31.svl.ibm.com

9. Specify 9999 as the host port number and press Enter:

Specify a port number ('?' for help): 9999
>> You entered 9999

10.Specify IMS1 as the IMS datastore name and press Enter:

Specify IMS1 as the IMS datastore name ('?' for help): IMS1
>> You entered IMS1

11.Skip this step by pressing Enter:

Note that the following RACF information will be used if no RACF information is
specified during runtime.
Specify RACF user name (Optional; '?' for help):
No value entered

12.Specify 3 for the trace level for IMS Connector for Java and press Enter:

Specify trace level for IMS Connector for Java from 0 to 3 (default is 0; '?' for help):
3
>> You entered trace level 3

13.The instance servlet is generated and compiled in the output directory that is specified:

Generating servlet......completed
Servlet is being compiled.......completed.

348 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

14.Type y to save your input values for later execution in batch mode and press Enter:

Do you wish to save your input values to a batch file (RACF information will NOT be
saved)?
(y|n ; Default is no)y
Writing batch file to C:\MFSXMLUtilityGA\PHONEBOOK\PHONEBOOK_step2.txt...
Batch file created

15.The deployment descriptor and web.xml files are generated:

Generating servlet deployment descriptor......generated.
Starts to put files in the WEB-INF directory...
Compile servlet to be packaged into WAR file....
Servlet is being compiled.......completed.
The following servlet file was generated: C:\MFSXMLUtilityGA\PHONEBOOK\PHONEBOOK.java
The following servlet class file was generated:
C:\MFSXMLUtilityGA\PHONEBOOK\PHONEBOOK.class
The following batch file was generated: C:\MFSXMLUtilityGA\PHONEBOOK\PHONEBOOK_step2.txt
The following segment of web.xml file was generated:
C:\MFSXMLUtilityGA\PHONEBOOK\PHONEBOOKWeb.xml
Step 2 completed.

17.7.3 Step 3: Generating a WAR file
In step 3 you, generate the PB.war file.

To generate a WAR file:

1. From the MFS XML Utility window, select 3 and press Enter:

Enter your selection here: 3
Step 3: Generate a WAR (Web Application aRchive) file containing one or more instance
servlets
To generate a WAR file, you must first complete step 2running through step 2 in advance
is mandatory.
This step requires the following information:
-Previously generated instance servlet class file(s) in the WEB-INF\classes directory
-Previously generated deployment descriptor (web.xml) in the WEB-INF directory
*Examine the content of the web.xml file in C:\MFSXMLUtilityGA\WEB-INF\ and make any
necessary additions.*
*The web.xml file that will be packaged into the WAR file is in
C:\MFSXMLUtilityGA\WEB-INF\
This WAR file is going to be generated with the following instance servlets.
1) .\WEB-INF\classes\PHONEBOOK.class
2) .\WEB-INF\classes\PHONEBOOK.java

2. Enter PB for the name of your WAR file and press Enter:

Enter the name of this WAR file: PB

3. Indicate if you would like to include additional files in your WAR file, for example, GIF or
JPG files, (default is no) and press Enter:

Do you want to package additional files such as pictures with this WAR file? (y|n;
default is no)

4. The WAR file is generated:

Adding manifest
Adding_WEB-INF/ (reading=0)(writing=0)(saving 0%)
Adding_WEB-INF/classes/ (reading=0)(writing=0)(saving 0%)
Adding_WEB-INF/classes/PHONEBOOK.class (reading=379)(writing=270)(saving 28%)
Adding_WEB-INF/classes/PHONEBOOK.java (reading=614)(writing=404)(saving 34%)
Adding_WEB-INF/web.xml (reading=1060)(writing=373)(saving 64%)
WAR file generated.

Chapter 17. IMS MFS Web Enablement 349

The following WAR file was generated:
C:\MFSXMLUtilityGA\WAR\PB.war
Step 3 completed.

17.7.4 Step 4: Configuring WebSphere Application Server
To configure MFS Web Enablement support on the WebSphere Application Server resource
adapter, complete the following tasks. To begin configuring the WebSphere Application
Server resource adapter, you must:

� Download and install IMS Connector for Java Version from:

http://www.ibm.com/software/data/db2imstools/imstools/imsjavcon.html

� Download the MFS Web Enablement ZIP files from:

http://www.ibm.com/software/data/ims/toolkit/mfswebsupport/index.html

� Unzip and place the JAR files in an accessible location on WebSphere Application Server.

If you FTP the JAR files to the WebSphere Application Server system, make sure that it is first
set to binary mode.

To configure the WebSphere Application Server resource adapter:

1. Start WebSphere Application Server, and then open the administrative console.

2. From the Contents pane, expand Resources, and then click Resource Adapters.

3. Create a directory named mfsweb under your WAS_INSTALL_ROOT directory. Copy and
paste the MFSRuntime.jar and MFSTDTDLang.jar files into this new folder.

You can look up the WAS_INSTALL_ROOT directory from Environment → WebSphere
Variables on the WebSphere Application Server administrative console.

4. Select the IMS resource adapter (IMS Connector for Java). The current class path shows
the path:

$(CONNECTOR_INSTALL_ROOT)/ims91011.rar

${WAS_INSTALL_ROOT}/mfsweb/MFSRuntime.jar
${WAS_INSTALL_ROOT}/mfsweb/MFSTDTDLang.jar

Figure 17-6 on page 351 shows the MFS JARS files located in the
WAS_INSTALL_ROOT/mfsweb directory, where WAS_INSTALL_ROOT is the root install
directory of WebSphere Application Server.

Important: Add the MFS JAR files above the IMS resource adapter entry and add each
entry on a new line.

350 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

http://www.ibm.com/software/data/db2imstools/imstools/imsjavcon.html
http://www.ibm.com/software/data/ims/toolkit/mfswebsupport/index.html

Figure 17-6 MFS JAR file locations

5. Click Apply.

6. Click Save inside the Messages box.

7. Click Save.

8. Restart WebSphere Application Server.

17.7.5 Step 5: Deploying the application WAR file
To deploy the PB.war file onto WebSphere Application Server:

1. With WebSphere Application Server started, go to your WebSphere Application Server
administrative console. Expand Applications from the left and then click Install New.

2. Click Browse under Local path to select the PB.war file generated in “Step 3: Generating
a WAR file” on page 349.

3. Enter the Context Root (for example, demo). The text that you enter here will be a part of
the URL.

4. Click Next to go to the next window. Keep the default values.

5. Click Next to go to the Application Security Warnings window.

6. Click Continue to go to the Install New Application window. Keep the default values.

7. Click Next to go through the next three windows.

8. Click Finish and you should receive the message “Application PB_war installed.”

9. Click Save.

Chapter 17. IMS MFS Web Enablement 351

10.Select Enterprise Applications.

11.Select the check box of the Web application archive (WAR) file that you just installed and
click Start.

12.You should receive the message “Application PB_war on server server 1 and node [node
name] started successfully,” and the application status icon should become green.

17.7.6 Step 6: Invoking the instance servlet
With WebSphere Application Server started, open a Web browser and enter the URL
http://localhost:9080/demo/PHONEBOOK. Then on the initial Web page, enter /FOR IVTNO and
click Submit.

17.7.7 Step 7: Invoking the Phonebook application
To invoke the Phonebook application sample:

1. Enter DISPLAY in PROCESS CODE field.

2. Enter LAST1 in LAST NAME field.

3. Click Submit.

4. Verify that the output is correct.

17.7.8 Step 8: Logging out
The final step is to log out. Click Logout.

Note: localhost:9080 is the WebSphere Application Server node, demo is the context root
you entered when you installed the Web application archive (WAR) file, and PHONEBOOK
is the instance servlet that was generated in “Step 2: Generating an instance servlet” on
page 347.

352 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 18. IMS SOAP Gateway

IBM IMS SOAP Gateway is a Web services solution that enables IMS applications to
interoperate outside of the IMS environment through Simple Object Access Protocol (SOAP)
to provide and request services independently of platform, environment, application
language, or programming model.

The IMS SOAP Gateway can assist an organization in the following areas:

� Enterprise modernization
� Application development
� Business-to-business (B2B) integration
� Service-oriented architecture (SOA) implementation

This chapter provides a high-level description about how to use IMS SOAP Gateway to make
your IMS application to become a Web service. The IMS SOAP Gateway documentation
provides detailed instructions, including a sample.

For the latest information about IMS SOAP Gateway, visit:

http://www.ibm.com/software/data/ims/soap/

18

Note: You can download IMS SOAP Gateway from the IMS Web site:

http://www.ibm.com/ims

© Copyright IBM Corp. 2006. All rights reserved. 353

http://www.ibm.com/ims
http://www.ibm.com/software/data/ims/soap/

18.1 IMS SOAP Gateway introduction
IMS SOAP Gateway allows you to enable your IMS application to become a Web service.
Different types of client applications, such as Microsoft .NET, Java, and third-party
applications, can submit SOAP requests into IMS to drive the business logic of your IMS
applications.

IMS SOAP Gateway is compliant with the industry standards for Web services, including
SOAP/HTTP 1.1 and WSDL 1.1. This allows your IMS assets to interoperate openly with
various types of applications.

With IMS SOAP Gateway, you can be flexible about how you want your data to be handled.
For example, you can have the data send the XML data from the client to your IMS
environment that can be handled by your new or enhanced IMS application. The data can be
stored directly in XML using the IMS XML DB function, or you can transform the XML data
into data bytes.

IMS SOAP Gateway consists of two main components:

� IMS SOAP Gateway deployment utility

The end-to-end deployment utility enables you to set up properties and create runtime
code that IMS SOAP Gateway uses to enable IMS applications as Web services.

� IMS SOAP Gateway server

The IMS SOAP Gateway server processes SOAP messages. It receives the SOAP
message from the client application, converts it to an IMS input message, and sends it to
IMS through IMS Connect. It then receives the output message from IMS and converts it
to a SOAP message to send back to the client.

The diagram in Figure 18-1 shows how IMS SOAP Gateway helps you process the SOAP
message from your client at run time.

Figure 18-1 IMS SOAP Gateway

354 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

18.2 Making your IMS application a Web service
You can easily make your IMS application accessible a Web service with IMS SOAP Gateway
by using the following steps:

1. Create a Web service interface, which is a Web Service Description Language (WSDL)
file, for your IMS application.

2. Deploy the Web service interface to IMS SOAP Gateway and define the connection and
correlation information by using the deployment utility.

After you deploy the WSDL file, the IMS application is available as a Web service. You can
create your desired client application to send SOAP messages to your IMS application
through IMS SOAP Gateway.

18.2.1 Creating a WSDL file for your IMS application
To make an IMS application a Web service, you need a WSDL file. The WSDL file is the Web
service interface for the IMS application. It describes where the Web service is located and
what the input and output message looks like for invoking your IMS application.

You can easily create a WSDL file by hand or using an application development tool (for
example, IBM Rational Application Developer) and then customize it to be used with IMS
SOAP Gateway.

Another method for creating a WSDL file for IMS SOAP Gateway is to use IBM WebSphere
Developer for zSeries tool, which can help you generate a WSDL file from the COBOL
copybook of the IMS application.

Using IBM WebSphere Developer for zSeries tool
IBM WebSphere Developer for zSeries V6 is an application development tool that helps with
the development of traditional mainframe applications. It helps you to easily generate the
artifacts needed to transform your IMS application into a Web service to be used with the IMS
SOAP Gateway run time. By simply taking a COBOL copybook for your IMS application that
describes the input and output message format, it generates the following Web service
artifacts:

� Web Services Description Language (WSDL) file, which provides a Web service interface
of the IMS application so that the client can communicate with the Web service

� COBOL converters and driver file, which help you to transform the XML message from the
client into COBOL bytes for the IMS application and then back to XML

� Correlator file, which contains information that enables IMS SOAP Gateway to set IMS
properties and call the IMS application

To generate Web services artifacts for IMS SOAP Gateway using WebSphere Developer for
zSeries, perform the following steps:

1. Start WebSphere Developer for zSeries and open the z/OS Projects perspective. Make
sure that you have enabled.

2. Create a local COBOL project.

3. Import the COBOL copybook that describes the format of the input and output messages
of your IMS application into the project.

4. Start the Enable Web Service wizard:

a. Right-click the COBOL copybook file.

Chapter 18. IMS SOAP Gateway 355

b. Select Enable Web Services → Generate enablement code.

5. Select the data structures for the inbound and outbound converters:

a. Click Change COBOL Options. The COBOL Import Properties panel opens.

b. In the Platform field, select z/OS.

c. Click Finish. The Data structures panel opens.

d. For the inbound data structure, select the COBOL data structure that corresponds to
the input message of the IMS application.

e. Go to the Outbound data structure tab.

f. Select the COBOL data structure that corresponds to the output message of the IMS
application.

g. Click Next to continue.

6. Specify generation options:

a. In the Converter type field, select IMS SOAP Gateway.

b. In the Host code page field, select the code page that the host uses. IMS SOAP
Gateway supports only UTF-8 encoding for the inbound and outbound code pages.
Therefore, you cannot change these settings.

c. Specify any additional properties.

d. Go to the WSDL and XSD Options tab.

e. In the Endpoint URI field, change the host and port name to the location of IMS SOAP
Gateway. This URI specifies the address of the Web service.

f. Specify any additional properties.

g. Click Next to continue.

7. Specify the IMS SOAP Gateway correlator properties and click Next.

8. Specify location and names of the Web service artifacts:

a. If necessary, change the default location and names of the COBOL converters and
driver.

b. Ensure that Generate all to driver is selected.

c. Go to the WSDL and XSD tab.

d. If necessary, change the default location and names of the WSDL file.

e. Ensure that the WSDL file name is selected.

f. Optionally, select the inbound and outbound XSD files to be generated. These files are
not required by IMS SOAP Gateway.

g. Click Finish.

9. The following files are generated:

– COBOL converters and driver file
– Correlator file
– WSDL file
– Inbound and outbound XSD files (optional)

After you create the Web services artifacts, you can deploy the WSDL and the correlator files
to IMS SOAP Gateway.

356 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

18.2.2 Deploying WSDL and configuring properties with IMS SOAP Gateway
The deployment step help you set up properties and create runtime code that will be used by
IMS SOAP Gateway to make your IMS application accessible as Web services.

IMS SOAP Gateway provides you with a deployment utility that can help you to perform the
following tasks:

� Easy end-to-end deployment.

� Set up and modify connection and correlation information (for example, host name/port,
trancode, timeout).

� Generates runtime code from WSDL that will be used by IMS SOAP Gateway to enable
the IMS application as a Web service.

The IMS SOAP Gateway documentation provides detailed instructions about how to use the
deployment utility.

After you deploy to IMS SOAP Gateway, your IMS applications are ready to be accessible to a
client as a Web Service.

18.2.3 Writing the client application
After you have the WSDL deployed to IMS SOAP Gateway, you can write a client application,
for example, Java or Microsoft .NET, to send a SOAP message to invoke the IMS application
as a Web service.

Chapter 18. IMS SOAP Gateway 357

358 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 19. Open Database Access

This chapter provides the information about the IBM IMS Open Database Access (ODBA)
function. ODBA is a callable interface to access databases managed by the IMS Database
(DB) Manager.

ODBA can be used by any z/OS application program that uses the Recovery Resource
Services (RRS) of z/OS as a sync point manager to access the IMS full function databases
and data entry databases (DEDBs). This allows IMS DB and z/OS application programs to be
developed, installed, and maintained independently of each other. ODBA also provides for
failure isolation and independent resource recoverability.

19

© Copyright IBM Corp. 2006. All rights reserved. 359

19.1 Accessing IMS databases through the ODBA
ODBA uses the IMS database resource adapter (DRA) function to establish a connection to
the IMS subsystem specified by IMSID or DBCTLID coded in the DRA startup table. ODBA
consists of a startup table for each IMS system and a group of modules that make up the
ODBA callable interface.

The DRA startup table specifies how to connect to a particular IMS subsystem, such as the
subsystem name and the number of threads allowed.

The ODBA callable interface modules manage threads connecting an ODBA application to an
IMS system and also provide some recovery services. They provide a set of Data Language/I
(DL/I) database calls and system services calls. Application programs establish connections
to IMS systems and make IMS database and system function calls using AERTDLI. The
syntax is very similar to AIBTDLI.

ODBA requires the use of the application interface block (AIB). The AIB is a storage area
obtained by the application program and is passed to IMS as a parameter in the AERTDLI call
list when the application program issues DL/I calls. For ODBA, the AIB also provides the area
the application program uses to keep track of the thread token.

ODBA applications use z/OS Resource Recovery Services (RRS) and its application
programming interfaces (APIs) to invoke commit processing. Figure 19-1 shows application
access to IMS using the ODBA interface.

Figure 19-1 Application access to the IMS ODBA interface

19.2 The database resource adapter (DRA)
The database resource adapter (DRA) is an interface to the IMS DB full function database
and DEDBs. The DRA can be used by a coordinator controller (CCTL), such as IBM CICS®
Transaction Server for z/OS, or a z/OS application program that uses the ODBA interface.
The DRA function implements thread concepts for communicating between the IMS DB

IMS DBCTL
or

IMS DB/DC

DL/I Service

RRS

ODBA Application

z/OS

CIMS INIT
APSB
GHU
REPL

…
DPSB PREP
CIMS TALL

Hierarchical DL/I DB

ODBA
Services

ODBA
Interfaces

DRA Thread
Connections

360 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

server task and the application task. A single DRA thread is associated with every CCTL or
ODBA thread. CCTL or ODBA threads cannot establish a connection with more than one
DRA thread at a time. In the meantime, the DRA is capable of processing more than one
thread at the same time, known as multithreading. This means that multiple CCTL or ODBA
threads can be using the DRA at the same time. Multithreading applies to all CCTL requests
and ODBA requests.

An ODBA DRA thread does not have TCB affinity like a CCTL DRA thread. For ODBA, you
can have multiple ODBA DRA threads on a TCB, so you can have multiple partition
specification tables (PSTs) allocated to same TCB. Figure 19-2 shows the thread concepts of
the DRA interface.

Figure 19-2 Thread concepts of the DRA interface

19.3 Setting up the DRA and the ODBA interface
To set up ODBA and the DRA, perform the following tasks:

1. Create the ODBA DRA startup table.

2. Place the ODBA and DRA modules in STEPLIB or JOBLIB in the z/OS application region.

3. Bind the ODBA application programs with DFSCDLI0.

4. Set up security.

19.3.1 Creating the ODBA DRA startup table
The DRA startup table contains values used to define the characteristics of the DRA. The
DRA startup table is created by assembling the DFSxxxx0 module for the ODBA’s use. For
naming the DRA load module, we recommend the naming convention shown in Table 19-1 on
page 362.

IMS DBM

RRS

ODBA
Application

z/OS

DRA
CCTL

Application
(CICS TS)

DRA
TCB

TCB

TCB

TCB

PST

PST

PST

PST

DL/I Services

Chapter 19. Open Database Access 361

Table 19-1 Recommended ODBA DRA startup table naming convention

For example, if your IMSID is “IMSG,” the DRA load module name will be “DFSIMSG0.”

IMS does not ship a default DRA startup table in IMS.SDFSRESL. You must generate your
own table by using the DFSPRP macro. You can refer to the IMS IVP member IV_E308J in
IMS.INSTALIB that contains a sample generation JCL for the DRA startup module for the
CICS/DBCTL environment. Ensure that the name of your DRA startup module is not the
same as the name of CCTL environment; you at least have to change the MBR= parameter in
the JCL to satisfy your requirement.

The DRA parameters are specified as keywords on the DFSPRP macro invocation.
Table 19-2 shows a list of the DFSPRP keywords and their descriptions.

Table 19-2 The DFSPRP macro keywords

Characters one to three Characters four to seven Character eight

DFS Specified 4-byte ID. Use the IMSID or DBCTLID of
the system to which you want to connect. However,
this is not a requirement.

0 (zero)

Keyword Description

AGN= A one to eight character application group name. This is used as part of the IMS DB
and DB/DC Application Group Name (AGN) security function.

CNBA= Total Fast Path NBA buffers for the ODBA's use.

DBCTLID= The four character name of the IMS DB or DB/DC region. This is the same as the
IMSID parameter in the DBCTL/IMS procedure.

DDNAME= A one to eight character ddname used with the dynamic allocation of the IMS DB
execution library. The default ddname is CCTLDD.

DSNAME= A one to 44 character data set name of the IMS DB execution library, which must
contain the DRA modules and must be APF-authorized. The default DSNAME is
IMS.SDFSRESL.

FPBOF= The number of Fast Path DEDB overflow buffers (OBA) allocated per thread. The
default is 00.

FPBUF= The number of Fast Path DEDB normal buffers (NBA) allocated and fixed per thread.
The default is 00.

FUNCLV= Specifies the DRA level that the ODBA supports. The default is 1.

IDRETRY= The number of times the z/OS application region is to attempt to IDENTIFY (or attach)
to IMS after the first IDENTIFY attempt fails. The maximum number is 255. The
default is 0.

MAXTHRD= The maximum number of DRA thread TCBs available at one time. The maximum
number is 999. The default number is 1.

MINTHRD= The minimum number of DRA thread TCBs to be available at one time. The maximum
number is 999. The default number is 1.

SOD= The output class used for a SNAP DUMP in case of abnormal thread terminations.
The default is A.

TIMEOUT= (CCTL only.) The amount of time (in seconds) that a CCTL waits for the successful
completion of a DRA TERM request. Specify this value only if the CCTL application
is coded to use it. This value is returned to the CCTL upon completion of an INIT
request.

362 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

The DSNAME from the DRA startup table is used to dynamically allocate the data set that
contains the rest of the ODBA interface routines. The DDNAME is generated to allow multiple
connections to IMS from the same z/OS application region. ODBA does not use the
DDNAME parameter, so it is ignored if it is specified.

The default DSNAME is IMS.SDFSRESL. This is the default name established by the IMS
generation process. Make sure that this data set is APF-authorized.

19.3.2 Loading and running ODBA in the z/OS application region
Table 19-3 shows the modules that need to be made available to the z/OS ODBA application
region by placing them in STEPLIB or JOBLIB. These modules are shipped with IMS in
IMS.SDFSRESL.

Table 19-3 ODBA modules in IMS.SDFSRESL

19.3.3 Linking application programs
Bind the ODBA application programs with DFSCDLI0 (AERTDLI). As an alternative, you can
issue a load and branch command, passing the AIB call list in Register 1.

19.3.4 Establishing and defining security
IMS provides several options for establishing and defining security for application programs
that use the ODBA interface. The options that you select depend on the type of security
environment and authorization method that you plan to use. In general, the process that IMS
uses to secure program specification blocks (PSBs) involves one of the following types of
security checking.

AGN security
When a PSB is allocated, a security check is performed to determine:

� If the user is authorized to connect to the AGN name assigned to the dependent region or
thread

� If the PSB name is defined in the AGN table entry with the authorized AGN name

Use the IMS ISIS execution parameter to control the authorization for a z/OS application
region to connect to the IMS DB environment. If you specify ISIS=1 or ISIS=2, both the z/OS

TIMER= The time (in seconds) between attempts of the DRA to identify itself to IMS DB or
DB/DC during an INIT request. The default is 60 seconds.

USERID= An eight character name of the CCTL region. This keyword is ignored for an ODBA
region.

Keyword Description

Module name Description

DFSCDLI0 This module is linked or loaded by an application program. DFSCDLI0 also
contains the ALIAS name AERTDLI.

DFSAERG0 This module is loaded by DFSCDLI0.

DFSAERM0 This module is attached by DFSAERG0 in the z/OS application region.

DFSAERA0 This module is attached by DFSAERM0 for initialization to the specified IMS DB
subsystem.

Chapter 19. Open Database Access 363

application region connection and PSB scheduling are checked. If you specify ISIS= 0,
neither is checked. Table 19-4 describes the actions that you need to perform to set up
security when specific options are selected.

Table 19-4 Options for defining AGN security for applications that use ODBA

Resource Access Security (RAS)
IMS Version 9 introduces a new security function called Resource Access Security (RAS) for
security maintenance utility (SMU) replacement. A security check is performed by RACF to
determine if the user is authorized to use the PSB. RACF determines authorization by looking
at the RACF security class profile defined for the dependent region or thread. Use the ISIS
and ODBASE execution parameters to control the authorization for an z/OS application
region to use a PSB. Table 19-5 describes the actions that you need to perform to set up
security when specific options are selected.

Table 19-5 Options for defining RAS security for applications that use ODBA

Specification Actions to perform

ISIS=0 No action required. No connection security checking is performed.

ISIS=1 1. Before the z/OS application region connects to IMS DB, make sure that the user
ID and Application Group Name (AGN) from the DRA startup table are
authorized to access the specified IMS DB.

2. Build RACF tables to define valid user ID-AGN combinations. If the DRA startup
table values do not correspond to an entry in RACF tables, the z/OS application
region cannot connect to IMS DB.

3. Use the AGN and AGPSB statements to define the AGN name and PSB name
to the security maintenance utility.

Note: Connections to different IMS DB systems from the same JOB will not use the
same user ID-AGN security because different DRA startup table load modules will
be loaded.

ISIS=2 1. Create an application group name exit routine that is named DFSISIS0. This
routine must determine whether the AGN passed to it is valid for the attempted
connection.

2. Use the AGN and AGPSB statements to define the AGN name and PSB name
to the security maintenance utility.

Specification Actions to perform

ISIS=0/N and ODBASE=N No action required. No PSB security checking is performed.

ISIS=R and ODBASE=N Define the PSBs that you want protected by RACF to the IIMS or
Ixxxxxxx resource class, and then define the user IDs of the dependent
region that you want to be authorized to access the PSBs. The ODBA
support for IMS will use the security environment (ACEE) passed in the
dependent region's task (TCBSENV) if present, or the dependent
region's address space (ASXBSENV) if the ACEE is not present at the
task level.

ISIS=C and ODBASE=N Create a Resource Access Security exit routine named DFSRAS00.
This routine must determine if the user is authorized to use the PSB.

364 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

APSB security
A security check is performed to determine if the user is authorized to use the PSB. Use the
ODBASE execution parameter to control the authorization for a user to use a PSB. Table 19-6
describes the actions that you need to perform to set up security when specific options are
selected.

Table 19-6 Options for defining APSB security for applications that use ODBA

ICMD security
For ICMD authorization, the ODBA application must set the AIBRSNM1 field to the
PSBNAME that was used on the previous APSB call. The PSBNAME is used by the existing
ICMD support routines to issue the RACF call for security processing.

ODBA security summary
Table 19-7 summarizes the values that you need to specify to control data access for specific
security implementations. The table also indicates the type of security checking that is
performed for each set of specifications.

Table 19-7 Options for controlling data access for applications that use ODBA

ISIS=A and ODBASE=N 1. Define the PSBs that you want protected by RACF to the IIMS or
Ixxxxxxx resource class, and then define the user IDs of the
dependent region that you want to be authorized to access the
PSBs. The ODBA support for IMS will use the security environment
(ACEE) passed in the dependent region's task (TCBSENV), if
present, or the dependent region's address space (ASXBSENV) if
the ACEE is not present at the task level.

2. Create a Resource Access Security exit routine named
DFSRAS00. This routine must determine if the user is authorized
to use the PSB.

RACF is called first, and then the exit routine is called.

Specification Actions to perform

ODBASE=N No action required. No APSB security checking is performed.

ODBASE=Y 1. Define the PSBs that you want protected by RACF to the AIMS or Axxxxxxx
general resource class (where xxxxxxx is the value specified on the RCLASS=
parameter of the IMS SECURITY macro).

2. Specify RCLASS=IMS | xxxxxxx and TYPE=RACFAGN | RACFCOM |
RACFTERM | RASRACF | RAS on the IMS SECURITY macro at IMS system
definition time.

Security
implementation

Authorization
method

ISIS=
specification

ODBASE=
specification

Connection
security

PSB
security

AGN security RACF 1 N Y Y

User exit
(DFSISIS0)

2 N Y Y

Specification Actions to perform

Chapter 19. Open Database Access 365

For more information about ODBA security options, see the IMS Version 9: Administration
Guide: System, SC18-7807.

19.4 Writing ODBA application programs
The z/OS ODBA application programs run in a separate z/OS address space that IMS
regards as a separate region from the control region called the z/OS application region.

The ODBA interface gains access to the IMS DB through the database resource adapter
(DRA). The ODBA application programs (which can access to any address space within the
z/OS in which they are running) gain access to IMS DB databases through the ODBA
interface.

19.4.1 General application program flow
z/OS ODBA application programs issue DL/I calls using an application interface block (AIB).
No other interface is supported. The z/OS application must link-edit with a language module
(DFSCDLI0), or this module can be loaded into the z/OS application region. The entry point
for DFSCDLI0 is AERTDLI.

Figure 19-3 on page 367 shows a simple example of the program flow of an z/OS application
program.

Resource Access
Security

RACF R N N Y

User exit
(DFSRAS00)

C N N Y

RACF and
DFSRAS00

A N N Y

None 0 or N N N Y

APSB security RACF N/A Y N Y

Note: IMS Version 9 is the last release that will support SMU security. You still have some
choices using AGN security in IMS Version 9, but we strongly recommend that you use
RAS or APSB security for ODBA resource access control, instead of AGN security.

Security
implementation

Authorization
method

ISIS=
specification

ODBASE=
specification

Connection
security

PSB
security

366 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 19-3 An example of the program flow of an ODBA application

19.4.2 Making calls to IMS
Your application program can be written in any language supported by IMS. You access IMS
databases using the language-neutral CALL statement AERTDLI interface. Follow these
considerations when using the AERTDLI interface:

� When using the AERTDLI interface for C/MVS™, COBOL, or PL/I language application
programs, the language runtime options for suppressing abend interception (that is,
NOSPIE and NOSTAE) must be specified. However, for Language
Environment-conforming application programs, the NOSPIE and NOSTAE restriction is
removed.

� The AERTDLI entry point for PL/I programs must be declared as assembler language
entry (DCL AERTDLI OPTIONS(ASM)).

� For C language applications, you must specify env(IMS) and plis(IMS). These
specifications enable the application program to accept the PCB list of arguments.

� AERTDLI must receive control with 31-bit addressability.

Example 19-1 shows the format of the CALL statement.

Example 19-1 The format of the AIB call

CALL AERTDLI, parmcount, function, AIB,

Where:

� parmcount is an optional parameter that specifies the address of a 4-byte field in the
user-defined storage that contains the number of parameters in the parameter list that
follows parmcount. This is kept for compatibility with the existing syntax for the IMS
language interface module.

ODBA Application IMS DBMPST

1. CIMS INIT CALL for IMSx DB Manager

2. APSB call for PSBx

3. GU/ISRT/REPL for IMSDB

4. SRRCMIT

5. DPSB call for PSBx

6. CIMS TALL CALL for IMSx DB Manager

RRS

TCB

Establish the application
execution environment

Allocate a PSB to a PST

Perform DB calls

Commit the changes
under RRS control

Deallocate a PSB from a PST

Terminate the connection

PSB

Chapter 19. Open Database Access 367

� function specifies the address of a 4-byte field in the user-defined storage that contains
the function call. The function call must be left-aligned and padded with blanks, such as
GUbb.

� AIB specifies the address of the application interface block.

19.4.3 The application interface block (AIB)
The application interface block (AIB) is used by application programs to issue IMS DL/I calls
using a PCB name instead of a PCB address, or to issue calls that are not associated with a
PCB. It provides a standard mechanism for IMS and the application to exchange information.
The AIB mask enables application programs to interpret the control block that has been
defined.

Several conditions must be met for the AIB call to succeed:

� If an AIB is not passed in the call, a U261 abend is issued.

� If the AIB that is passed is not valid, a U476 abend is issued.

� If the AIB that is passed is not large enough (264 bytes), the AIB return and reason codes
are set to X'104' and X'228'.

� If the AIB that is passed is not on a full word boundary, the z/OS system returns an abend
S201.

If there are other internal problems with the call, other return and reason codes are passed
back to the z/OS application program. Refer to IMS Version 9: Messages and Codes Volume
1, GC18-7827, for a complete list of these return and reason codes.

AIB structure
The AIB structure must be defined in working storage, on a full word boundary, and initialized
according to the byte length and the field description column described here. Table 19-8
shows you the description of the AIB contents for ODBA AERTDLI calls.

Table 19-8 AIB fields for use of ODBA applications

Note: The PSB used must have PCBNAME or LABEL defined.

AIB field Offset Length Description

AIBID 0 8 This 8-byte field contains the AIB identifier. You must initialize
AIBID in your application program to the value DFSAIBbb
before you issue DL/I calls. This field is required. When the call
is completed, the information returned in this field is unchanged.

AIBLEN 7 4 This field contains the actual 4-byte length of the AIB as defined
by your program. You must initialize AIBLEN in your application
program before you issue DL/I calls. The minimum length
required is 264 bytes for ODBA. When the call is completed, the
information returned in this field is unchanged. This field is
required.

AIBSFUNC 11 8 This 8-byte field contains the subfunction code for those calls
that use a subfunction. You must initialize AIBSFUNC in your
application program before you issue DL/I calls. When the call
is completed, the information returned in this field is unchanged.

368 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

19.4.4 DL/I calls in the ODBA application

In this section, we discuss how you issue DL/I calls in the ODBA application, as shown in
Figure 19-3 on page 367.

AIBRSNM1 19 8 This 8-byte field contains the name of a resource. The resource
varies depending on the call. You must initialize AIBRSNM1 in
your application program before you issue DL/I calls. When the
call is complete, the information returned in this field is
unchanged. This field is required.

For PCB-related calls where the AIB is used to pass the PCB
name instead of passing the PCB address in the call list, this
field contains the PCB name. The PCB name for the I/O PCB is
IOPCBbb. The PCB name for other types of PCBs is defined in
the PCBNAME= parameter in PSBGEN.

AIBRSNM2 27 8 Specify a 4-character ID of ODBA startup table DFSxxxx0,
where xxxx is a four-character ID.

Reserved 35 8 This 8-byte field is reserved.

AIBOALEN 43 4 This 4-byte field contains the length of the output area in bytes
that was specified in the call list. You must initialize AIBOALEN
in your application program for all calls that return data to the
output area. When the call is completed, the information
returned in this area is unchanged.

AIBOAUSE 47 4 This 4-byte field contains the length of the data returned by IMS
for all calls that return data to the output area. When the call is
completed, this field contains the length of the I/O area used for
this call.

Reserved 51 12 This 12-byte field is reserved.

AIBRETRN 63 4 When the call is completed, this 4-byte field contains the return
code.

AIBREASN 67 4 When the call is completed, this 4-byte field contains the reason
code.

AIBERRXT 71 4 This 4-byte field contains additional error information depending
on the return code in AIBRETRN and the reason code in
AIBREASN.

AIBRSA1 75 4 When the call is completed, this 4-byte field contains
call-specific information. For PCB-related calls where the AIB is
used to pass the PCB name instead of passing the PCB
address in the call list, this field returns the PCB address.

AIBRSA2 79 4 This 4-byte field is reserved for ODBA.

AIBRSA3 83 4 This 4-byte token, returned on the APSB call, is required for
subsequent DLI calls and the DPSB call related to this thread.

Reserved 87 40 This 40-byte field is reserved.

Reserved 127 136 This 136-byte field is reserved for ODBA.

AIB field Offset Length Description

Chapter 19. Open Database Access 369

Establishing the application execution environment
The application execution environment must be initialized in the z/OS application region. Use
the CIMS INIT call to initialize the environment. If the optional AIBRSNM2 field of the AIB
contains a startup table ID, a connection to the IMS DB in the startup table is made. If the field
is blank, connect to the IMS DB when you allocate a PSB.

Example 19-2 shows the form of the connection call.

Example 19-2 The form of the CIMS INIT call

CALL AERTDLI parmcount, CIMS, AIB

Where:

� CIMS is the required call function.

� AIB has the following fields:

– AIBSFUNC

The subfunction is 'INITbbbb'. This field is mandatory.

– AIBRSNM1

An optional field that provides an eye-catcher identifier of the application server that is
associated with the AIB. This field is 8 bytes.

– AIBRSNM2

Provides the optional 4-byte startup table ID. The ID is optional if the call is issued as
preconditioning only. If the ID is given, the z/OS application region connects to the IMS
DB specified in the DBCTLID parameter of the selected startup table. The
characteristics of the connection are determined from the DRA startup table. The
startup table name is DFSxxxx0, where xxxx is the startup table ID that is used in the
CIMS and APSB calls. Each startup table defines a combination of connection
attributes, one of which is a subsystem ID of the IMS DB.

Allocating a PSB
The APSB call is used with the ODBA interface to allocate a PSB for the z/OS application
region. Example 19-3 shows the APSB call.

Example 19-3 The format of the APSB call

CALL AERTDLI parmcount, APSB, AIB

Where:

� APSB is the required call function.

� AIB is the name of the application interface block. The fields in the AIB must be filled in:

– AIBRSNM1

The 8-character PSB name.

– AIBRSNM2

The 4-byte startup table ID.

Performing DB calls
All DL/I calls, with a few exceptions, are supported through the AIB. The unsupported calls
entail message handling (the IOPCB is available only for system calls), CKPT, ROLL, ROLB,

370 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

and INQY PROGRAM. Alternate destination PCBs cannot be used. Both full-function
databases and DEDBs are available.

Existing DL/I calls fully supported by ODBA include:

� GU/GHU
� GN/GHN
� GNP/GHNP
� ISRT
� REPL
� DLET
� GMSG
� ICMD
� RCMD
� INIT
� INQY AIBSFUNC=FIND,DBQUERY,ENVIRON
� FLD
� POS
� LOG
� DEQ
� SETS/SETU
� ROLS
� SNAP
� STAT
� OPEN
� CLSE

The following calls are DL/I calls not supported by the ODBA interface. These calls are
rejected with an AIB return code of X'104' and an AIB reason code of X'444':

� CHKP
� GSCD
� PCB
� XRST
� ROLL
� ROLB
� SYNC
� TERM
� INQY AIBSFUNC=PROGRAM

Committing changes
Synchronization is performed by issuing the distributed commit calls SRRCMIT or ATRCMIT,
or possibly their rollback forms of SRRBACK or ATRBACK. IMS sync point calls are not
allowed. ROLL and ROLB are not supported because RRS is used as the sync point
coordinator. RRS provides the SRRBACK and ATRBACK calls to activate backout
processing. The SRRBACK form of the call conforms to the Common Programming Interface
(CPI) for Resource Recovery (RR) and is supported by RRS on the z/OS platform. The
ATRBACK form of the call is provided by RRS and is only supported on the z/OS platform.
Commit is effective for all RRS-controlled resources in the z/OS task.

Deallocating the PSB
The DPSB call is used when the work unit is complete. In the default case, a commit call must
be issued before a DPSB call can be issued. No DL/I call, including system service calls, can
be made between the commit and the DPSB call.

Example 19-4 on page 372 shows the DPSB call.

Chapter 19. Open Database Access 371

Example 19-4 The format of the DPSB call

CALL AERTDLI parmcount, DPSB, AIB

Where:

� DPSB is the required call function.

� AIB is the name of the application interface block. The fields in the AIB must be filled in:

– AIBRSNM1

The 8-character PSB name.

– AIBSFUNC

An optional field. Set it to 'PREPbbbb' when you want to deallocate the PSB before the
initialization of commit processing and when the commit processing is provided from
outside the application.

IMS performs phase one commit processing and returns control to the requestor, but holds
the in-doubt work until RRS (the commit manager) requests full commit processing.

Terminating the connection
The CIMS TERM call is used for the connection termination between the IMS and the ODBA
application.

Example 19-5 shows the CIMS call.

Example 19-5 The form of the CIMS call

CALL AERTDLI parmcount, CIMS, AIB

Where:

� CIMS is the required call function.

� AIB is the name of the application interface block. The fields in the AIB must be filled in:

– AIBSFUNC

A mandatory field whose value is 'TERMbbbb' or 'TALLbbbb'. Use 'TERMbbbb' to sever a
single IMS DB connection. Use 'TALLbbbb' to sever all connections for this z/OS
application region and remove the DRA from the address space.

– AIBRSNM1

An optional field that provides an eye-catcher of the application server associated with
the AIB. This field is 8 bytes in length.

– AIBRSNM2

When the subfunction equals TERM, provides the 4-byte startup table ID used in a
previous APSB call. AIBRSNM2 is not needed when the subfunction equals TALL.

19.4.5 Server program structure and the unit of recovery
The commit scope within the z/OS application environment is all the work under the TCB from
which the commit request is made to RRS. Each time the TCB expresses an interest in the
unit of recovery (UOR), RRS creates the new unit of recovery identifier (URI) and assigns it to
ODBA-related work for initiating the two-phase commit operation. Server environments,
therefore, need a separate TCB under which the individual client requests will be managed.
Each TCB will map to a PST for thread handling. Figure 19-4 on page 373 shows the TCB to
PST relationship and the unit of recovery of ODBA-related work.

372 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 19-4 TCB to PST relationship and the unit of recovery

19.5 Considerations for using ODBA
In this section, we offer some considerations about the use of ODBA.

19.5.1 Restrictions
ODBA programs must execute on the same z/OS image (LPAR) as the IMS systems.
Because GSAM databases are allocated by the dependent region (local), not by the IMS
subsystem, GSAM databases are not allowed for ODBA.

19.5.2 Multiple access to IMS subsystems
Provided that you have coded the DRA startup table so that you can have more than one
thread concurrently (MAXTHRD > 1), it is the application programmer's responsibility to keep
track of each thread token after every APSB call by using the AIB.

Multiple PSBs can be active at the same time, which is typical for server environments. No
token is specifically provided to identify which PSB is to be used for a given call to a given IMS
DB, so the same AIB must be used for all calls to the same PSB instance (APSB, DB calls,
DPSB). This enables multiple instances of the same PSB to be in use for the same IMS DB at
the same time. The parallelism is controlled by the thread count specified in the startup table.
The maximum number of threads and dependent regions supported by an IMS DB instance is
999.

Each APSB uses a free PST as the anchor for the IMS control blocks. If two APSB calls are
issued from a single program (a single TCB), without an intervening CMIT/DPSB for the first
PSB, there is a possibility that calls will be made to the same databases, and that the second
PSTs locks will be in conflict with the first PSTs locks.

Because the first PST is active from an the IMS viewpoint, control in the application program
is with the second PST. There will be a pseudo-deadlock, and the application will enter a
permanent wait state that can only be broken by z/OS cancelling the program. Now, an abend

ODBA Application
(Multi-threads)

IMS DBM

TCB

TCB

TCB

PST

PST

PST

ODBA Application
(Single-thread)

TCBPST

URID

URID

URID

URID

RRS

UR

UR

UR

UR

Chapter 19. Open Database Access 373

is detected during an IMS call, on the second PST, and the IMS system will terminate U113.
This scenario also applies to calls made to shared databases across IMS. Rather than try to
reuse existing PSBs for a set of databases, build and use a new super-set PSB.

19.5.3 IMS Fast Path resource usage
You need to specify the CNBA and FPB parameters in the DRA startup table for ODBA
regions that require access to Fast Path resources. When the ODBA connects to DBCTL, the
number of CNBA buffers is page-fixed in the Fast Path buffer pool. However, if CNBA buffers
are not available, the connect fails. Each ODBA thread that requires DEDB buffers is
assigned its Fast Path buffers out of the total number of CNBA buffers.

For planning and monitoring purposes, you can run the IMS monitor to check I/O to buffer
pools, or use tools such as IMS Performance Analyzer to evaluate the impact of adding
ODBA to your Fast Path buffer pools. During IMS control region initialization, parameters are
read in and listed by DFS0578I messages.

The CNBA must be at least as large as the FPBUF x MAXTHRD, but small enough so as not
to fail during identify:

CNBA = (FPBUF x MAXTHRD) + FPBOF

A number of the IMS PROCLIB startup parameters in member DFSPBxxx relate to Fast Path.
DBBF is the number of buffers in the IMS Fast Path buffer pool. DBFX is the number of IMS
Fast Path buffers that are long-term page fixed during IMS startup (a subset of DBBF). BSIZ
is the size of a single buffer. FPBUF is allocated from DBBF (CNBA must be less than DBBF).

All the FPBOF and OBA values for all dependent regions are compared. IMS gets a single
OBA allocation based on the largest OBA value used in the IMS system (allocated out of
DBBF). When one user needs it (watch for IMS status code GC), it becomes a serialized
resource and it is something to avoid.

You can specify only one value on the DRA startup table for all thread connections. Therefore,
if your applications need a different number of Fast Path buffers (for example, one application
uses few Fast Path buffers for online processing, and another uses many Fast Past buffers for
batch processing), you might have to create another DRA startup table for covering your
application characteristics. For a detailed description of Fast Path DEDB buffer usage, see
IMS Version 9: Administration Guide: Database Manager, SC18-7806.

19.5.4 The commit scope change and IMS resource occupancy
Generally, an ODBA application is designed as a server to provide IMS database access to
its network client (TCP/IP client, DRDA® client, EJB client, and so on). In this environment,
IMS is no longer the coordinator of the transaction but a participant controlled by RRS. In
addition, RRS commit processing is initiated by the request of the network client. It means
that now IMS commit processing time includes the coordinator (ODBA application and RRS)
costs and the networking costs for two-phase commit messaging. From the IMS point of view,
the longer lasting transactions affect to the following IMS resource occupancy:

� PSB/DMB pools
� Lock pools
� Database buffer pools (particularly Fast Path buffer pools)
� ODBA threads

In addition, it increases the possibility of lock request confliction or a deadlock situation
between multiple PSTs, such as MPPs, IFPs, CCTL threads, and ODBA threads. When you
introduce a new ODBA application to an existing IMS environment, you have to monitor your

374 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

IMS DB manager performance carefully and possibly take appropriate tuning actions when
you find performance problems.

19.5.5 RRS logging performance
Because of the use of RRS, ODBA performance is related to the RRS logging performance.
RRS uses z/OS logger and five log streams that can be shared by multiple systems in a
sysplex. You have several choices of the z/OS logger implementation; you must consider that
your choice should meet your performance and recovery requirements. For a description of
configuring and defining RRS logging requirements, see z/OS V1R6.0 MVS Programming:
Resource Recovery, SA22-7616.

19.6 Problem determination
Whenever your program terminates abnormally, you can take some actions to simplify the
task of finding and fixing the problem. You already might have guidelines about what you
should do if your program terminates abnormally. The suggestions given here are some
common installation guidelines. Document the error situation to help in investigating and
correcting it. Here is some of the information that can be helpful to document:

� Abends, return codes, or reason codes.

� Helpful messages: Depending on how your environment is set up, you might have to
search the client location, local ODBA application messages, local z/OS messages (WLM,
RRS, system), or the IMS subsystem.

� The program's PSB and PCB name.

� The call function.

� The contents of the application interface block (AIB).

� The contents of the I/O area when the problem occurred.

� The status of the database being accessed (stopped?).

� The date and time of day.

When your program encounters an error, it can pass all the required error information to a
standard error routine.

You can send a message to the system log by issuing a LOG request.

19.6.1 Finding the problem
If your program does not run correctly, you need to isolate the problem. The problem might be
anything from a programming error (for example, an error in the way you coded one of your
requests), to a system problem. This section provides some guidelines about the steps that
you, as the application programmer, can take when your program either fails to run,
terminates abnormally, or gives incorrect results.

19.6.2 IMS initialization errors
Before your program receives control, IMS must have correctly loaded and initialized the PSB
and DBDs used by your application program:

� Check for IMS error messages.

Chapter 19. Open Database Access 375

� Issue a /DIS PGM (psbname) and /DIS DB (dbname) to check the status of the IMS
resources you need.

� Check to see if there have been any recent changes to the DBDs, PSBs, ACBs, or the IMS
system maintenance.

If you have a problem is in this area, you might need to talk to a DBA or IMS system
personnel (or the equivalent specialist at your installation) to help with the problem.

19.6.3 Running errors
If you do not have any IMS initialization errors, check the following areas in your program:

� The output from the compiler. Make sure that all error messages have been resolved.

� The output from the linkage editor:

– Are all external references resolved?
– Have all necessary modules been included?
– Was the language interface module correctly included?

� Your JCL: Is the information that described the files that contain the databases correct? If
not, check with your DBA.

� If the program stalls and must be cancelled, check that there are CMIT/DPSB calls prior to
a new APSB for the same databases.

19.6.4 The application interface block
For an explanation of the application interface block (AIB), refer to 19.4.3, “The application
interface block (AIB)” on page 368. Always check the IMS status code, the reason code, and
the return code after an IMS call. The reason code is contained in the AIBREASN field, and
the return code is contained in the AIBRETRN field. Check for non-zero values for the reason
and return codes, and unexpected non-blank spaces for the status code (for example, GE and
GB might be valid status codes indicating no more segment found, or end of database
reached).

19.7 IBM-supplied ODBA infrastructures
You do not have to code an ODBA application by yourself, because IBM provides several
ODBA applications to meet your requirements. These ODBA applications work as
infrastructure to execute your business logic that access to IMS databases. You can code the
business logic by using various API such as DL/I or SQL through ODBC and JDBC interfaces,
and you can run it on any platforms. In this section, we introduce the following IBM-supplied
ODBA infrastructures.

19.7.1 DB2 stored procedure
The ODBA interface allows a DB2 stored procedure to directly connect to an system and
issue DL/I calls to access IMS databases. A stored procedure can issue database DL/I
requests through an ODBA callable interface. You need to update the startup procedure for
the WLM-established stored procedure address space to add the ODBA data set names to
the STEPLIB and DFSRESLB concatenations. Figure 19-5 on page 364 shows the general
structure of ODBA from a DB2 stored procedure. After you have coded your stored procedure
containing the logic for IMS database access, you can call this stored procedure from any
platform that can access DB2 for z/OS stored procedure environment.

376 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 19-5 The general structure of ODBA from a DB2 stored procedure

For more information about the ODBA usage of DB2 stored procedure address space, see
Chapter 20, “ODBA from DB2 stored procedures” on page 383.

19.7.2 WebSphere Application Server for z/OS and IMS Remote Data Access
WebSphere Application Server for z/OS Java applications can access IMS database directly
through the IMS ODBA interface. You can use the classes in the IMS Java library to build a
WebSphere Application Server for z/OS that accesses IMS data when WebSphere
Application Server for z/OS and IMS are running on the same z/OS image. The WebSphere
Application Server for z/OS application you build can access both the IMS full function and
data entry databases using the IMS ODBA interface.

To provide this capability in WebSphere Application Server for z/OS, the IMS Java class
library implements the J2EE Connector architecture resource adapter interfaces know as the
IMS JDBC resource adapter.

With IMS Version 9, IMS Java Remote Database Services (RDS) support provides
architected components on both the client and server side that allow a Java application
deployed on a distributed WebSphere Application Server platform to issue JDBC calls for IMS
data. These requests are sent (transparently to the application) across the network and
processed in IMS.

For the client-side of the connection, IMS Java RDS provides an IMS distributed JDBC
resource adapter. To condition the distributed WebSphere Application Server for JDBC
access to IMS, the IMS JDBC resource adapter must first be installed. For the server-side
(IMS side) of the connection, a server EJB is delivered as part of the IMS Java RDS support.
This EJB must reside on a WebSphere Application Server for z/OS environment because it
uses the IMS JDBC resource adapter.

Figure 19-6 on page 378 shows the ODBA from WebSphere Application Server for distributed
platforms.

IMS
CTL

TCP
/IP

z/OS

Any
Server

Any Platform

Clients
DRDA

(SQL)
CALL sp

Ioarea

(SQL)
COMMIT

/ROLLBACK

DL/I
Access

DL/I
Access

(DL/I Call)
APSB
GHU
REPL

…
DPSB PREP

Stored Procedure

RRS

O
D

B
A

IMS
DB

DB2

TC
P/IP

DB2
DB

Chapter 19. Open Database Access 377

Figure 19-6 The ODBA from WebSphere Application Server for distributed platforms

For more information about IMS Remote Database Services, see Chapter 21, “IMS Remote
Database Services” on page 405.

19.7.3 WebSphere Information Integrator Classic Federation for z/OS
WebSphere Information Integrator Classic Federation for z/OS provides SQL access to
mainframe databases (including IMS databases) and files with transactional speed and
enterprise scale without mainframe programming. Using WebSphere Information Integrator
Classic Federation for z/OS applications can:

� Map mainframe assets into relational views.

� Build integrated views across mainframe databases and files co-resident on a single z/OS
instance.

� Issue SQL SELECT, INSERT, UPDATE, and DELETE statements from ODBC, JDBC, or a
call level interface (CLI) to access mainframes, databases, and files.

Figure 19-7 on page 379 shows an overview of WebSphere Information Integrator Classic
Federation.

Client Application

DB
DB

Distributed JDBC
Resource
Adapter

EJB
(CM)

EJB
(BM)

JDBC
Resource
Adapter

RRS

O
D
B
A

IIOP over SSL

IMS V9WAS for z/OS
WAS

Distributed Platform z/OS

WAS = WebSphere Application Server

378 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 19-7 Overview of WebSphere Information Integrator Classic Federation for z/OS

In the next sections, we introduce the component parts of WebSphere Information Integrator
Classic Federation.

Metadata catalog and data mapper
The metadata catalog holds a mapping between the virtual relational database catalog
information and the underlying physical data constructs. The metadata catalog acts just like
an RDBMS catalog for the tools and applications that will use the mainframe data.
WebSphere Information Integrator Classic Federation creates an RDBMS catalog that holds
the virtual relational table and view definitions that will be used by the SQL-enabled tools and
applications to access data. Behind the scenes, the metadata catalog stores the mapping of
the virtual RDBMS metadata to the physical database and file metadata. The metadata is
used to put a fully functioning relational face on physically very non-relational data constructs.
So depending on the type of databases that an organization has, they are going to have
things such as COBOL copybooks. In case of an IMS user, they are going to have DBD,
database definitions. All of these are sources of information for the utilities and data mapper
that create and manage the WebSphere Information Integrator Classic Federation metadata.

Federation server
Residing on the z/OS platform, the federation server is responsible for communicating back
and forth between the client applications and tools and the actual database access
connectors. The server is responsible for determining what data needs to participate in the
processing of the SQL statement that it receives and invoking appropriate data access
connectors. It also provides for mainframe resource management and security.

After the server has determined which database connectors are needed to process the SQL
statement, it provides the file-specific connectors control called data connector. These
components then determine how to access the database.

Data connector
When your tools and applications access the data through the virtual relational structures,
specific data connectors execute native database file access through database and file

Metadata
Catalog

WebSphere Information Integration ClassicFederation
Integration Server

z/OS
OS/390

DB2 UDB z/OS VSAM IMS CA-Datacom CA-IDMSAdabas

Data
Connector

Data
Connector

Data
Connector

Data
Connector

Data
Connector

Data
Connector

Portal BI Tool Servlet Servlet Client
class

EJB

AIX5L, HP-UX, Solaris, JVM 1.2,
Windows NT, 2000, XP,

z/OS, OS/390 ODBC Client JDBC Client

DataMapperDataMapper

Copybooks, DBDs, …

USE
Grammar

Chapter 19. Open Database Access 379

system. Each of these data connectors is specifically built and therefore optimized for the type
of database or file system that it accesses.

In case of IMS, the data connectors provide IMS-specific read/write services that parse SQL
requests and translate them to native DL/I calls and issue against the IMS Database
Manager. You can choose three kinds of data connector interfaces for IMS database access:

� IMS BMP/DBB/DLI interface

The BMP/DBB/DLI interface is a non-scalable interface that is primarily provided for initial
development and testing purposes. With this interface, only a single PSB is used and all
access is serialized through that PSB. When using this interface, you can access IMS data
in a BMP or a DBB environment. In these environments, you must configure and activate
an IMS BMP/DBB initialization service to access your IMS data.

� IMS CCTL DRA interface

The CCTL DRA interface is similar to the interface that CICS uses. DRA is the
recommended interface to use when your client applications are not executing distributed
transactions (two-phase commit). When using a DRA interface, you must configure and
activate an IMS DRA initialization service to access your IMS data.

� IMS ODBA DRA interface

You must use the ODBA interface when your client applications are executing distributed
transactions using two-phase commit protocols. The ODBA interface must be used in
conjunction with the two-phase commit query processor (CACQPRRS), and you need to
configure and activate an IMS ODBA initialization service. If you choose this interface, the
federation server and the data connector work as the ODBA application.

Clients
WebSphere Information Integrator Classic Federation clients look like standard drivers to the
applications and tools that interact with them. During installation, specific configuration
parameters are set that control communication settings between this client and the federation
server. You can use standard SQL 92 API through the JDBC/ODBC interface on any
WebSphere Information Integrator Classic Federation supported platforms.

19.8 Summary of IBM-supplied ODBA infrastructures
Table 19-9 shows a summary of IBM-supplied ODBA infrastructures. It shows you an
execution environment of your application, an interface of application, and the available APIs
of the IMS database access for each infrastructures.

Table 19-9 Summary of IBM-supplied ODBA infrastructures

ODBA infrastructure Execution environment Interface API

DB2 stored procedures DB2 for z/OS with WLM DL/I AIB interface
JDBC

DLI call
IMS Java SQL

DB2 stored procedures
caller

Any platform that can
access the DB2 for z/OS
stored procedures
environment

Any interface supported by
the DB2 for z/OS stored
procedures environment

Any stored procedures
call supported by the DB2
for z/OS stored
procedures environment

WebSphere Application
Server for z/OS

WebSphere Application
Server for z/OS

JDBC IMS Java SQL

380 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

IMS RDS WebSphere Application
Server for distributed
systems

JDBC IMS Java SQL

WebSphere Information
Integrator Classic
Federation

Any platform supported by
Information Integrator
Classic Federation

JDBC/ODBC Standard SQL 92

ODBA infrastructure Execution environment Interface API

Chapter 19. Open Database Access 381

382 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 20. ODBA from DB2 stored
procedures

The IBM DB2 stored procedures environment is a case of the general ODBA server structure
described in Chapter 19, “Open Database Access” on page 359. A stored procedure can
issue database DL/I requests through an ODBA interface that is implemented in DB2 stored
procedures environment. In this chapter, we provide the information about the structure of
ODBA from DB2 stored procedures, the general request and response flow from a DRDA
client, and some examples of DB2 stored procedures accessing an IMS system through the
ODBA.

20

© Copyright IBM Corp. 2006. All rights reserved. 383

20.1 A short introduction to DB2 stored procedures
A stored procedure is a compiled program, stored at a DB2 local or remote server, that can
execute SQL statements. A typical stored procedure contains two or more SQL statements
and some manipulative or logical processing in a host language. A client application program
uses the SQL statement CALL to invoke the stored procedure.

A stored procedure can contain one or more SQL statements. You can replace your complex
SQL statements with a single stored procedure. Because stored procedures are precompiled
programs, they execute faster at the database server. Most of the time, stored procedures
contain more than one SQL statement, thus the time to pass the individual SQL statements to
the database server from the program is saved. A client issues just one call (to execute the
stored procedure) and the DB server executes all the commands and returns the result.
Therefore, the overall interaction time with the DB server reduces effectively. This can result in
a large optimization in cases where the DB server is accessed through a slow network.
Figure 20-1 shows processing with stored procedures.

Figure 20-1 Processing with stored procedures

For more information about DB2 stored procedures, see the IBM Redbook DB2 for z/OS
Stored Procedures: Through the CALL and Beyond, SG24-7083.

20.2 DB2 stored procedures’ use of ODBA
DB2 stored procedures connecting to ODBA require DB2 Version 5 or later and must run in a
Workload Manager (WLM)-managed stored procedures address space. Figure 20-2 on
page 385 shows the flow of a DB2 stored procedure using ODBA.

Client
EXEC SQL

CALL sp_name

EXEC SQL
COMMIT

/ROLLBACK

WLMSPAS
z/OS

Stored
Procedure
sp_name

Perform SQL
Perform SQL
Perform SQL

DB2

(SRRCMIT
/SRRBACK)

RRS

Any Platform

384 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 20-2 The flow of a DB2 stored procedure using ODBA

The following numbers describe the flow illustrated in Figure 20-2:

1. When a client application issues an SQL CALL statement, the stored procedure name and
I/O parameters are passed to DB2.

2. When DB2 receives the SQL CALL statement, it searches in the SYSIBM.SYSROUTINES
catalog table for a row associated with the stored procedure name. From this table, DB2
obtains the load module associated with the stored procedure and the run environment
information. Then, the stored procedure is executed in the WLM-managed address space
that runs fenced away from the DB2 code.

3. When the DB2 stored procedures address space (DSNX9WLM) starts up, the presence of
a DFSRESLB DD statement causes it to issue a CIMS INIT call implicitly without
specifying a DRA startup table. At this point, the address space does not know yet in
advance which IMS subsystem to which the stored procedure wants to connect. The IMS
subsystem to be accessed is determined based on the DRA startup table. When the
ODBA program issues an explicit APSB call, it provides a 1-4 byte identifier that makes up
the DRA startup table name and the PSB name to schedule. An APSB call establishes a
thread to IMS, and ODBA returns a thread token associated with this thread. All
subsequent IMS calls need to refer to this thread token. Each stored procedure running in
the stored procedure address space runs under its own TCB that was established by DB2
when the stored procedure is initialized.

4. When the stored procedure execution is completed, DB2 returns control to the invoking
program with the output parameters.

5. When the SQL commit call is issued by the client program, DB2 handles the commit
process on behalf of the stored procedure. The only subfunction that should be issued by
the stored procedure themselves is the PREP subfunction of the DPSB call.

IMS
CTL

TCP
/IP

z/OS

Any
Server

Any Platform

DRDA
Client

(SQL)
CALL sp

ioarea

(SQL)
COMMIT

/ROLLBACK

DB2

SRRCMT
/SRRBACK

DL/I
Access

DL/I
Access

Stored
Procedure

APSB
GHU
REPL

…
DPSB PREP

WLMSPAS
CIMS INIT

CIMS TALL

RRS

WLM

O
D

B
A

z/OS

(1)

(2)

(3)

(4)

(5)

(6) (7)

IMS
DB

Chapter 20. ODBA from DB2 stored procedures 385

6. When DB2 receives the commit request, DB2 invokes RRS Attachment Facility (RRSAF)
to commit the changes. RRSAF works in conjunction with the application program, the
resource manager (IMS/DB2), and the sync point manager (RRS) to ensure that updates
to IMS/DB2 resources and other protected resources are synchronized across a unit of
work. Either all work is committed, or all work is backed out.

7. Finally, IMS commits its updates under two-phase commit protocol of RRS.

20.3 Sample ODBA using DB2 stored procedures
The following sections describe how to implement a DB2 stored procedure to access an IMS
system through the ODBA. We use the DSNTEJ61/DSNTEJ62 ODBA sample shipped with
the DB2 product. This sample is used to access an IMS full function database to insert and
retrieve segments. All sample code is in data set DSN810.SDSNSAMP.

We use DB2 UDB Version 8 and IMS Version 9 subsystems, which are already up and
running (we do not describe here how to set up these subsystems).

The tasks can be divided into the following areas:

1. Setting up ODBA for the IMS subsystem: Customize the DRA startup table. It enables
DB2 stored procedures and other applications to use ODBA for this IMS subsystem.

2. Setting up the DB2 stored procedure address space for ODBA: Set up a new
WLM-established DB2 stored procedure address space, or modify an existing one.

3. Setting up a new WLM application environment for this address space.

4. Building the stored procedure: Compile, link-edit, and bind (if the stored procedure
contains SQL statements). Define the stored procedure to DB2 using a CREATE
PROCEDURE SQL statement.

5. We need to make sure that the IMS resources our stored procedure will reference are
defined to IMS. This includes building the required IMS control blocks, DBD, PSB, and
ACB, and performing MODBLKS system generation and activating the changes by making
an online change.

6. Executing the application.

7. Analyzing the output.

Our example describes the first four steps. These examples do not require setting up any new
IMS DBD or PSB, provided you already have a suitable PSB to use if you installed the IMS
IVP system. Later, we illustrate steps 6 and 7 by executing the application.

20.3.1 Provided sample jobs
This sample consists of two jobs: DSNTEJ61 and DSNTEJ62. Because the stored procedure
and the client program in these jobs are written by COBOL, you must have the COBOL for
z/OS and Language Environment installed. The following sections provide some information
about each job.

DSNTEJ61: Creating the sample stored procedure
This JCL creates a sample stored procedure application, DSN8EC1, that demonstrates a
DB2 stored procedure for IMS ODBA. DSN8EC1 can be used to insert, retrieve, update, and
delete rows in the IMS IVP telephone directory database, DFSIVD1.

386 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

The following dependencies apply:

� Run this job at the server site before running sample job DSNTEJ62 at the client site.

� The server site must have an IMS subsystem running.

� The IMS subsystem must have the following IMS IVP parts available:

– DFSIVD1, the IMS IVP telephone directory database (HIDAM / OSAM)

– DFSIVP64, the IMS IVP Cobol PSB for BMP access to DFSIVD1

� Specify the ID for this IMS subsystem in DB2 sample job DSNTEJ62, step PH062S03.

� The server site must also have a WLM environment started by a procedure that references
the IMS SDFSRESL in both the STEPLIB DD and the DFSRESLB DD.

� Before running job DSNTEJ61, verify that this WLM environment is the one specified in
the CREATE PROCEDURE statement in step PH061S01.

Table 20-1 shows the steps included in the DSNTEJ61 job and their purpose.

Table 20-1 DSNTEJ61 job

DSNTEJ62: Executing the stored procedure
This JCL prepares and executes a sample application program, DSN8EC2, that
demonstrates how to call a DB2 stored procedure for IMS ODBA. The results are directed to
the SYSOUT DD. DSN8EC2 accepts a runtime parameter in step PH062S03 that specifies
the DB2 server location name where the stored procedure is registered and the ID of the IMS
subsystem where the ODBA activity is to occur. You must modify this job to provide the IMS
subsystem ID.

The following dependencies apply:

� Run the sample job DSNTEJ61 at the server site before running this job; DSNTEJ61
prepares the sample stored procedure for IMS ODBA.

� Modify this job as directed in step PH062S03.

� Run this job at the client site.

Table 20-2 shows the steps included in DSNTEJ62 job and their purpose.

Table 20-2 DSNTEJ62 job

Step name Description

PH061S01 Drop the sample ODBA stored procedure.

PH061S02 Create the sample ODBA stored procedure.

PH061S03 Precompile, compile, and link-edit the stored procedure.

PH061S04 Bind the stored procedure package (you must execute this step if you add SQL
statements in the stored procedure).

Step name Description

PH062S01 Precompile, compile, and link-edit the client program.

PH062S02 Bind the client program package and plan.

PH062S03 Invoke the client program.

Chapter 20. ODBA from DB2 stored procedures 387

20.3.2 Provided sample source codes
This sample consists of two source codes referenced by sample jobs: DSN8EC1 and
DSN8EC2. The following sections provide some information about each source code.

DSN8EC1: The stored procedure application for IMS IVP DB access
This stored procedure enables its client to add, retrieve, update, and delete entries in the IMS
IVP telephone directory database thorough DL/I AIB interface. You also might want to add
more displays for debugging purposes.

The following dependencies apply:

� You have to change the static variable APSBNME from 'DFSIVP6' to 'DFSIVP64'. See
Example 20-1.

Example 20-1 APSBNME definition

* Initializers
 77 SSA1 PIC X(9) VALUE 'A1111111 '.
 77 APSBNME PIC X(8) VALUE 'DFSIVP64'.
 77 DPCBNME PIC X(8) VALUE 'TELEPCB1'.
 77 VAIBID PIC X(8) VALUE 'DFSAIB '.
 77 SFPREP PIC X(4) VALUE 'PREP'.

� The DPSB function should be performed to deallocate the thread token in case of some
type of failure. In the A00000-ODBA-SP section, you have to comment out 'IF OKAY', which
resides on 'PERFORM B40000-DEALLOCATE-AIB' so that the deallocate runs every time. See
Example 20-2.

Example 20-2 A00000-ODBA-SP section

 A00000-ODBA-SP.
 MOVE 'GOOD' TO RUN-STATUS.
 PERFORM B10000-ALLOCATE-AIB.
 IF OKAY THEN
 PERFORM B20000-PREPARE-REQUEST.
 IF OKAY THEN
 PERFORM B30000-PROCESS-REQUEST.
* IF OKAY THEN
 PERFORM B40000-DEALLOCATE-AIB.

 STOP RUN.

DSN8EC2: The client application that calls the stored procedure
This client application enables you to access the stored procedure DSN8EC1. There is no
dependency for this client application. You also might want to add more displays for
debugging purposes.

20.4 Step-by-step instructions for using the sample
For the purpose of this sample, we use the parameters shown in Table 20-3.

Table 20-3 Parameters

Parameter Value

IMSID IM1B

388 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 20-3 shows a rough flow of our DB2 stored procedure environment.

Figure 20-3 The flow of the DB2 stored procedure sample

20.4.1 Step 1: Creating an IMS DRA startup table
Application programs (in particular DB2 stored procedures) use information specified in the
DRA startup table to establish an ODBA connection to an IMS system. The DRA startup table
contains values used to define the characteristics of the DRA. The DRA startup table is
created by assembling the DFSxxxx0 module for the ODBA's use.

The ODBA system programmer must make the required changes to these modules to
correctly specify the DRA parameters desired. For more information about creating the DRA
startup table, refer to 19.3.1, “Creating the ODBA DRA startup table” on page 361.

We customize the IMS IVP member IV_E308J for this sample. Example 20-3 is an example of
the JCL to assemble and link-edit the DRA startup table.

Example 20-3 Assemble and link-edit the DRA startup table

//IV3E308J JOB (999,POK),
// 'JJ',
// CLASS=A,
// MSGCLASS=H,MSGLEVEL=(1,1),
// NOTIFY=JOUKO2,
// REGION=64M
//*
// JCLLIB ORDER=(IMSPSA.IM0B.PROCLIB)
/*JOBPARM L=9999,SYSAFF=*

DB2 server location DB8P

WLM environment name DB8PODBA

Parameter Value

IMS
(IM1B)

z/OS

DSN8EC2

SQL Connect DB2

SQL Call DSN8EC1
(Add segment)

SQL Commit

SQL Call DSN8EC1
(Display segment)

DB2
(DB8P)

DL/I
Access

DL/I
Access

DSN8EC1

APSB
DL/I
…

DPSB PREP

DB8PODBA
CIMS INIT

CIMS TALL

RRS

WLM
O

D
B

A

z/OS

IMS
DB

DSNTEJ62

Chapter 20. ODBA from DB2 stored procedures 389

//*
//ASMDRA PROC MBR=TEMPNAME
//*
//ASM EXEC PGM=ASMA90,PARM='OBJECT,NODECK'
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=IMSPSA.IM0B.ADFSMAC
// DD DISP=SHR,DSN=SYS1.MACLIB
//SYSLIN DD UNIT=3390,DISP=(,PASS,DELETE),SPACE=(CYL,(1,1)),
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSUT1 DD UNIT=3390,DISP=(,DELETE,DELETE),SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=3390,DISP=(,DELETE,DELETE),SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=(3390,SEP=(SYSLIB,SYSUT1,SYSUT2)),
// DISP=(,DELETE,DELETE),SPACE=(CYL,(1,1))
//*
//LKED EXEC PGM=IEWL,COND=(0,LT,ASM),
// PARM='NCAL,LET,LIST,XREF'
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DISP=(OLD,DELETE,DELETE),
// DSN=*.ASM.SYSLIN,VOL=REF=*.ASM.SYSLIN
//SYSLMOD DD DISP=SHR,
// DSN=IMSPSA.IM0B.SDFSRESL(&MBR)
//SYSUT1 DD UNIT=(3390,SEP=(SYSLMOD,SYSLIN)),
// DISP=(,DELETE,DELETE),SPACE=(CYL,(1,1))
// PEND
//*
//DFSPZPIV EXEC PROC=ASMDRA,MBR=DFSIM1B0
//ASM.SYSIN DD *
 TITLE 'DATABASE RESOURCE ADAPTER STARTUP PARAMETER TABLE'
DFSIM1B0 CSECT
 EJECT
 DFSPRP DSECT=NO, X
 FUNCLV=1, X CCTL FUNCTION LEVEL X
 DDNAME=DFSDB2SP, XXXXXXXX DDN FOR CCTL RESLIB DYNALOC X
 DSNAME=IMSPSA.IM0B.SDFSRESL, X
 DBCTLID=IM1B, NAME OF DBCTL REGION X
 USERID=, XXXXXXXX NAME OF USER REGION X
 MINTHRD=001, XXX MINIMUM THREADS X
 MAXTHRD=005, XXX MAXIMUM THREADS X
 TIMER=60, XX IDENTIFY TIMER VALUE - SECS X
 FPBUF=005, XXX FP FIXED BFRS PER THREAD X
 FPBOF=003, XXX FP OVFLW BFRS PER THREAD X
 SOD=A, X SNAP DUMP CLASS X
 TIMEOUT=060, XXX DRATERM TIMEOUT IN SECONDS X
 CNBA=028, XXX TOTAL FP NBA BFRS FOR CCTL X
 AGN= XXXXXXXX APPLICATION GROUP NAME
 END
//*

20.4.2 Step 2: Setting up the DB2 stored procedure address space for ODBA
We use a DB2 stored procedure called DB8PODBA for this sample. See Example 20-4 for a
sample of the JCL we use for this procedure.

Example 20-4 Sample stored procedure PROCLIB member

//DB8PODBA PROC RGN=0K,APPLENV=DB8PODBA,DB2SSN=DB8P,NUMTCB=8
//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM='&DB2SSN,&NUMTCB,&APPLENV'
//STEPLIB DD DISP=SHR,DSN=DB8PU.RUNLIB.LOAD

390 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

// DD DISP=SHR,DSN=DB8P8.SDSNEXIT
// DD DISP=SHR,DSN=DB8P8.SDSNLOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=IMSPSA.IM0B.SDFSRESL
//DFSRESLB DD DISP=SHR,DSN=IMSPSA.IM0B.SDFSRESL
//CEEDUMP DD SYSOUT=*
//SYSMDUMP DD SYSOUT=*

We add the following DD statements to the JCL:

� To the STEPLIB DD statement, add the library where the DRA startup table resides, in our
case, the SDFSRESL.

� The WLM-established DB2 stored procedure address space needs a DFSRESLB DD
statements that includes the DRA startup table and DRA modules DFSCDLI0,
DFSAERM0, DFSAERA0, and DFSAERG0 in order to establish an ODBA environment
during startup. These modules need to be APF authorized. Every data set in this DD
statement needs to be APF authorized.

� In addition, add the CEEDUMP DD for debugging purposes. Add any additional data sets
required for the stored procedure. For example, a PL/I stored procedure might require to
SYSPRINT in order to help for debugging.

20.4.3 Step 3: Creating the WLM application environment

Use the ISPF application “WLM” to define the application environment. Use Option 9
(Application Environments) with an action code of 1(create) or 2 (copy) to input the
application information. Example 20-5 shows information inputted for this sample.

Example 20-5 WLM Application Environment definition for DB2 ODBA stored procedures

 Application-Environment Notes Options Help
 --
 Create an Application Environment
 Command ===> __

 Application Environment . . . DB8PODBA________________________ Required
 Description SP for DB8P ODBA on IM1B________
 Subsystem Type DB2_ Required
 Procedure Name DB8PODBA
 Start Parameters DB2SSN=DB8P,NUMTCB=8____________________
 __

 Limit on starting server address spaces for a subsystem instance:
 1 1. No limit
 2. Single address space per system
 3. Single address space per sysplex

After you enter this data and it is saved, select Utilities from the menu bar, and select Install
Definition to install and select Activate service policy to make it effective.

Note: We do not go into the details of how to set up the WLM. We assume that the WLM is
set up for your systems with the use of RRS. For more information about WLM, see
Chapter 4, “Setting up and managing Workload Manager,” in the IBM Redbook DB2 for
z/OS Stored Procedures: Through the CALL and Beyond, SG24-7083.

Chapter 20. ODBA from DB2 stored procedures 391

20.4.4 Step 4: Building the stored procedure by DSNTEJ61
The DSNTEJ61 job is supplied in the SDSNSAMP library of your DB2 system libraries. This
job needs to be modified to allocate the correct DB2 libraries and point to the correct DB2
subsystems and programs. The following sections list the steps of each job and what task
they perform.

Step 1 PH061S01: Dropping the stored procedure
This step drops the stored procedure for cleaning up your previous executions. At the first
execution, you can comment out this step. See Example 20-6.

Example 20-6 Drop the sample ODBA stored procedure

DROP PROCEDURE DSN8.DSN8EC1 RESTRICT;

Step 2 PH061S02: Creating the stored procedure
Make sure that the WLM environment name is correct in this definition. For our sample, we
use DB8PODBA. See Example 20-7.

Example 20-7 Create procedure statements

CREATE PROCEDURE
 DSN8.DSN8EC1(
 IN CHAR(8) CCSID EBCDIC,
 INOUT CHAR(8) CCSID EBCDIC,
 INOUT CHAR(10) CCSID EBCDIC,
 INOUT CHAR(10) CCSID EBCDIC,
 INOUT CHAR(10) CCSID EBCDIC,
 INOUT CHAR(7) CCSID EBCDIC,
 OUT INT,
 OUT INT,
 OUT CHAR(4) CCSID EBCDIC)
 FENCED
 RESULT SETS 0
 EXTERNAL NAME DSN8EC1
 LANGUAGE COBOL
 PARAMETER STYLE GENERAL
 NOT DETERMINISTIC
 NO SQL
 NO DBINFO
 NO COLLID
WLM ENVIRONMENT DB8PODBA
ASUTIME LIMIT 50
STAY RESIDENT NO
PROGRAM TYPE MAIN
SECURITY DB2
RUN OPTIONS 'TRAP(OFF),RPTOPTS(OFF),TERMTHDAC((QUIET),NONOVR)'
COMMIT ON RETURN NO;

Step 3 PH061S03: Precompiling, compiling, and link-editing stored procedure
This step precompiles, compiles, and link-edits the stored procedure. You do not have to
include DFSCDLI0 in the link-edit control statement, because the WLM stored procedure
address space already has an ODBA interface. See Example 20-8.

Example 20-8 Link-editing condition

INCLUDE SYSLIB(DSNRLI)
NAME DSN8EC1(R)

392 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Step 4 PH061S04: Binding the stored procedure package
This example does not use any SQL; therefore, we do not run this step.

20.4.5 Step 5: Defining the IMS environment
IMS ODBA function requires an RRS interface. Therefore, the IMS execution parameter
RRS= in the DFSPBxxx PROCLIB member must be set to Y (the default is N). If you execute
your ODBA stored procedure with RRS=N, your APSB call will receive AIBRETRN X'0108',
AIBREASN X'0544', which means that the RRS is not active at the time that ODBA attempts
to establish a connection to IMS or DBCTL.

We need to make sure that the IMS IVP application program (which is used by our stored
procedure) will reference is defined to IMS. This includes building the required IMS control
blocks (DBD, PSB, and ACB) and MODBLKS modules that are part of stage 1 and stage 2
IMS generation, and copying them into online libraries. We use the DBD IVPDB1, PSB
DFSIVP64, and ACB members that come as part of the IMS IVP environment.

You can confirm your IVP application environment for the stored procedure by some IMS
commands, as shown in Example 20-9.

Example 20-9 IMS commands sample

 R 394,/DIS DB IVPDB1 IVPDB1I
 IEE600I REPLY TO 394 IS;/DIS DB IVPDB1 IVPDB1I
 DFS000I DATABASE TYPE TOTAL UNUSED TOTAL UNUSED ACC CONDITIONS
 IM1B
 DFS000I IVPDB1 DL/I UP NOTOPEN,
 ALLOCS IM1B
 DFS000I IVPDB1I DL/I UP NOTOPEN,
 ALLOCS IM1B
 DFS000I *05160/210423* IM1B
*395 DFS996I *IMS READY* IM1B

 R 395,/DIS PGM DFSIVP64
 IEE600I REPLY TO 630 IS;/DIS PGM DFSIVP64
 DFS000I PROGRAM TRAN TYPE IM1B
 DFS000I DFSIVP64 BMP IM1B
 DFS000I *2005160/210708* IM1B
*396 DFS996I *IMS READY* IM1B

20.4.6 Step 6: Running the stored procedure by DSNTEJ62
The DSNTEJ62 job is supplied in the SDSNSAMP library of your DB2 system libraries. This
job needs to be modified to allocate the correct DB2 libraries and point to the correct DB2
subsystems and programs. The following sections list the steps of each job and what task
they perform.

Step 1 PH062S01: Precompiling, compiling, and link-editing the client program
This step precompiles, compiles, and link-edits the client program. See Example 20-10 on
page 394.

Note: The PC and PLKED steps in the PH061S03 will get a return code of 04. This is
acceptable. All other steps should return 00.

Chapter 20. ODBA from DB2 stored procedures 393

Example 20-10 Link-editing condition

INCLUDE SYSLIB(DSNELI)
INCLUDE SYSLIB(DSNTIAR)

Step 2 PH062S02: Binding the client program package and plan
This step is used for bind the client program package and plan. SYSTEM(DB8P) is the
client-side subsystem that will connect to DB8P through DRDA to run the stored procedure
against IM1B. See Example 20-11.

Example 20-11 Bind condition

 DSN SYSTEM(DB8P)
 BIND PACKAGE(DSN8) MEMBER(DSN8EC2) -
 ACT(REP) ISO(CS) ENCODING(EBCDIC)
 BIND PACKAGE(DB8P.DSN8) -
 MEMBER(DSN8EC2) ACT(REP) ISO(CS) ENCODING(EBCDIC)
 BIND PLAN(DSN8EC2) -
 PKLIST(DSN8.DSN8EC2, -
 DB8P.DSN8.DSN8EC2) -
 ACT(REP) ISO(CS) ENCODING(EBCDIC)
 RUN PROGRAM(DSNTIAD) PLAN(DSNTIA81) -
 LIB('DB8PU.RUNLIB.LOADO')
//SYSIN DD *
 GRANT BIND, EXECUTE ON PLAN DSN8EC2 TO PUBLIC;
//*

Step 3 PH062S03: Invoking the client
Invoke the client for the IMS ODBA stored procedure. Modify the PARMS parameter to specify
the DB2 server location name and the IMS subsystem ID, in that order and separated by a
single blank character. For example, we use the statements shown in Example 20-12.

Example 20-12 invoking the client program

 DSN SYSTEM(DB8P)
 RUN PROGRAM(DSN8EC2) -
 PLAN(DSN8EC2) -
 PARMS('DB8P IM1B')
 END

20.4.7 Step 7: Analyzing the output
In this final step, we analyze the output.

Messages related to the ODBA stored procedure activation
WLM starts the stored procedure when required. On startup of the stored procedure, you
should see DSNX991I message shown in Example 20-13.

Example 20-13 DSNX991I message

DSNX991I DSNX9WLM IMS ODBA INITIALIZATION COMPLETED

This implies that the CIMS call was performed and that the ODBA environment has been set
up. If the CIMS call is not successful, you will get the message shown in Example 20-14.

Note: The PLKED step in PH062S01 and PH062S02 will get a return code of 04. This is
acceptable. All other steps should return 00.

394 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 20-14 DSNX992E message

DSNX992E IMS ODBA INITIALIZATION FAILURE, AIB RC =xxxx

The client application outputs
The first time you run the DSNTEJ62 job successfully, you should see output in two places.
From the SYSOUT output of job DSNTEJ62 step PH062S03, you see the output shown in
Example 20-15.

Example 20-15 Output from DSNTEJ62 SYSOUT

 * DSN8EC2: Sample Client for IMS/ODBA DB2 stored procedure sample (DSN8.DSN8EC1
 *
 * Now connecting to DB8P
 * for access to IMS node IM1B
 *
 * Entry for:
 * - Last Name DOE
 * - First Name JOHN
 * - Extension Number ... 9-876-5432
 * - Internal Zip Code .. 98765
 * added successfully to database DFSIVD1.
 *
 * Entry for:
 * - Last Name LAST1
 * - First Name FIRST1
 * - Extension Number ... 8-111-1111
 * - Internal Zip Code .. D01/R01
 * retrieved successfully from DFSIVD1.
 *

From the SYSOUT output of the DB2 stored procedure DB8PODBA, you see the output
shown in Example 20-16.

Example 20-16 Output from DB8PODBA SYSOUT

 TE>DB2TEMP-IOCMD=ADD
 AFTER DPSB PREP, DPCBNME=TELEPCB1
 DPSB PREP AIBRETRN=000000000
 DPSB PREP AIBREASN=000000000
 DPSB PREP AIBRSNM1=DFSIVP64
 DPSB PREP AIBRSNM2=IM1B
 DPSB PREP AIBRESA1=0000207040
 DPSB PREP AIBRESA2=0000000000
 DPSB PREP AIBRESA3=0000000000

 TE>DB2TEMP-IOCMD=DIS
 TE>SSA-KEY=LAST1
 AFTER DPSB PREP, DPCBNME=TELEPCB1
 DPSB PREP AIBRETRN=000000000
 DPSB PREP AIBREASN=000000000
 DPSB PREP AIBRSNM1=DFSIVP64
 DPSB PREP AIBRSNM2=IM1B
 DPSB PREP AIBRESA1=0000207040
 DPSB PREP AIBRESA2=0000000000
 DPSB PREP AIBRESA3=0000000000

Chapter 20. ODBA from DB2 stored procedures 395

If you try to run the DSNTEJ62 job again, you should see that the DSNTEJ62 output looks the
same as in Example 20-15 on page 395, but the output from the DB8PODBA is different.
Look at Example 20-17. You will notice that the ADD received an AIBRETRN code of 2304,
which translates to a X'900'. In the DL/I return and reason codes section of IMS Version 9:
Messages and Codes Volume 1, GC18-7827, we see that a X'900' is a PCB status code
analysis required error. There are not enough displays in this program to show what the PCB
status code is, but if you added the necessary displays, you see an II status code because
you are trying to insert a segment that already exists on the database.

Example 20-17 An example of output from the second run of DB8PODBA

TE>DB2TEMP-IOCMD=ADD
ISRT AIBRETRN=000002304
ISRT AIBREASN=000000000
ISRT AIBRESA1=0000207040
ISRT AIBRESA2=0000000000
ISRT AIBRESA3=0574081672
AFTER DPSB PREP, DPCBNME=TELEPCB1
DPSB PREP AIBRETRN=000000000
DPSB PREP AIBREASN=000000000
DPSB PREP AIBRSNM1=DFSIVP64
DPSB PREP AIBRSNM2=IM1B
DPSB PREP AIBRESA1=0000207040
DPSB PREP AIBRESA2=0000000000
DPSB PREP AIBRESA3=0000000000

TE>DB2TEMP-IOCMD=DIS
TE>SSA-KEY=LAST1
AFTER DPSB PREP, DPCBNME=TELEPCB1
DPSB PREP AIBRETRN=000000000
DPSB PREP AIBREASN=000000000
DPSB PREP AIBRSNM1=DFSIVP64
DPSB PREP AIBRSNM2=IM1B
DPSB PREP AIBRESA1=0000207040
DPSB PREP AIBRESA2=0000000000
DPSB PREP AIBRESA3=0000000000

20.5 Commands for ODBA DB2 stored procedure environment
In this section, we show some useful commands for monitoring and controlling your ODBA
and DB2 stored procedures environment.

20.5.1 IMS commands
Let us take a look at the IMS commands first.

/DISPLAY ACTIVE REGION
The /DISPLAY ACTIVE REGION command shows ODBA thread connections with the current
status. ODBA threads appear in the TYPE DBT section, the same as CCTL threads. In
Example 20-18 on page 397, the stored procedure DB8PODBA has one ACTIVE thread with
this IMS, and the thread is working with PSB DFSIVP64. The thread also has REGID 1 (PST
number 1).

396 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 20-18 /DISPLAY ACTIVE REGION command

 /DIS ACT REG.
 DFS4445I CMD FROM MCS/E-MCS CONSOLE USERID=JOUKO2: DIS ACT REG IM1B
 DFS4444I DISPLAY FROM ID=IM1B 929
 REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS
 JMPRGN JMP NONE
 MSGRGN TP NONE
 JBPRGN JBP NONE
 BATCHREG BMP NONE
 FPRGN FP NONE
 1 DB8PODBA DBT DB8PODBA DFSIVP64 ACTIVE
 IM1BDBRC DBRC
 IM1BDLS DLS

/DISPLAY UOR
The /DISPLAY UOR command displays status information about IMS units of recovery
(UORs) for protected resources on the RRS. In Example 20-19, IMS has the one active UOR
task that has the unit of recovery identifier (URID) for RRS and the recovery token for IMS.
These tokens are written in log records, as shown in Example 20-20. In some case of failure,
IMS uses this information for the recovery operation.

Example 20-19 /DISPLAY UOR command

 /DIS UOR
 DFS4445I CMD FROM MCS/E-MCS CONSOLE USERID=JOUKO2: DIS UOR IM1B
 DFS4444I DISPLAY FROM ID=IM1B 926
 ST P-TOKEN PSBNAME RRS-URID IMS-RECTOKN
 + A DFSIVP64 BD236FF47E6F282C0000002801010000 ODBA006C000
 0001100000000
 LUWID=1E908048AER TASK FOR ODBA
 2005160/223231

Example 20-20 X'5616' log records sample (which means START OF PROTECTED UOW)

 01000000 56160000 C9D4F1C2 40404040 00000001 00000000 00000000 00000000
 00000000 00000000 00000000 D6C4C2C1 F0F0F6C3 00000011 00000000 00000000 IMS-RECTOKN
 00000000 00000000 00000000 BD236FF4 7E6F282C 00000028 01010000 00490000 RRS-URID
 00010015 00000000 1E908048 C1C5D940 E3C1E2D2 40C6D6D9 40D6C4C2 C1000000
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000 BD237436 738B4B46 00000000 00004F70

20.5.2 DB2 commands
You might find the following DB2 commands useful.

DISPLAY PROCEDURE
The DISPLAY PROCEDURE command displays statistics about stored procedures that are
accessed by DB2 applications. This command displays one line of output for each stored
procedure that a DB2 application has accessed. In Example 20-21 on page 398, you can
check the current status of the DB8PODBA stored procedure.

Tip: X'5616' log (START OF PROTECTED UOW) and X'5611' log (END OF PHASE ONE
SYNCPOINT) have the URID field.

Chapter 20. ODBA from DB2 stored procedures 397

Example 20-21 DISPLAY PROCEDURE command

-DB8P DIS PROCEDURE(DSN8.DSN8EC1)
DSNX940I -DB8P DSNX9DIS DISPLAY PROCEDURE REPORT FOLLOWS - 041

------- SCHEMA=DSN8
PROCEDURE STATUS ACTIVE QUED MAXQ TIMEOUT FAIL WLM_ENV
DSN8EC1
 STARTED 0 0 1 0 0 DB8PODBA
DSNX9DIS DISPLAY PROCEDURE REPORT COMPLETE
DSN9022I -DB8P DSNX9COM '-DISPLAY PROC' NORMAL COMPLETION

START PROCEDURE
For both DB2-established and WLM-established stored procedure address spaces, the
START PROCEDURE command activates the definition of a stored procedure that is stopped
or refreshes one that is stored in the cache. You do not need to issue START PROCEDURE
when you define a new stored procedure to DB2. DB2 automatically activates the new
definition when it first receives an SQL CALL statement for the new procedure. See
Example 20-22.

Example 20-22 START PROCEDURE command

-DB8P START PROCEDURE(DSN8.DSN8EC1)
DSNX946I -DB8P DSNX9ST2 START PROCEDURE SUCCESSFUL FOR DSN8.DSN8EC1
DSN9022I -DB8P DSNX9COM '-START PROC' NORMAL COMPLETION

STOP PROCEDURE
The STOP PROCEDURE command prevents DB2 from accepting SQL CALL statements for
one or more stored procedures. This command does not prevent CALL statements from
running if they have already been queued or scheduled by DB2. But in case of abends, DB2
implicitly issues the command STOP PROCEDURE ACTION(REJECT) for any stored
procedure that exceeds the maximum abend count, and then you might have to issue the
START PROCEDURE command for reuse. See Example 20-23.

Example 20-23 STOP PROCEDURE command

-DB8P STOP PROCEDURE(DSN8.DSN8EC1)
DSNX947I -DB8P DSNX9SP2 STOP PROCEDURE SUCCESSFUL FOR DSN8.DSN8EC1
DSN9022I -DB8P DSNX9COM '-STOP PROC' NORMAL COMPLETION

20.5.3 z/OS Workload Manager commands
You can also use the following z/OS commands for DB2 stored procedures.

DISPLAY WLM,APPLENV=xxxxx
After activating a service policy, you can confirm the application environment by using the
z/OS DISPLAY WLM command shown in Example 20-24 on page 399. The application
environment DB8PODBA has an AVAILABLE status now. An application environment initially
enters the AVAILABLE state when the service policy that contains its definition is activated.
AVAILABLE means the application environment is available for use, and servers are allowed
to be started for it.

398 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 20-24 z/OS DISPLAY WLM command

D WLM,APPLENV=DB8PODBA
IWM029I 14.54.44 WLM DISPLAY 364
 APPLICATION ENVIRONMENT NAME STATE STATE DATA
 DB8PODBA AVAILABLE
 ATTRIBUTES: PROC=DB8PODBA SUBSYSTEM TYPE: DB2

VARY WLM,APPLENV=xxxxx,QUIESCE
The z/OS VARY WLM QUIESCE option causes workload manager to request the termination
of server address spaces for the application environment upon completion of any active
requests. Additional work requests are not handled by the servers, although work requests
can continue to be queued, waiting for a server. If you do not want work queued, use the DB2
STOP PROCEDURE command with the ACTION(REJECT) option to stop the queuing. You
can issue a quiesce action for an application environment that is in the AVAILABLE state.
When a quiesce action is issued for an application environment, it first enters the
QUIESCING state until all servers have been requested to terminate. It then enters the
QUIESCED state. See Example 20-25.

Example 20-25 z/OS vary WLM command (QUIESCE option)

 V WLM,APPLENV=DB8PODBA,QUIESCE
*IWM031I VARY QUIESCE FOR DB8PODBA IN PROGRESS
 IWM032I VARY QUIESCE FOR DB8PODBA COMPLETED
 - --TIMINGS (MINS.)--
 ----PAGING COUNTS---
 -JOBNAME STEPNAME PROCSTEP RC EXCP CPU SRB CLOCK SERV
 PG PAGE SWAP VIO SWAPS
 -DB8PODBA IEFPROC DB8PODBA 00 642 .00 .00 53.2 6247
 0 0 0 0 0
 IEF404I DB8PODBA - ENDED - TIME=22.54.55 - ASID=006C - SC42
 -DB8PODBA ENDED. NAME- TOTAL CPU TIME= .00
 TOTAL ELAPSED TIME= 53.2
 $HASP395 DB8PODBA ENDED

VARY WLM,APPLENV=xxxxx,RESUME

The z/OS VARY WLM RESUME option restarts an application environment that was
previously quiesced and is in the QUIESCED state. It indicates to workload manager that
server address spaces can once again be started for this application environment. The new
servers process any queued requests and all new requests. When a resume action is issued
for an application environment, it first enters the RESUMING state until all systems in the
sysplex have accepted the action. It then enters the AVAILABLE state. See Example 20-26.

Example 20-26 z/OS vary WLM command (RESUME option)

 V WLM,APPLENV=DB8PODBA,RESUME
 IWM034I PROCEDURE DB8PODBA STARTED FOR SUBSYSTEM DB8P 057
 APPLICATION ENVIRONMENT DB8PODBA
 PARAMETERS DB2SSN=DB8P,NUMTCB=8,APPLENV=DB8PODBA
 IWM032I VARY RESUME FOR DB8PODBA COMPLETED
 $HASP100 DB8PODBA ON STCINRDR
 $HASP373 DB8PODBA STARTED
 IEF403I DB8PODBA - STARTED - TIME=22.55.20 - ASID=006C - SC42
 DSNX991I DSNX9WLM IMS ODBA INITIALIZATION COMPLETED

Chapter 20. ODBA from DB2 stored procedures 399

VARY WLM,APPLENV=xxxxx,REFRESH
The z/OS VARY WLM REFRESH option requests the termination of existing server address
spaces and starts new ones in their place. Existing servers finish their current work requests
and end. The new servers process any queued requests and all new requests. You can issue
a refresh action for an application environment that is in the AVAILABLE state. When a
refresh action is issued for an application environment, it first enters the REFRESHING state
until all servers have been requested to terminate. It then enters the AVAILABLE state. See
Example 20-27.

Example 20-27 z/OS vary WLM command (REFRESH option)

 V WLM,APPLENV=DB8PODBA,REFRESH
 IWM034I PROCEDURE DB8PODBA STARTED FOR SUBSYSTEM DB8P 671
 APPLICATION ENVIRONMENT DB8PODBA
 PARAMETERS DB2SSN=DB8P,NUMTCB=8,APPLENV=DB8PODBA
*IWM031I VARY REFRESH FOR DB8PODBA IN PROGRESS
 IWM032I VARY REFRESH FOR DB8PODBA COMPLETED
 $HASP100 DB8PODBA ON STCINRDR
 $HASP373 DB8PODBA STARTED
 IEF403I DB8PODBA - STARTED - TIME=17.32.23 - ASID=0068 - SC42
 DSNX991I DSNX9WLM IMS ODBA INITIALIZATION COMPLETED
 - --TIMINGS (MINS.)--
 ----PAGING COUNTS---
 -JOBNAME STEPNAME PROCSTEP RC EXCP CPU SRB CLOCK SERV
 PG PAGE SWAP VIO SWAPS
 -DB8PODBA IEFPROC DB8PODBA 00 127 .00 .00 .6 1267
 0 0 0 0 0
 IEF404I DB8PODBA - ENDED - TIME=17.32.24 - ASID=0069 - SC42
 -DB8PODBA ENDED. NAME- TOTAL CPU TIME= .00
 TOTAL ELAPSED TIME= .6
 $HASP395 DB8PODBA ENDED

20.5.4 RRS panel utility

RRS provides the ISPF panels utility to enable installation people to work with RRS. When
you use the panels, you can view the following information:

� RRS logs
� UR information
� Resource manager information

Through the panels, you can also take the following actions:

� Determine where a resource manager can restart after a system failure
� Resolve an in-doubt state for a UR to in-commit or in-backout
� Remove a resource manager's interest in a UR

Therefore, the panels provide a way for you to troubleshoot resource recovery. You might use
them, for example, if an application is hung and you suspect that resource recovery might be
the cause of the problem.

Note: We do provide details about how to set up the RRS panel utility. We assume that
RRS and the panel utility are set up for your systems. For more information about the RRS
panel utility, see Appendix A, “Using RRS Panels,” in z/OS V1R6.0 MVS Programming:
Resource Recovery, SA22-7616.

400 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

RRS-related resource manager information
The Resource Manager List shows the name of the resource manager and its state, as known
on the local system. In Example 20-28, we can see that our DB2 server (DB8P) and IMS
control region (IM1B) registered to RRS are in the Run status on the SC42 system.

Example 20-28 RRS Resource Manager List panel

 RRS Resource Manager List Row 1 to 6 of 6
 Command ===> Scroll ===> PAGE

 Commands: v-View Details u-View URs r-Remove Interest

 S RM Name State System Logging Group
 CSQ.RRSATF.IBM.MQCB Run SC42 WTSCPLX1
 DSN.RRSATF.IBM.DB7B Reset SC42 WTSCPLX1
 DSN.RRSATF.IBM.DB8P Run SC42 WTSCPLX1
 DSN.RRSPAS.IBM.DB7B Reset SC42 WTSCPLX1
 DSN.RRSPAS.IBM.DB8P Run SC42 WTSCPLX1
 IMS.IM1B____V091.STL.SANJOSE.IBM Run SC42 WTSCPLX1

RRS unit of recovery information
The Unit Of Recovery Details panel shows detailed information about the UOR work. In
Example 20-29, we can see the ODBA (IM1B)-related UOR work detail, such as the UR
identifier value, UR state, work manager name, and expressions of interest (what resource
manager is related to this work).

Note that Example 20-19 on page 397 (/DIS UOR output) and Example 20-29 show same
RRS UR identifier value, because both of them represent the same stored procedure request
via ODBA interface.

Example 20-29 RRS Unit of Recovery Details panel

 RRS Unit of Recovery Details Row 1 to 2 of 2
 Command ===> Scroll ===> PAGE

 Commands r-Remove Interest v-View URI Details

 UR identifier : BD236FF47E6F282C0000002801010000
 Create time : 2005/06/10 02:13:16.966007 Comments :
 UR state : InFlight UR type : Prot
 System : SC42 Logging Group : WTSCPLX1
 SURID : N/A
 Work Manager Name : DSN.RRSPAS.IBM.DB8P
 Display Work IDs Display IDs formatted
 Luwid . : Not Present
 Eid . . : Not Present
 Xid . . : Not Present
 Expressions of Interest:
 S RM Name Type Role
 DSN.RRSPAS.IBM.DB8P Unpr Participant
 IMS.IM1B____V091.STL.SANJOSE.IBM Prot Participant

20.6 Sample Java client application for ODBA stored procedure
In this section we show how to implement a Java client application to invoke a ODBA stored
procedure. We assume that there is already a DB2 UBB for z/OS Version 8 DRDA

Chapter 20. ODBA from DB2 stored procedures 401

environment with ODBA sample stored procedure DSN8EC1, as discussed in 20.4,
“Step-by-step instructions for using the sample” on page 388.

For the purpose of this sample, we use the DB2 configuration shown in Table 20-4.

Table 20-4 DB2 configuration for DRDA access

We create a simple Java application, AccessODBADB2SP.java, to invoke the stored
procedure. We use Rational Application Developer V6.0 for running the application. This
application uses the Java Universal Driver (JCC Driver), which comes with DB2 Connect™
V8. You should apply the appropriate Java build path to your application to include the JCC
Driver JAR files.

Example 20-30 shows the sample Java application to invoke the stored procedure.

Example 20-30 AcessODBADB2SP.java

package accessDB8P;

import java.sql.*; /*[1]*/
import java.io.*;

public class AccessODBADB2SP {

 static
 {
 try
 {
 Class.forName("com.ibm.db2.jcc.DB2Driver").newInstance();/*[2]*/
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

public static void main(String[] args) {

String url = "jdbc:db2://wtsc42.itso.ibm.com:38000/DB8P";/*[3]*/
String usrdb2 = "JOUKO2";
String passdb2 = "DUMMY";

String dbctlid = "IM1B";
String command = "DISPLAY";
String last = "LAST1";
String first = "";
String extension = "";
String zip = "";
int aibReturn;

DB2 configuration Value

Server location wtsc42.itso.ibm.com

Port number 38000

Database name DB8P

User ID JOUKO2

Password DUMMY

402 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

int aibReason;
String error = "";

 try
 {

Connection con = DriverManager.getConnection(url,usrdb2,passdb2);/*[4]*/

con.setAutoCommit(false); /*[5]*/

CallableStatement cstmt =
con.prepareCall("CALL DSN8.DSN8EC1(?,?,?,?,?,?,?,?,?)"); /*[6]*/

cstmt.setString(1,dbctlid); /*[7]*/
cstmt.setString(2,command);
cstmt.setString(3,last);
cstmt.setString(4,first);
cstmt.setString(5,extension);
cstmt.setString(6,zip);

cstmt.registerOutParameter(2,Types.CHAR); /*[8]*/
cstmt.registerOutParameter(3,Types.CHAR);
cstmt.registerOutParameter(4,Types.CHAR);
cstmt.registerOutParameter(5,Types.CHAR);
cstmt.registerOutParameter(6,Types.CHAR);
cstmt.registerOutParameter(7,Types.INTEGER);
cstmt.registerOutParameter(8,Types.INTEGER);
cstmt.registerOutParameter(9,Types.CHAR);

cstmt.execute(); /*[9]*/

command= cstmt.getString(2); /*[10]*/
last = cstmt.getString(3);
first = cstmt.getString(4);
extension= cstmt.getString(5);
zip = cstmt.getString(6);
aibReturn= cstmt.getInt(7);
aibReason= cstmt.getInt(8);
error = cstmt.getString(9);

con.commit(); /*[11]*/

System.out.println(/*[12]*/
 "Stored Procedure Results are.....\n"
 + "\nCommand : "
 + command
 + "\nLast Name : "
 + last
 + "\nFisrt Name : "
 + first
 + "\nExtension : "
 + extension
 + "\nZip Code Name : "
 + zip
 + "\nAIBRETRN(Dec) : "
 + aibReturn
 + "\nAIBREASN(Dec) : "
 + aibReason
 + "\nMessage : "
 + error);

Chapter 20. ODBA from DB2 stored procedures 403

 }
 catch (Exception e)
 {
 System.out.println("\nCaught exception is: " + e);
 }

}
}

Note the following points to note about this code (listed in Example 20-30 on page 402):

1. Import the required standard Java classes for JDBC calls.

2. The application uses the Java Universal Driver to connect to the database on z/OS. The
following statement loads the classes for the Java Universal Driver:

Class.forName("com.ibm.db2.jcc.DB2Driver")

3. Declare variables with the desired values.

4. After the classes for the Universal Driver are loaded, the format of the connection string
decides the type of connection. You can choose a Type 2 connection or Type 4
connection. In our example, we use a Type 4 connection by using the format:

jdbc:db2://server_or_ip:port/location_name

5. Disable auto commit.

6. Create a callable statement object to invoke the stored procedure.

7. The setString methods set the defined values to the callable statement object.

8. Register output parameters.

9. Execute the callable statement.

10.The getString methods and getInt methods retrieve the values from the callable statement
object as a consequence of the stored procedure execution.

11.Commit the work.

12.Display the results.

If you run the Java application successfully, you see the output shown in Example 20-31.

Example 20-31 Sample Java client output

Stored Procedure Results are.....

Command : DISPLAY
Last Name : LAST1
Fisrt Name : FIRST1
Extension : 8-111-1111
Zip Code Name : D01/R01
AIBRETRN(Dec) : 0
AIBREASN(Dec) : 0
Message :

Note: In steps 6 to 10, set the number of parameters, the field type, and the input and
output attribute as the same as the stored procedure definition shown in Example 20-7
on page 392.

404 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Chapter 21. IMS Remote Database Services

IBM IMS provides the capability to allow Java programs to access IMS resources. In this
chapter, we focus on IMS Java Remote Database Services (RDS), which is introduced on
IMS Version 9. With IMS RDS, you can develop and deploy applications that run on
WebSphere Application Server on non-z/OS platforms and access IMS databases remotely
through an IBM-provided EJB on WebSphere Application Server for z/OS. In this chapter, we
provide the information about the infrastructure of IMS RDS, how to work with the DL/I model
utility, considerations about making SQL calls, and the step-by-step procedure for creating the
Web application to access the IMS database through IMS RDS.

21

© Copyright IBM Corp. 2006. All rights reserved. 405

21.1 The big picture of the IMS Java environment
Since IMS Version 7, IMS has provided the capability to allow Java programs to access IMS
resources. In the environment, access to the IMS database from a Java application is
provided by SQL statements through the Java Database Connectivity (JDBC) interface. There
are two types of IMS dependent regions that are supported to execute IMS Java applications.

21.1.1 IMS dependent regions
Two IMS-dependent regions provide a Java Virtual Machine (JVM) environment for Java
applications:

� Java Message Processing (JMP) region

JMP regions enable the scheduling of only Java message-processing applications. A JMP
application is started when there is a message in the queue for the JMP application and
IMS schedules the message to be processed (similar to MPP applications). It can access
the following resources:

– IMS message queue for input and output messages
– IMS databases
– DB2 for z/OS databases

� Java Batch Processing (JBP) region

JBP regions run the Java applications that perform batch-type processing online and can
access the IMS message queues for output (similar to non-message-driven BMP
applications). JBP applications are started by submitting a job with JCL or from the Time
Sharing Option (TSO). It can access the following resources:

– IMS message queue for output messages
– IMS databases
– DB2 for z/OS databases

These Java-dependent regions are attached to an IMS control region directly.

21.1.2 IBM products on the z/OS environment
Now, many IBM products on the z/OS environment can support running Java applications.
Some of them, such as CICS Transaction Server for z/OS, DB2 UDB for z/OS, and
WebSphere Application Server for z/OS, also can run the IMS Java applications for IMS
database access. This capability provides us with the following advantages:

� Increased portability of IMS database access logic

After you developed your IMS database access logic with Java code, you can run it on any
IBM products supported by IMS Java.

� Use of the Web connectivity functions of each IBM product for IMS database access

Each product has its native connectivity functions in the Web environment. This means
that if you deploy your Java-based business logic (which contains IMS DB access) to the
products, you can gain full connectivity from them, such as the CICS External Call
Interface (ECI) and External Presentation Interface (EPI), CICS Web service support, DB2
DRDA function, WebSphere Application Server HTTP access, EJB access, and Web
services.

DB2 UDB for z/OS and WebSphere Application Server for z/OS are attached to an IMS
control region through ODBA interface. The CICS Java environment is attached through a
DRA interface.

406 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 21-1 shows the big picture of the IMS Java environment.

Figure 21-1 The big picture of IMS Java environment

21.2 IMS JDBC interface
IMS Java implements the JDBC 2.1 API, which is SQL-based standard interface for data
access in the Java 2 Platform, Standard Edition (J2SE) and Enterprise Edition (J2EE).
However, IMS has a hierarchical database structure made up of segments. Therefore, the
IMS Java’s implementation of JDBC/SQL supports a selected subset of the full facilities of the
JDBC 2.1 API and standard SQL grammar. To access a hierarchical database as a relational
database through the IMS JDBC interface, you must know some of the dialect of IMS Java
SQL grammar and the restrictions of IMS JDBC API, which is derived from the logical
conversion of the IMS hierarchical structure to its original relational model. In this section, we
introduce the composition and characteristics of the IMS JDBC interface.

21.2.1 The layered set of IMS Java class libraries
IMS Java is delivered in a layered set of class libraries. These class libraries are shipped with
the IMS product. This concept allows for the high-level classes to focus on ease-of-use, and
the lower-level classes to provide access to IMS services and serve as the implementation for
the higher-level classes. The diagram in Figure 21-2 on page 408 shows the layered set of
class libraries.

IMS DB

DRA ODBA

IMS

JVM

CICS TS for z/OS
Application

CICS Java
Application

JVM

DB2 UDB for z/OS
Stored Procedure

DB2 Java
Application

JVM

J2EE
Application

WAS for z/OS

JVM

JBP

IMS Java
Application

JVM

JMP

IMS Java
Application

DEALER

MODEL
…..11-333GIHUSHOP4

…..07-444GUNMASHOP3

…..08-222TOKYOSHOP2

…..08-111CHIBASHOP1

…..11-333GIHUSHOP4

…..07-444GUNMASHOP3

…..08-222TOKYOSHOP2

…..08-111CHIBASHOP1

WAS = WebSphere Application Server

Chapter 21. IMS Remote Database Services 407

Figure 21-2 The layered set of IMS Java class libraries

21.2.2 The basic concepts of relational access to hierarchical databases
In this section, we provide the basic concepts of relational access to the IMS hierarchical
database.

How to make a relational table from a segment
The solution to this problem is very simple. You can identify a type of segment occurrence as
a relational table. In this way, a type of segment relates to a type of relational table, a segment
occurrence relates to a row, and a field in a segment occurrence relates to a column in a
relational table. See Figure 21-3 for an example. The name of a segment becomes the table
name in an SQL query, and the name of a field becomes the column name in the SQL query.

Figure 21-3 Segment occurrences as relational tables

How to deal with the nature of hierarchy
Before coding your SQL to access IMS database, you need to understand another important
concept. As shown in Figure 21-3, the occurrences of segments have a hierarchical
relationship between a root segment and a dependent segment. Also, both the dependent

CEETDLI Interface

JNI

Base

App
DB

JDBC / SQL
XMS

DL/I
Database

View

IMS Java
Application Customer Code

IMS Java Class Library

C layer Interface to IMS

Your Business Logic IMS DB Metadata
by DL/I model Utility

IMS Dep. Region
TRX and Message
Processing

Mapping to
DL/I APIs

JDBC, JCA
interface

Java to C
Interface

XML Shredder,
XML Materializer

CUSTNO n NAME n ADDR n TELNO n

Root Segment

CUSTNO2 NAME2 ADDR2 TELNO2
CUSTNO1 NAME1 ADDR1 TELNO1

ORDNO m ORDNAME m

Dependent Segment A

ORDNO12 ORDNAME12
ORDNO11 ORDNAME11

PRODNO s PRODNAME s
PRODNO112 PRODNAME112

PRODNO111 PRODNAME111

Dependent Segment AA

TELNOnADDR nNAME nCUSTNO n

TELNO2ADDR2NAME2CUSTNO2

TELNO1ADDR1NAME1CUSTNO1

ORDNAME mORDNO m

ORDNAME12ORDNO12

ORDNAME11ORDNO11

PRODNAME sPRODNO s

PRODNAME112PRODNO112

PRODNAME111PRODNO111

Root Segment able

Dependent Segment A Table

Dependent Segment AA Table

ORDER

PRODUCT

CUSTOMER

408 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

segments have their own hierarchical relationship. Therefore, your relational tables that come
from the occurrences involve these logical relationships and provide access from a parent
segment table to a child segments table with the hierarchical path of segments.

With the IMS JDBC interface, the hierarchical relationship of IMS databases is represented by
the implicit join with a parent segments table and a child segments table. Figure 21-4 shows
an example of the relational representation of the hierarchy.

Figure 21-4 Relational representation of the hierarchy

This join concept of IMS JDBC is similar to the relational database model. A child segment
table is joined with its parent segment table, which is all along the same hierarchical path. The
relationship between tables is captured by foreign and primary keys. A child segment table
has its own primary key field and the generated foreign key field that comes from parent’s
primary key field. In the example, the ORDER table (dependent segment A table) has the
primary key field ORDNO and the foreign key field CUSTNO from the CUSTOMER table (root
segment table). Therefore, if you specify both the primary and foreign key value in your
WHERE clause of the SQL statement, you can access specific rows in the ORDER table as
close as specifying the Segment Search Argument (SSA) of the root segment and the SSA of
the dependent segment in traditional DL/I call statement. Additionally, the important difference
between IMS Java and a relational database is that the join is operated implicitly by the IMS
JDBC interface. In a relational database, when you join two tables, you specify the both table
names in the FROM clause of SQL statement. But in IMS Java, you only specify the
lowest-level target table in the hierarchical path in the FROM clause, because all the data in
segments along the hierarchical path from the root segment to the target segment are
included implicitly with use of the DL/I path call generated internally by the IMS JDBC
interface.

21.2.3 Comparison of DL/I access and IMS JDBC SQL access
Figure 21-5 on page 410 shows a comparison sample of DL/I access and IMS JDBC SQL
access. In this sample, the query requirement is the same for both access methods, which is:
“Show us the all order names where the customer number is 2, and the order number is equal
or greater than 21.” In spite of the same query conditions, the following differences are shown
in the sample:

� DL/I access

– To retrieve all segments corresponding the query conditions, you need some
application logic to deal with it:

• The first time, you can issue a GU call to find the segment.

CUSTNO n NAME n ADDR n TELNO n
Root Segment

CUSTNO2 NAME2 ADDR2 TELNO2
CUSTNO1 NAME1 ADDR1 TELNO1

ORDNO13 ORDNAME13

Dependent Segment A Group for CUSTNO1

ORDNO12 ORDNAME12
ORDNO11 ORDNAME11

TELNO nADDR nNAME nCUSTNO n

TELNO2ADDR2NAME2CUSTNO2

TELNO1ADDR1NAME1CUSTNO1

ORDNAME12ORDNO23

ORDNAME12ORDNO13

ORDNAME12ORDNO21

ORDNAME12ORDNO22

ORDNAME nORDNO n

ORDNAME12ORDNO12

ORDNAME11ORDNO11

Root Segment Table

Dependent Segment A Table

ORDNO23 ORDNAME23

Dependent Segment A Group for CUSTNO2

ORDNO22 ORDNAME22
ORDNO21 ORDNAME21

CUSTNO1

CUSTNO1

CUSTNO2

CUSTNO1

CUSTNO2

CUSTNO2

CUSTNO n

Foreign Key
from Root Segment Table

Primary Key of
Dependent Segment A table

Chapter 21. IMS Remote Database Services 409

• Then, repeat the GN call to retrieve all segments with this conditions, until your GN
call receives the status GE or GB.

– The query conditions and its hierarchy are represented in the SSA specifications.

– To retrieve the specific field in the segment, you also need some application logic for
parsing the segment structure, because IMS will return whole segment image to the
application I/O area.

� IMS JDBC SQL access

– You do not have to code your application logic to retrieve all segments, because with
this SQL query, you will receive all required data corresponding the query conditions.

– The query conditions are represented in the FROM and WHERE clauses:

• In the FROM clause, the table name is specified.

• In the WHERE clause, the query conditions (the primary and foreign key values) are
specified. You might not have to mind the hierarchy of the database, but it is better
to know the hierarchy of the database for efficient access.

– You do not have to code your application logic to retrieve the specific column in the
table, because the IMS JDBC interface will return the column data that is specified in
the SELECT statement only.

Figure 21-5 Comparison of DL/I access and IMS JDBC SQL access

21.2.4 Supported SQL keywords
The IMS JDBC interface currently supports following portable SQL keywords. We summarize
IMS-specific usage for important keywords in the following section. None of the keywords are

Important: The figures in this section are only to help you understand how to use JDBC
calls in a hierarchical environment. The IMS JDBC interface does not change the physical
structure of IMS database in any way.

ORDNO23 ORDNAME23

CUSTNO n NAME n ADDR n TELNO n
Root Segment (CUSTOMER)

CUSTNO2 NAME2 ADDR2 TELNO2
CUSTNO1 NAME1 ADDR1 TELNO1

ORDNO13 ORDNAME13

Dependent Segment A Group (ORDER) for CUSTNO1

ORDNO12 ORDNAME12
ORDNO11 ORDNAME11

TELNO nADDR nNAME nCUSTNO n

TELNO2ADDR2NAME2CUSTNO2

TELNO1ADDR1NAME1CUSTNO1

ORDNAME23ORDNO23

ORDNAME13ORDNO13

ORDNAME21ORDNO21

ORDNAME22ORDNO22

ORDNAME nORDNO n

ORDNAME12ORDNO12

ORDNAME11ORDNO11

Root Segment Table (CustomerTable)

Dependent Segment A table (OrderTable)

Dependent Segment A Group (ORDER) for CUSTNO2

ORDNO22 ORDNAME22

CUSTNO1

CUSTNO1

CUSTNO2

CUSTNO1

CUSTNO2

CUSTNO2

CUSTNO3
Foreign Key (CustomerNo)Primary Key (OrderNo)

IMS JDBC SQL AccessDL/I Call Access

GHU CUSTOMER(CUSTNO = 000002)
ORDER (ORDNO >=000021)

GHN CUSTOMER(CUSTNO = 000002)
ORDER (ORDNO >=000021)

GHN CUSTOMER(CUSTNO = 000002)
ORDER (ORDNO >=000021)

SELECT OrderTable.OrderName
from CustomerDB.OrderTable
where
OrderTable.OrderNo >= '000021'
and
CustomerTable.CustomerNo = '000002'

ORDNO21 ORDNAME21

410 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

case-sensitive. These keywords are a subset of all SQL keywords. IMS JDBC interface
supports the following functions:

� ALL
� AND
� AS
� ASC
� AVG
� COUNT
� DELETE
� DESC
� DISTINCT
� FROM
� GROUP BY
� INSERT
� INTO
� MAX
� MIN
� OR
� ORDER BY
� SELECT
� SET
� SUM
� UPDATE
� VALUES
� WHERE

21.2.5 IMS Java SQL usage
In this section, we focus on the difference between IMS Java SQL grammar and standard
SQL grammar. We summarize the important SQL usage of the IMS JDBC interface and
provide some SQL samples to help you understand how to use it. For more information about
SQL usage, see IMS Version 9: IMS Java Guide and Reference, SC18-7821.

Sample tables for this section
Figure 21-6 on page 412 shows the sample tables for this section. We assume that SQL
samples are issued against the CustomerTable and OrderTable shown in the figure. The
CustomerTable is made up of the root segments and has the primary key field CustomerNo.
The OrderTable is made up of the dependent segments of the root and has the primary key
field OrderNo and foreign key filed, which comes from the root segment. All segment (table)
names and field (column) names are defined as different Java aliases from the original DBD
definitions.

Important: You cannot use any SQL keywords as Java aliases for PCBs, fields, or
segments. For example, if you have the segment name UNION in the DBD statement, you
have to define explicitly a different Java alias such as UnionTable by using DL/I model
utility function. Note that the SQL UNION function is currently not supported by the IMS
JDBC interface, but any use of SQL keywords for Java aliases are banned in the IMS Java
environment. For a complete list of SQL keywords, see IMS Version 9: IMS Java Guide and
Reference, SC18-7821.

Chapter 21. IMS Remote Database Services 411

Figure 21-6 The example table for this section

Qualification rules
In an IMS Java SQL environment, the qualification rules of the column or table are very
important for clarity and performance, and especially to avoid from handling the wrong table.
In this section, we discuss the qualification rules of IMS Java SQL.

Segment qualification
For example, SQL dictates that whenever a field is common between two tables in an SQL
query, the desired field must be table qualified to resolve the ambiguity. Similarly, whenever a
field name is common in any two segments along a hierarchical path, the field might have to
be segment qualified. For example, if a PCB has two tables (segments), CustomerTable and
OrderTable, and both possess a column (field) named ID, any query referencing to the ID field
must be segment qualified (remember, the IMS JDBC interface always joins with these tables
implicitly).

Example 21-1 is incorrect because the ID field is not segment qualified.

Example 21-1 Incorrect example without segment qualification

SELECT ID
FROM CustomerDB.ORDER
WHERE ID='10'

Example 21-2 is correct because the ID field is segment qualified.

Example 21-2 Correct example with segment qualification

SELECT OrderTable.ID
FROM CustomerDB.OrderTable
WHERE CustomerTable.ID ='10'

CustomerTelNoCustomerAddrCustomerNameCustomerNo(Key)

333-3333ChibaGen000003

222-2222New Orleans Trent000002

111-1111CaliforniaJames000001

OrderNameOrderNo(Key)

Piano0000023

Guitar Pedal0000013

Sequencer0000021

Rhythm Machine0000022

Bass Guitar0000031

Guitar Pick0000012

Guitar0000011

CustomerTable

OrderTable

000001

000001

000002

000001

000002

000002

000003

CustomerNo
(Foreign Key)

412 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

PCB qualification
In IMS Java, connections are made to PSBs. Therefore, there must be a way to specify which
PCB (using its alias) in a PSB to use when executing an SQL query on the
java.sql.Connection object. To specify which PCB to use, you might have to qualify tables
(segments) that are referenced by the SQL statement. For example, if a PSB has two
database definitions (PCB), CustomerDB and CustomerHistoryDB, and both contain the table
(segment) named CustomerTable, the CustomerTable in the FROM clause must be PCB
qualified.

Example 21-3 is incorrect because CustomerTable is not PCB qualified.

Example 21-3 Incorrect example without PCB qualification

SELECT CustomerTable.CustomerName
FROM CustomerTable
WHERE CustomerTable.CustomerNo ='000001'

Example 21-4 is correct because CustomerTable is PCB qualified.

Example 21-4 Correct example with PCB qualification

SELECT CustomerTable.CustomerName
FROM CustomerHistoryDB.CustomerTable
WHERE CustomerTable.CustomerNo ='000001'

Qualification rules summary
Table 21-1 shows the summary of qualification rules. Each statement and clause is qualified
with its table (segment) name or database (PCB) name.

Table 21-1 Qualification rules summary

SELECT statement
A SELECT statement is a query used as a top-level SQL statement. A SELECT statement
can be executed against a Statement or PreparedStatement object, which returns the results
as a ResultSet object.

Example 21-5 on page 414 shows an example of SELECT statement that quires the specific
row/column of CustomerTable and OrderTable.

SQL statements or clauses Qualification rule

SELECT statement Segment qualified

INSERT statement PCB qualified

DELETE statement PCB qualified

UPDATE statement PCB qualified

FROM clause PCB qualified

WHERE clause Segment qualified

Important: For clarity and performance reasons, we strongly recommend that you always
qualify columns or tables with its qualification rules.

Chapter 21. IMS Remote Database Services 413

Example 21-5 SELECT statement

SELECT CustomerTable.CustomerName,CustomerTable.CustomerTelNo,OrderTable.OrderName
FROM CustomerDB.OrderTable
WHERE CustemerTable.CustomerNo = ‘000001’ AND OrderTable.OrderNo = ‘0000011’

Example 21-6 shows an example of SELECT statement where all of the fields from both
CustomerTable and OrderTable are retrieved.

Example 21-6 SELECT statement where all of the fields are retrieved

SELECT CustomerTable.*,OrderTable.*
FROM CustomeDB.OrderTable

Note the following considerations for the SELECT statement:

� Do not join tables in the FROM clause. Only specify the table that comes from the
lowest-level segment. All data in segments along the hierarchical path from the root
segment to the target segment is included implicitly with the use of the DL/I path call
generated internally by IMS JDBC interface. In the example, the OrderTable, which comes
from the lowest-level segment in the FROM clause, is equivalent of the relational join with
CustomerTable and OrderTable.

� When you code a SELECT list, generally try to supply predicates in the WHERE clause for
all levels down the hierarchy to your target segment. If you supply a predicate in the
WHERE clause for a target segment somewhere down the hierarchy and omit predicates
for its parents, IMS must scan all candidate segments at the parent levels in an attempt to
match the predicate that you supplied. In the example, if you are retrieving the OrderTable
and you supply a predicate for that OrderNo, but do not supply CustomerNo for
CustomerTable, IMS might perform a full database scan, testing every OrderTable (which
consists of second-level segment) under every CustomerTable rows (which consist of
every root) against the predicate. This has performance implications, particularly at the
root level, and also might result in unexpected segments being retrieved.

INSERT statement
An INSERT statement inserts a row (segment instance) with the specified data under any
number of parent tables (segments) that match the criteria specified in the WHERE clause.

Example 21-7 shows an example of an INSERT statement that inserts a row to OrderTable.

Example 21-7 INSERT statement

INSERT INTO CustomerDB.OrderTable (OrderNo, OrderName)
VALUES (’0000032’, ’Bass Pedal’)
WHERE CustomerTable.CustomerNo = ‘000003’

Note the following considerations for the INSERT statement:

� All column names must be specified in the statement, unless you set a default value in the
IMS Java metadata class with the DLIModel utility control statements.

Important: This implicit inclusion of segments is called a path call. For a path call to be
made, the PROCOPT parameter in the PCB or SENSEG statement of the PSB source
must include P. If P is not included in the PROCOPT parameter and you issue a query that
requires a path call to be made, you receive the following SQLException generated from
DL/I status code AM:

com.ibm.ims.db.DLISQLException: AM: IMCOMPATIBLE_CALL_FUNCTION

414 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

� One difference between JDBC queries to relational databases and to IMS is that standard
SQL does not have a WHERE clause in an INSERT statement because tuples are being
inserted into the table that is specified by the INTO keyword. In an IMS database, you are
actually inserting a new instance of the specified segment, so you need to know where in
the database this segment occurrence should be placed. With an INSERT statement, the
WHERE clause is always necessary, unless you are inserting a root segment. Therefore,
when you insert a new segment, generally try to supply predicates in the WHERE clause
for all levels down the hierarchy to your target new segment. If you omit a predicate for any
level down to the insert target segment, IMS chooses the first occurrence of a segment at
that level that allows it to satisfy remaining predicates and performs the insert in that path.
This might not be what you intended. In the example, if you insert a OrderTable row and do
not supply a predicate for CustomerTable, your new row will always be inserted under the
first root segment (which contains 000001 of CustomerNo).

DELETE statement
A DELETE statement can delete any number of rows (segment occurrences) that match the
criteria specified in the WHERE clause.

Example 21-8 shows an example of a DELETE statement that deletes a row from
CustomerTable.

Example 21-8 DELETE statement

DELETE FROM CustomerDB.CustomerTable
WHERE CustomerTable.CustomerNo = ’000002’

Note the following considerations for the DELETE statement:

� If you delete a row that is not a bottom-level (leaf) segment in its hierarchy, you also delete
the remaining segments in that hierarchical subtree. The entire family of segments of all
types that are located hierarchically below your target deleted segment are also usually
deleted. In the example, the rows from OrderNo = '0000021' to OrderNo = '0000023' in
OrderTable are also deleted implicitly.

� If no WHERE clause is specified, all of the segment occurrences of that type are deleted,
as are all of their child segment occurrences.

UPDATE statement
An UPDATE statement modifies the value of the fields in any number of segment
occurrences.

Example 21-9 shows an example of an UPDATE statement that updates a row in OrderTable.

Example 21-9 UPDATE statement

UPDATE CustomerDB.OrderTable
SET OrderName = ’Synthesizer’
WHERE CustomerTable.CustomerNo = ’000002’ AND OrderTable.OrderNo = ’0000023’

Note the following considerations for the UPDATE statement:

� If the UPDATE statement does not have a WHERE clause, the SET operation is applied to
all rows of the specified table.

� A SET clause contains at least one assignment. In each assignment, the values to the
right of the equal sign are computed and assigned to columns to the left of the equal sign.

Chapter 21. IMS Remote Database Services 415

� Before the updates are made, the IMS JDBC interface retrieves the rows that meet the
query conditions internally. Therefore, the same considerations as with the SELECT
statement need to be applied for the WHERE clause specification of the UPDATE
statement.

FROM clause
When using the FROM clause in SQL calls to IMS databases, apply the following
considerations:

� Do not join tables in the FROM clause; list only one table, which comes from the
lowest-level segment.

� Qualify the table in the FROM clause by using the PCB alias.

WHERE clause
IMS Java converts the WHERE clause in an SQL query to an SSA list when querying a
database. SSA rules restrict the type of conditions you can specify in the WHERE clause.
This section describes how you must form your WHERE clause so that it can be converted
into SSA lists. Note the following considerations:

� The WHERE clause can contain columns only from the table in the FROM clause or tables
that are higher in the hierarchy. The columns in the WHERE clause must be DBD-defined
fields. These fields that are in the DBD are marked in the DLIModel IMS Java report as
being either primary key fields or search fields.

� You cannot use parentheses in the WHERE clause because SSAs do not support
parentheses.

� Columns in the WHERE clause can be compared only to values, not to other columns. For
example, the following statement fails because the WHERE clause is comparing two
columns:

WHERE OrderTable.OrdarNo = CustomerTable.CustomerNo

� You can use the following operators between column names and values in the individual
qualification statements:

– <
– <=
– =
– =<
– <
– !=

� You can combine multiple qualification statements with AND and OR operators, but you
must follow these special rules:

– Because separate SSAs are created for each segment, list all qualification statements
for a segment together and combine qualification statements for different segments
with an AND operator. Qualification statements that are combined with an AND
operator make up a qualification set. For a qualification set to be satisfied (true), all
qualification statements in the set must be satisfied. For the WHERE clause (and
therefore, the SSA qualification) to be satisfied, at least one qualification set must be
satisfied.

– The OR operator can be used only between qualification statements that contain
columns from the same table. Because of the way SSA lists are created, you cannot
use the OR operator across tables. For example, the following WHERE clause fails
because the CustomerNo and OrderNo columns are in different tables:

WHERE CustomerTable.CustomerNo='000001' OR OrderTable.OrderNo='0000011'

416 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

However, the following WHERE clause is valid because the OR operator is between
two qualification statements for the same tables:

WHERE OrderTable.OrderNo='0000011' OR OrderTable.OrderNo='0000012'

Non-DBD-defined fields in the WHERE clause
Using non-DBD-defined (search) fields in your WHERE clause, you can use fields that are
defined by a COBOL copybook or the DLIModel utility, as long as the fields are a subset of a
field defined in a DBD. This function is useful when you have broken a large field that is
defined in the DBD into smaller subfields. IMS supports all type conversions for the individual
subfields.

For example, if you have the segment definition in the DBD shown in Example 21-10, and you
have the COBOL copybook definition for this segment shown in Example 21-11, you can
divide the large search filed 'ADDR' and create new search fields of the subset by cording the
DL/I model utility control statement shown in Example 21-12.

Example 21-10 Segment definition with a large search field

SEGM NAME=CUSTOMER,PARENT=0,BYTES=60
FIELD NAME=(CUSTNO,SEQ,U),BYTES=6,START=00001
FIELD NAME=CUSTNAME,BYTES=20,START=7
FIELD NAME=ADDR,BYTES=40,START=27
FIELD NAME=TELNO,BYTES=10,START=67

Example 21-11 COBOL copybook for the segment

01 CUSTOMER.
 02 CUSTOMER_NO PIC X(06).
 02 CUSTOMER_NAME PIC X(20).
 02 CUSTOMER_ADDR.
 03 CUSTOMER_ADDR_STREET PIX X(10).
 03 CUSTOMER_ADDR_CITY PIC X(10).
 03 CUSTOMER_ADDR_STATE PIC X(10).
 03 CUSTOMER_ADDR_ZIPCODE PIC X(10).
 02 CUSTOMER_TELNO PIC X(10).

Example 21-12 DL/I model utility control statements for non-DBD-defined fields

SEGM DBDName=CUSTDB SegmentName=CUSTOMER Javaname=CustomerTable
FIELD NAME=CUSTNO Start=1 Bytes=6 JavaType=CHAR JavaName=CustomerNo
FIELD NAME=CUSTNAME Start=7 Bytes=20 JavaType=CHAR JavaName=CustomerName
FIELD NAME=ADDR Start=27 Bytes=40 JavaType=CHAR JavaName=CustomerAddr
FIELD Start=27 Bytes=10 JavaType=CHAR JavaName=CustomerStreet
FIELD Start=37 Bytes=10 JavaType=CHAR JavaName=CustomerCity
FIELD Start=47 Bytes=10 JavaType=CHAR JavaName=CustomerState
FIELD Start=57 Bytes=10 JavaType=CHAR JavaName=CustomerZipCode
FIELD NAME=TELNO Start=67 Bytes=10 JavaType=CHAR JavaName=CustomerTelNo

With the metadata class created by these definitions, you can treat the fields CustomerStreet,
CustomerCity, CustomerState, and CustomerZipCode as the subfields.

Note: The function is for dividing a large searching field in the DBD definition into the
subset, not for adding search fields, which is not defined in the DBD definitions. Create the
non-DBD-defined-fields for the WHERE clause from an existing large search field in the
DBD definition, and all subfields must be provided consecutively in the query.

Chapter 21. IMS Remote Database Services 417

The following rules apply when you use subfields in an SQL WHERE clause:

� The set of subfields that make up a DBD-defined field must account for all of the bytes in
the DBD-defined field.

� All subfields in a set that make up a DBD-defined field must be listed together (similarly to
how all fields in a segment must be listed together), but these subfields can be listed in
any order.

� The only comparison operator allowed for subfields is =.

� The subfields in a set that make up a DBD-defined field must be separated by the AND
operator. OR operators are not allowed to connect subfields in a set together. OR
operators can be used to connect two sets of subfields.

Example 21-13 shows the usage of the subfields for a SELECT statement.

Example 21-13 Sample usage of the non-DBD-defined fields

SELECT CustomerTable.CustomerName
FROM CustomerDB.CustomerTable
WHERE CustomerStreet = ’SanIgnacio’ AND CustomerCity = ’San Jose’ AND
 CustomerState = ’California’ AND CustomerZipCode = ’00000095119’

This function is quite useful when your large search field consists of multiple type of data
fields, because you can simply use the second query above and the IMS Java library will
handle all of the type conversion on behalf of the applications.

Supported JDBC interfaces
In this section, we summarize the required interface by JDBC 2.1 implemented in IMS JDBC
interface and describe its the functions and restrictions. For more information about the IMS
JDBC interface, see IMS Version 9: IMS Java Guide and Reference, SC18-7821. See also
the following Web page for the IMS JDBC API reference:

http://www.ibm.com/software/data/ims/imsjava/api9_1/index.html

java.sql.Connection
java.sql.Connection is an object that represents the connection to the database. A
Connection reference is retrieved from the DriverManager object that is implemented in the
java.sql package. The DriverManager object obtains a Connection reference by querying its
list of registered Driver instances until it finds one that supports the Universal Resource
Locator (URL) that is passed to the DriverManager.getConnection method.

There is an IMS Java restriction of the java.sql.Connection interface: IMS does not support
the local, connection-based commit scope that is defined in the JDBC model. Therefore, the
IMS Java implementation of the methods Connection.commit, Connection.rollback, and
Connection.setAutoCommit result in an SQL exception when these methods are called.

java.sql.DatabaseMetaData
The DatabaseMetaData interface defines a set of methods for querying information about the
database, including capabilities the database might or might not support. The class is
provided for tool developers and is normally not used in client programs. Much of the
functionality is specific to relational databases and is not implemented for DL/I databases.

java.sql.Driver
The Driver interface itself is not usually used in client applications, although an application
must dynamically load a particular Driver implementation by name.

418 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

http://www.ibm.com/software/data/ims/imsjava/api9_1/index.html

java.sql.Statement
A Statement interface is returned from the Connection.createStatement method. The
Statement class and its subclass, PreparedStatement, define the interfaces that accept SQL
statements and return tables as ResultSet objects.

IMS Java restrictions of the java.sql.Statement interface include:

� Named cursors. Therefore, the method Statement.setCursorName throws an SQL
exception.

� Aborting a DL/I operation. Therefore, the method Statement.cancel throws an SQL
exception.

� Setting a timeout for DL/I operations. Therefore, the methods Statement.setQueryTimeout
and Statement.getQueryTimeout throw SQL exceptions.

java.sql.ResultSet
The ResultSet interface defines an iteration mechanism to retrieve the data in the rows of a
table, and to convert the data from the type defined in the database to the type required in the
application.

IMS Java restrictions of the java.sql.ResultSet interface include:

� Returning data as an ASCII stream. Therefore, the method ResultSet.getAsciiStream
throws an SQL exception.

� Named cursors. Therefore, the method ResultSet.getCursorName throws an SQL
exception.

� The method ResultSet.getUnicodeStream, which is deprecated in JDBC 2.1.

java.sql.ResultSetMetaData
The java.sql.ResultSetMetaData interface defines methods to provide information about the
types and properties in a ResultSet object. It includes methods such as getColumnCount,
isSigned, getPrecision, and getColumnName.

java.sql.PreparedStatement
The PreparedStatement interface extends the Statement interface, adding support for
precompiling an SQL statement (the SQL statement is provided at construction instead of
execution) and for substituting values in the SQL statement.

JDBC prepared statements for SQL
To improve the performance of your IMS Java application, use JDBC prepared statements for
the SQL. The PreparedStatement class completes the initial steps in preparing queries only
once so that you need to provide the parameters only before each repeated database call.

The PreparedStatement object performs the following actions only once before repeated
database calls are made:

1. Parses the SQL.

2. Cross-references the SQL with the IMS Java DLIDatabaseView object.

3. Builds SQL into SSAs before a database call is made.

Important: Rather than building a complete set of results after a query is run, the IMS Java
implementation of ResultSet interface retrieves a new segment occurrence each time the
method ResultSet.next is called.

Chapter 21. IMS Remote Database Services 419

Example 21-14 shows an example of SQL INSERT for a prepared statement.

Example 21-14 SQL INSERT statement for prepared statement

INSERT INTO CustomerDB.OrderTable(OrderNo, OrderName)
 VALUES (?,?)
 WHERE CustomerTable.CustomerNo = ?

Supported JDBC data types
IMS Java supports the JDBC data types listed in Table 21-2. The table also lists the
supported Java data types and how COBOL copybook types are mapped to it for JDBC type.

You can use several different Java methods to handle Java data types. For mapping
descriptions, see IMS Version 9: IMS Java Guide and Reference, SC18-7821.

Table 21-2 Supported JDBC data types

21.3 DLIModel utility
In order for a Java application to access an IMS database, it needs information about the
database. This information is contained in the PSBs and DBDs, but you must first convert this
information into a form that you can use in the Java application: a subclass of the
com.ibm.ims.db.DLIDatabaseView class called the IMS Java metadata class. The DLIModel
utility generates this metadata from the IMS PSBs, DBDs, COBOL copybooks, and other

JDBC data type Java data type COBOL format

CHAR string PIC X

CLOB CLOB (supported only for IMS
XML database)

N/A

VARCHAR string PIC X

BIT Boolean N/A

TINYINT byte N/A

SMALLINT short From PIC 9(1) BINARY
To PIC 9(4) BINARY

INTEGER int From PIC 9(5) BINARY
To PIC 9(9) BINARY

BIGINT long From PIC 9(10) BINARY
To PIC 9(18) BINARY

FLOAT float COMP-1

DOUBLE double COMP-2

BINARY byte[] N/A

PACKEDDECIMAL java.math.BigDecimal PIC 9 COMP-3

ZONEDDECIMAL java.math.BigDecimal PIC 9 DISPLAY

DATE java.sql.Date N/A

TIME java.sql.Time N/A

TIMESTAMP java.sql.Timestamp N/A

420 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

input specified by utility control statements. In addition to creating the metadata class, this
utility also generates XML schemas of IMS databases. These schemas are used when
retrieving XML data from or storing XML data in IMS databases. In this section, we focus on
the metadata creation function of the DLIModel utility and provide a sample operation
procedure. For complete information about the DLIModel utility, see IMS Version 9: Utilities
Reference: System, SC18-7834.

Figure 21-7 shows the inputs and outputs from the DLIModel utility.

Figure 21-7 DLIModel utility inputs and outputs

The actions of the DLIModel utility are directed by control statements that you supply. The
control statements can specify:

� Which PSB to process during a run

� Aliases for the PSB, PCBs, segments, and fields

� Data types and format masks for fields

� XMI files that contain XMI descriptions of COBOL copybook members for segments

� Additional field definitions for fields that are not defined in the DBD or the COBOL
copybook XMI file

� Information that overrides PSB, DBD, and COBOL copybook XMI information

� Default values for newly inserted segments

The DLIModel utility reads the PSB and DBD source members from the partition data set
(PDS) or partition data set extended (PDSE) and parses them to build an in-memory model of
the database structure and the PSB view of that structure. The utility then generates the
outputs that were requested through control statements. You can specify an XMI description
of the entire in-memory model in which one description covers the PSB and all DBDs
processed in the run. You can also request a detailed trace file of the DLIModel utility
execution if such a trace is necessary for problem resolution.

After you create a metadata class from a PSB, you can install the metadata class as a
Datasource in WebSphere Application Server environment. The relationship between
metadata class and Datasource is mapped by Java Naming and Directory (JNDI) API. A Web
application in WebSphere Application Server for z/OS or distributed platforms will use JNDI to
make the specific ODBA connection to the IMS database manager.

PSB Source
(PDS)

DBD Source
(PDS)

COBOL XMI
(PDS or HFS)

Control
Statements

DLIModel
Utility

DLIModel
Java Report

(HFS)

Trace
(HFS)

XMI
(HFS)

MetaData
Class
(HFS)

DB Connection sample of Web Application

Context ctx = new InitialContext();
DataSource dds =
(DataSource)ctx.lookup(“java:comp/env/jdbc/CustomerDBView”);
Connection con = dds.getConnection();

J2C Connection
Factory Registration

(JNDI)

Chapter 21. IMS Remote Database Services 421

21.3.1 Example of using the DLIModel utility
In this section, we show an example of DLIModel utility execution. We create the metadata
class from the IMS IVP application (DFSIVP37) for later use of our RDS sample application.
Example 21-15 is the PSB source of DFSIVP37, and Example 21-16 is the DBD source of
IVPDB2, which is referenced by the DFSIVP37 application. Both of them are in the
IMS.SDFSISRC library. Note that the member name of IVPDB2 is DFSIVD2.

Example 21-15 DFSIVP37 PSB source

PHONEAP PCB TYPE=DB,DBDNAME=IVPDB2,PROCOPT=A,KEYLEN=10
 SENSEG NAME=A1111111,PARENT=0,PROCOPT=AP
 PSBGEN LANG=JAVA,PSBNAME=DFSIVP37
 END

Example 21-16 IVPDB2 DBD source

 DBD NAME=IVPDB2,ACCESS=HDAM,RMNAME=(DFSHDC40,40,100)
 DATASET DD1=DFSIVD2,DEVICE=3380,SIZE=2048
 SEGM NAME=A1111111,PARENT=0,BYTES=40,RULES=(LLL,LAST)
 FIELD NAME=(A1111111,SEQ,U),BYTES=010,START=00001,TYPE=C
 DBDGEN
 FINISH
 END

Table definition of IVPDB2
Figure 21-8 shows the table definition of the IVPDB2 database. We change its segment name
and field name into new Java aliases and add some fields that are not defined in the SEGM
statement.

Figure 21-8 Person table definition from IVPDB2 database

DLIModel utility execution
You can run the DLIModel utility in two ways:

� Standard z/OS batch job (BPXBATCH)

� Execution from command prompt of UNIX System Services environment

In this example, we execute the DLIModel utility in a UNIX System Services environment.

Table 21-3 on page 423 shows the directories and PDS locations of our execution.

ZipCode
(No DBD Definition)

Extension
(No DBD Definition)

FirstName
(No DBD Definition)

LastName
(Field Name in DBD :
A1111111)

D0n/R0n8-nnn-nnnn…FIRST n…LAST n…

D02/R028-222-2222FISRT2LAST2

D01/R018-111-1111FIRST1LAST1

Table Name : Person (Segment Name in DBD: A1111111)

422 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Table 21-3 DLIModel utility execution environment

Example 21-17 shows our control statement for the DLIModel utility.

Example 21-17 Control statement for the DLIModel utility

OPTIONS PSBds=JOUKO2.SRCLIB.IMSRDS <1>
 DBDds=JOUKO2.SRCLIB.IMSRDS
 GenJavaSource <2>
 OutPath=/u/jouko2/imsrds <3>
 Package=redbookRds <4>
 GenTrace <5>

PSB PSBName=DFSIVP37 JavaName=DFSIVP37DatabaseView <6>

PCB PCBName=PHONEAP JavaName=PhoneBook <7>

SEGM DBDName=IVPDB2 SegmentName=A1111111 JavaName=Person <8>
FIELD Name=A1111111 Start=1 Bytes=10 JavaName=LastName JavaType=CHAR <9>
FIELD Start=11 Bytes=10 JavaName=FirstName JavaType=CHAR <10>
FIELD Start=21 Bytes=10 JavaName=Extension JavaType=CHAR
FIELD Start=31 Bytes=7 JavaName=ZipCode JavaType=CHAR

Note the following points in this statement.

For the OPTION statement:

1. Specify the data set name of PSB/DBD source data set.

2. Specify to generate the metadata class Java source file.

3. Specify the HFS directory where the DLIModel utility writes the output files.

4. Specify the package name for which the IMS Java classes are generated.

5. Specify to generate a trace file named dlimodeltrace of the utility run.

6. For the PSB statement: Specify the name of the PSB that is used by the DLIModel utility
and its Java alias name.

7. For the PCB statement: Specify the name of the PCB and its Java alias name.

8. For the SEGM statement: Specify the name of the DBD (with segment name) and its Java
alias name.

9. For the FIELD statement: Specify the name of the FIELD in the SEGM statement and its
Java alias name/data type.

10.For the FIELD statement: Add the three fields that are not specified in the SEGM
statement.

Resource Location

PSB source JOUKO2.SRCLIB.IMSRDS(DFSIVP37)

DBD source JOUKO2.SRCLIB.IMSRDS(IVPDB2)

DLIModel utility control statement /u/jouko2/imsrds/@dlictl

DLIModel utility outputs /u/jouko2/imsrds/

DLIModel utility execution file /SC53/imsv9/imsjava91/dlimodel/go

Chapter 21. IMS Remote Database Services 423

Example 21-18 shows the execution command and the response message of the DLIModel
utility in the UNIX System Services environment. We execute the command file go with the
control statement on the execution directory shown in Table 21-3 on page 423.

Example 21-18 DLIModel utility execution in UNIX System Services environment

JOUKO2 @ SC53:/SC53/imsv9/imsjava91/dlimodel>go /u/jouko2/imsrds/@dlictl
DLIModel completed successfully.

If the DLIModel utility completed successfully, you can see the generated files on your
location, which is specified in the control statement.

Example 21-19 shows the metadata class Java source file for DFSIVP37. You can access
specific PSB resource and IMS database as the relational table by using the metadata class.

Example 21-19 DFSIVP37DatabaseView.java

package imsrds;

import com.ibm.ims.db.*;
import com.ibm.ims.base.*;

public class DFSIVP37DatabaseView extends DLIDatabaseView {

 // This class describes the data view of PSB: DFSIVP37
 // PSB DFSIVP37 has database PCBs with 8-char PCBNAME or label:
 // PHONEAP

 // The following describes Segment: A1111111 ("Person") in PCB: PHONEAP ("PhoneBook")
 static DLITypeInfo[] PHONEAPA1111111Array= {
 new DLITypeInfo("LastName", DLITypeInfo.CHAR, 1, 10, "A1111111",
 DLITypeInfo.UNIQUE_KEY),
 new DLITypeInfo("FirstName", DLITypeInfo.CHAR, 11, 10),
 new DLITypeInfo("Extension", DLITypeInfo.CHAR, 21, 10),
 new DLITypeInfo("ZipCode", DLITypeInfo.CHAR, 31, 7)
 };
 static DLISegment PHONEAPA1111111Segment= new DLISegment
 ("Person","A1111111",PHONEAPA1111111Array,40);

 // An array of DLISegmentInfo objects follows to describe the view for PCB: PHONEAP
("PhoneBook")
 static DLISegmentInfo[] PHONEAParray = {
 new DLISegmentInfo(PHONEAPA1111111Segment,DLIDatabaseView.ROOT)
 };

 // Constructor
 public DFSIVP37DatabaseView() {
 super("2.0","DFSIVP37", "PhoneBook", "PHONEAP", PHONEAParray);
 } // end DFSIVP37DatabaseView constructor

} // end DFSIVP37DatabaseView class definition

Example 21-20 on page 425 shows the generated DLIModel IMS Java report. The report
describes the generated metadata class definition, so you can understand what table is
created by your PSB/DBD source and the control statement.

Note: You cannot use the FirstName, Extension, or Zipcode fields in a SQL WHERE
clause, because they are not specified as the search field in the source DBD definition.

424 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 21-20 DLIModel IMS Java report

DLIModel IMS Java Report
========================
Class: DFSIVP37DatabaseView in package: imsrds generated for PSB: DFSIVP37

==
PCB: PhoneBook
==
Segment: Person
Field: LastName Type=CHAR Length=10 ++ Primary Key Field ++
Field: FirstName Type=CHAR Length=10
Field: Extension Type=CHAR Length=10
Field: ZipCode Type=CHAR Length=7

21.3.2 DLIModel utility plug-in
IBM provides a DLIModel utility plug-in technology preview, which enables you to generate
and modify metadata in an Eclipse application development environment.

You can download the DLIModel utility plug-in from the following Web site:

http://www.ibm.com/software/data/ims/toolkit/dlimodelutility/

DLIModel utility plug-in features
The DLIModel utility plug-in technology preview contains two components: a wizard and an
editor. The wizard guides you through the tasks involved in creating metadata. The editor
enables you to:

� Generate XML schemas of IMS databases, which are used to retrieve XML data from or
store XML data in IMS databases.

� Incorporate additional field information from XMI input files that describe COBOL
copybooks.

� Incorporate additional PCB, segment, and field information, or override existing
information.

� Generate a DLIModel IMS Java report, which is designed to assist Java application
programmers.

� Generate a DLIModel trace log.

Software requirements
The DLIModel utility plug-in technology preview requires one of the following software
packages:

� Eclipse Version 2.1.X only, which is available for download from the Eclipse Web site. This
plug-in will not work with Eclipse 3.0.X.

� WebSphere Studio Application Developer Version 5.1.

� WebSphere Studio Application Developer Integration Edition Version 5.1.

You also need Java Runtime Environment version 1.3.1 or later.

Chapter 21. IMS Remote Database Services 425

http://www.ibm.com/software/data/ims/toolkit/dlimodelutility/

Installation instructions
To install the plug-in:

1. Close Eclipse, WebSphere Studio Application Developer, or WebSphere Studio
Application Developer Integration Edition, if open.

2. Download and unzip dlimodel.zip into your Eclipse, WebSphere Studio Application
Developer, or WebSphere Studio Application Developer Integration Edition program folder.
A subdirectory named com.ibm.ims.dliutility.gui_1.5.0 is created in both the plug-ins and
features directories. Default program folder locations include:

– For WebSphere Studio Application Developer:

C:\Program Files\IBM\WebSphere Studio\Application Developer\v5.1\

– For WebSphere Studio Application Developer Integration Edition:

C:\Program Files\IBM\WebSphere Studio\Application DeveloperIE\v5.1\

3. Launch Eclipse, WebSphere Studio Application Developer, or WebSphere Studio
Application Developer Integration Edition.

4. Launch the DLIModel utility wizard by clicking File → New → Other.

For additional information about how to run the DLIModel utility plug-in technology preview,
including information about requirements and restrictions, see Eclipse or WebSphere Studio
after you have installed the plug-in. To access this information in Eclipse or WebSphere
Studio, click Help → Help Contents on the top toolbar. When the Help - Eclipse Platform
window opens, select DLIModel Utility Plug-in Guide from Contents pane.

21.3.3 Example of using the DLIModel utility plug-in
In this section, we show an example of a DLIModel utility plug-in execution. We create the
metadata class from the same IVP application as in 21.3.1, “Example of using the DLIModel
utility” on page 422. We assume that you have already installed the plug-in by following the
installation instructions we provided earlier. We use WebSphere Studio Application
Developer- Integration Edition Version 5.1 for this execution.

Perform the following steps:

1. In the Java perspective, click File → New → Other. Then, select the DLIModel Utility
plug-in, as shown in Figure 21-9.

Figure 21-9 DLIModel Utility plug-in

Note: Before executing the sample, you must download the PSB and DBD source files.
Additionally, your PSB and DBD sources need the file extensions .psb and .dbd for the
plug-in execution.

426 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

2. To create a new DLIModel utility project, enter the Project name and Java package name,
as shown in Figure 21-10. Click Next.

Figure 21-10 DLIModel Utility Project

3. To generate DLI metadata, add the source files from existing projects or import the source
files from local file systems, as shown in Figure 21-11. Click Import and specify the PSB
source file and DBD source file on your computer. Then, click Finish.

Figure 21-11 Generate DLI Metadata

Chapter 21. IMS Remote Database Services 427

4. After the metadata is generated to your project, the DLIModel editor, as shown in
Figure 21-12, opens. You can use the editor to modify a field or segment.

Figure 21-12 DLIModel editor

5. In this example, we change the segment name A1111111 to the Java alias Person.
Right-click the table, and select Edit.

6. In the Edit Metadata Segment window, as shown in Figure 21-13, enter a new Alias name
for the segment, and then click Finish. You also can edit, add, and delete the segments
and fields using the editor.

Figure 21-13 Edit Metadata Segment

21.4 Remote Database Services
IMS Version 9 provides IMS Java Remote Database Services, in which you can develop and
deploy applications that run on WebSphere Application Server on a non-z/OS platform and
access IMS databases remotely through an IBM-provided EJB on WebSphere Application
Server for z/OS. Through several IMS versions, you have been able to write applications that
run on WebSphere Application Server for z/OS and access IMS databases. See Figure 21-14
on page 429.

428 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 21-14 Web application on WebSphere Application Server for z/OS using IMS Java

This shows a Web application on WebSphere Application Server for z/OS accessing IMS
data. IMS JDBC calls are passed to the IMS JDBC interface layer, which converts the calls to
DL/I calls. The IMS JDBC interface passes these calls to ODBA, which uses the DRA to
access the DL/I region in IMS. Note that you still need to develop a z/OS application to access
IMS data, that is, DB access logic is still on z/OS.

Figure 21-15 shows the Remote Database Services provided from IMS Version 9. You can
deploy your IMS DB access logic on a non-z/OS platform.

Figure 21-15 Web application on distributed platform using IMS Java

WebSphere Application Server for z/OS

Web Application (EJB / Java Beans / Servlet)

IMS JDBC Resource Adapter

ODBA Interface

DRA

IMS DBM

IMS DL/I DB

z/OS

IMS DB Access Logic

WebSphere Application Server for z/OS

IMS JDBC Resource Adapter

ODBA Interface

DRA

IMS DBM

IMS DL/I DB

z/OS

WebSphere Application Server

Web Application (EJB / Java Beans / Servlet)

IMS distributed JDBC Resource Adapter

Non-z/OS Platform

IMS DB Access Logic

IMS Java EJB

IIOP over TCP/IP

Chapter 21. IMS Remote Database Services 429

The Web application that contains your business logic, and is deployed on WebSphere
Application Server on a non-z/OS platform, passes database access requests to the IMS
distributed JDBC resource adapter provided by IMS Version 9. This resource adapter
contains a type 3 JDBC driver. Then, Internet Inter-ORB Protocol (IIOP) is used between
WebSphere Application Server for z/OS and WebSphere Application Server running on
another platform. IIOP allows the servers to exchange data, which is securely transferred
across the Internet using Secure Sockets Layer (SSL). The IMS Java-supplied EJB on the
z/OS side receives the data through IIOP and then passes request information to the IMS
JDBC resource adapter that is deployed on the z/OS platform. The IMS JDBC resource
adapter passes data to ODBA, which uses the DRA.

21.4.1 Remote Database Services components
IMS Java Remote Database Services is a set of J2EE components that provide remote
access to IMS data through IMS ODBA. The client-side and server-side components support
retrieval, update, delete, and insert activity to the IMS databases. These requests are sent
(transparently to the application) across the network and processed in IMS. This support
provides an architected solution that enables Web applications deployed on distributed
WebSphere Application Server to issue JDBC calls to access IMS Databases.

Client-side component
For the client side of the connection, the IMS Java RDS provides an IMS distributed JDBC
resource adapter. To condition the distributed WebSphere Application Server for JDBC
access to IMS, the IMS JDBC resource adapter must first be installed. This component
contains a type 3 JDBC driver that interprets the JDBC request to access and manipulates
the IMS data. A type 3 JDBC driver is defined as a standard net-protocol, fully Java
technology-enabled driver that translates JDBC API calls into a DBMS-independent net
protocol that is then translated to a DBMS protocol by a server.

After it is installed, a J2C connection factory instance can be deployed. This is a DataSource
object deployed in Java Naming and Directory Interface (JNDI) that can be used to obtain a
JDBC connection. The DataSource object defines properties that pertain to the actual target
data source for the connection. See Figure 21-16.

Figure 21-16 RDS client-side components

Table 21-4 on page 431 shows the important datasource properties and descriptions. For
more information about the J2C connection factory, check your WebSphere Application
Server Information Center.

Client Side Web
Application

Distributed JDBC
Resource
Adapter

WAS for distributed
platforms

J2C Connection Factory
- JNDI Name of itself
- Class name of Database View
- DRA table name
- Host name of WAS for z/OS
- IIOP port number of WAS for z/OS

WAS = WebSphere Application Server

430 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Table 21-4 J2C connection factory property of IMS distributed JDBC resource adapter

After the connection is obtained, a customer-written application in that distributed server can
use the JDBC API to access IMS DB data. To the application, JDBC access appears local,
that is, the application does not have to be written with any knowledge that network traffic is
involved.

Server-side component
For the server side (z/OS side) of the connection, a server EJB is delivered as part of the IMS
Java RDS support. This EJB must reside on a WebSphere Application Server for z/OS
environment because it uses the IMS JDBC resource adapter. Here we describe the reasons
for the WebSphere Application Server for z/OS requirement:

� The IMS ODBA interface requires thread connections to its requester in the same z/OS
LPAR. WebSphere Application Server for z/OS provides this capability.

� WebSphere Application Server for z/OS provides a mechanism to invoke a custom
service when it is brought up and down. The IMS JDBC resource adapter can use this
function to build an ODBA environment.

� WebSphere Application Server for z/OS supports an EJB container environment, so it can
handle the transaction semantics of the client request.

When the server is brought up, the IMS adapter initializes the ODBA environment and
correspondingly terminates it when the server is brought down. Therefore, after the server is
brought up, every application running in the server can use an already initialized ODBA
environment. In an ODBA environment, and for WebSphere Application Server for z/OS, RRS
is used, so the RRS component requires the use of the RRS=Y in your IMS startup
parameters. See Figure 21-17.

Figure 21-17 RDS server-side components

Property name Description

JNDI name The JNDI name of this resource that connects to WebSphere Application
Server for z/OS.

DRAName The 4 byte DRA name (DFSxxxx0) of the IMS to connect.

DatabaseViewName Full qualified name of the metadata class. The metadata class needs to
be on z/OS side, and IMS JDBC resource adapter on z/OS needs to know
the classpath for it.

HostName The host name or IP address of WebSphere Application Server for z/OS.

PortNumber The IIOP port number of WebSphere Application Server for z/OS.

EJB
(CM)

EJB
(BM)

JDBC
Resource
Adapter

RRS

O
D
B
A

IMS V9WAS for z/OS

z/OS
J2C Connection Factory
- JNDI name ‘rdsDataSource’
-Plus, the client application’s
DataSource properties are
propergated

Container-managed EJB
-Statefull Session Bean
-For Global Transaction
-Commit managed by
WAS for distributed side

Bean-managed EJB
-Statefull Session Bean
-For Local Transaction
-Commit managed by
WAS for z/OS side

IMS DL/I DB

WAS = WebSphere Application Server

Chapter 21. IMS Remote Database Services 431

The IMS JDBC resource adapter should have the specific J2C connection factory
configuration for IMS RDS environment. The only requirement is it should have the JNDI
name of rdsDataSource, because the server EJB will look up and build a connection to the
ODBA server using this JNDI name. At run time, the client application’s data source
properties are propagated to an instance of this data source.

The server EJB that is provided is a stateful session bean that enables it to act as a
server-side extension of the client's IMS distributed JDBC resource adapter. The primary
responsibility of the server EJB is to maintain the state of a client application with respect to
IMS and forward all database requests to the IMS JDBC resource adapter. The server EJB is
invoked as one of two different types: a container-managed EJB (CM EJB) and a
bean-managed EJB (BM EJB).

When the server EJB runs as a container-managed EJB, it supports a client EJB application
that has requested global transaction semantics. This means that the client application
operates under one transaction context, or unit of work, for all its database activity. In this
case, the distributed J2EE application server has the responsibility for being the coordinator
of the global transaction.

However, when the server EJB runs a a bean-managed EJB, it supports a client EJB
application that uses local transaction semantics. Each database connection operates under
its own transaction context. When a commit is issued against work done on one connection
(database), this does not affect work on another connection. In this scenario, WebSphere
Application Server for z/OS becomes the coordinator of the transaction. This is because
ODBA requires a transaction context to be present. What really happens is that the BM EJB
starts a global transaction context on the server side to communicate with IMS while
maintaining the local transaction aspect with respect to the client application's connection.

21.4.2 Client/server interaction
Figure 21-18 shows a diagram of the client/server interaction components.

Figure 21-18 Client/server interaction

This figure shows the flow of a request from a client-side Web application issuing a JDBC call
all the way to where it is serviced in IMS. The IMS distributed JDBC resource adapter hides
the remote access interaction from the client-side Web application, takes the request, and
establishes communication with the server EJB on the z/OS platform. All activity is kept within
the distributed resource adapter until a JDBC connection statement is executed. At this point,
an IIOP connection is established with the server-side EJB. IIOP is a transport mechanism
standard that supports seamless interoperation between J2EE distributed objects.

Client Side Web
Application

Distributed JDBC
Resource
Adapter

EJB
(CM)

EJB
(BM)

JDBC
Resource
Adapter

RRS

O
D
B
A

IIOP over SSL

IMS V9WAS for z/OS
WAS

Distributed Platform z/OS

IMS DL/I DB

WAS = WebSphere Application Server

432 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

The IMS distributed JDBC resource adapter chooses an EJB type (CM or BM) based on
whether or not a transaction context exists. A transaction context exists and a CM EJB will be
created if the client-side Web application previously issued a getTransaction() method
requesting the use of global transaction semantics, or the EJB (on the client side) deployment
descriptor represents the needs of a transaction context. Otherwise, local transaction
semantics are used, and a BM EJB will be created. Information from the client-side
DataSource (DRA name, metadata class name) is also propagated to the EJB. After the
instance of the server-side EJB (CM or BM) is created, a connection to ODBA is requested.
This results in the loading of the metadata classes and the allocation of the PSB. After the
connection is established, an indication of success or failure is sent back to the client.

The IMS distributed JDBC resource adapter, on a successful connection indication, creates
the Statement object. After this object is handed to the client EJB, a JDBC query can be
executed.

After the Web application receives the results and issues the commit request, the commit
work occurs under the cooperation of WebSphere Application Server for z/OS (or
WebSphere Application Server for distributed platforms, or both) and RRS and IMS ODBA,
depending on the transaction semantics.

21.4.3 Security
There are several resources that need to be properly secured in an IMS Java Remote
Database Services environment.

Access to client-side business logic
In a J2EE environment, the security context (or the identity) on the execution thread is
determined by a deployment property of the application component known as “run-as.” The
run-as value can be one of the following properties:

� System Identity, which specifies that the application component runs as the identity of the
server region ID.

� Caller Identity, which specifies that the application component runs as the identity of its
caller.

� Role, which specifies that the application component runs as a particular identity that is
defined by the administrator in the J2EE server.

Note that the run-as values of Caller Identity and Role are not supported in this
implementation. For information about run-as options and other security issues, see the
WebSphere Application Server Information Center.

Network security
Secure Sockets Layer (SSL) is used to protect the communication between WebSphere
Application Server on distributed platforms and WebSphere Application Server on z/OS. The
client application that uses the IMS distributed JDBC resource adapter must be deployed with
a run-as identity of system. This is currently a requirement for interoperation between a
distributed application server and WebSphere Application Server for z/OS. As such, the client

Note: Store the database metadata classes produced by the DLIModel utility on z/OS for
use by the IMS JDBC resource adapter. Also, the IMS JDBC resource adapter on z/OS
needs the appropriate classpath to them. They do not need to be moved to the distributed
platforms.

Chapter 21. IMS Remote Database Services 433

application should be protected with restricted access so that only authorized users can
access it on the distributed platform.

There is no support for passing the caller identity of the client application. At this point, the
use of SSL and IIOP requires the identity to be switched to “system identity” when
communicating between distributed and z/OS application servers.

Security on WebSphere Application Server for z/OS
Security regarding WebSphere Application Server for z/OS can be separated into two topics,
server-side EJB and between IMS.

Server-side EJB
The distributed application server propagates the run-as property of the client-side EJB, and
WebSphere Application Server for z/OS places an appropriate security identity on the thread
that will be used to access IMS. The server-side EJB defaults to the run-as identity value of
the system, which is the server region ID of WebSphere Application Server for z/OS. You can
change the run-as property in the deployment descriptor of the server-side EJB before
installing it.

Between IMS
The ODBA environment requires a previously verified Access Control Environment Element
(ACEE), which WebSphere Application Server for z/OS places on the execution thread.
ACEE is a control block that is built when a call to RACF or an equivalent security product is
issued. In the WebSphere Application Server for z/OS environment, the IMS JDBC resource
adapter uses sync-to-thread processing to ensure that a security context is placed on the
thread during execution to access an IMS database. This places an ACEE on the execution
thread, based on the run-as property of the server-side EJB.

21.5 Sample IMS RDS access
The following sections describe how to implement IMS Remote Database Services to access
an IMS system through the ODBA. We demonstrate the environment setup for IMS,
WebSphere Application Server for z/OS, and WebSphere Application Server for distributed
platforms. Then, we provide a sample Web application to query the IMS IVP database with
local transaction semantics.

We assume that there is already a WebSphere Application Server for z/OS Version 6 and
IMS Version 9 system up and running. We use Rational Application Developer Version 6 for
the Microsoft Windows platform to develop and test our Web client application.

We divide this task into the following areas:

1. Setting up ODBA for the IMS subsystem: This includes customizing the DRA startup table.
It enables WebSphere Application Server for z/OS to use ODBA for this IMS subsystem.

2. Setting up the WebSphere Application Server for z/OS subsystem: This includes
concatenating the IMS library to the WebSphere Application Server servant region,
installing the IMS JDBC resource adapter for IMS Java EJB, installing the custom service,
and installing the EAR file including the IMS Java EJB.

3. Creating and installing the metadata class for the sample application: This includes
executing DLIModel utility and adding a classpath to the IMS JDBC resource adapter.

4. Setting up the WebSphere Application Server for distributed platforms subsystem: This
includes installing the IMS distributed JDBC resource adapter and configuring the J2C
connection properties for our sample application.

434 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

5. Developing and deploying the sample application: This includes developing an IMS JDBC
application to query the IMS IVP database and deploying the sample application to
WebSphere Application Server for distributed platforms.

6. Defining the IMS environment: This includes setting the RRS= parameter and confirming
the IVP applications that will be used by this sample.

7. Executing the sample application and then analyzing the output.

For the purpose of this sample, we use the parameters shown in Table 21-5.

Table 21-5 Parameters

21.5.1 Step 1: Creating the IMS DRA startup table
We customized the IMS IVP member IV_E308J for this purpose. For more information about
the creation of the DRA startup table, see 20.4.1, “Step 1: Creating an IMS DRA startup table”
on page 389. Note that we change the DBCTLID and the DRA startup module name from
previous sample, because the current IMS system is different from the previous environment.

21.5.2 Step 2: Setting up WebSphere Application Server for z/OS subsystem
In this section, we introduce how we set up the WebSphere Application Server for z/OS
environment.

Step 2-1: Concatenating IMS libraries to servant regions
We place our DRA module into IMS910G.SDFSRESL. The WebSphere Application Server
for z/OS servant region STEPLIB should have the load library that contains the DRA startup
table, the ODBA runtime code, and the SDFSJLIB data set. We add both data sets to our
WebSphere Application Server for z/OS servant region JCL, as shown in Example 21-21.

Example 21-21 The servant region JCL for WebSphere Application Server for z/OS

//WS6531S PROC ENV=,
// SET ROOT='/WebSphereJJ/V6R0/BS01'
//BBOSR EXEC PGM=BBOSR,REGION=0M,TIME=NOLIMIT,
// PARM='TRAP(ON,NOSPIE),ENVAR("_EDC_UMASK_DFLT=007") /'
//BBOENV DD PATH='&ROOT/&ENV/was.env'
//*
//* Output DDs
//*
//CEEDUMP DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE
//SYSOUT DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE
//SYSPRINT DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE
//*
//*Steplib Setup
//*
//STEPLIB DD DISP=SHR,DSN=BBO6053.SBBOLD2
// DD DISP=SHR,DSN=BBO6053.SBBOLOAD
// DD DISP=SHR,DSN=IMS910G.SDFSRESL
// DD DISP=SHR,DSN=IMS910G.SDFSJLIB

Parameter Value

IMSID IMSG

WebSphere Application Server for z/OS server location wtsc53.itso.ibm.com

WebSphere Application Server for z/OS bootstrap address 12809

Chapter 21. IMS Remote Database Services 435

Step 2-2: Installing the IMS JDBC resource adapter
We install the IMS JDBC resource adapter by performing the following steps:

1. From the WebSphere Application Server for z/OS administrative console, click
Resources, and then click Resource Adapters. This displays a list of resource adapters,
as shown in Figure 21-19.

Figure 21-19 List of resource adapters

2. Click Install RAR. A panel for installing the resource adapter opens, as shown in
Figure 21-20. Select Server path and type the path to the imsjava91.rar file. In our case,
the location of the RAR file is:

/SC53/imsv9/imsjava91/imsjava91.rar

Click Next.

Figure 21-20 Install RAR File panel

436 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

3. A configuration panel opens, as shown in Figure 21-21. Enter the following information:

– Name: A name for resource adapter, in our case, IMS JDBC Resource Adapter.

– Class path: The path to the imsjava.jar file, including the file name, in our case,
/SC53/imsv9/imsjava91/imsjava.jar.

Figure 21-21 Configuration panel

4. Click OK. The IMS JDBC resource adapter is listed, as shown in Figure 21-22.

Figure 21-22 List of resource adapters with IMS JDBC resource adapter

5. Click Save. The Save page opens. Under Save to Master Configuration, click Save to
ensure that the changes have been made.

Step 2-3: Installing the custom service
When WebSphere Application Server for z/OS is started, the custom service initializes the
ODBA environment. When the server is stopped, the custom service terminates the ODBA
environment. After a server is started, every application that is running in the server uses the
initialized ODBA environment.

We install the IMS JDBC resource adapter by performing the following steps:

1. Modify the WebSphere Application Server for z/OS server.policy file, which is in the
properties directory of the WebSphere Application Server installation directory, by adding
the code shown in Example 21-22 on page 438.

Chapter 21. IMS Remote Database Services 437

Example 21-22 Permission code for WebSphere Application Server for z/OS server.policy file

grant codeBase "file:/SC53/imsv9/imsjava91/-" {
 permission java.util.PropertyPermission "*", "read, write";
 permission java.lang.RuntimePermission "loadLibrary.JavTDLI";
};

2. In the left frame of the WebSphere Application Server for z/OS administrative console,
click Servers, and then click Application Servers. This opens a list of application servers,
as shown in Figure 21-23. Click the name of the server on which you want to deploy your
enterprise application.

Figure 21-23 List of application servers

3. Under Server Infrastructure in the right panel, click Administration → Custom Services.
This displays a list of custom services, as shown in Figure 21-24.

Figure 21-24 List of custom services

4. Click New. A configuration panel opens, as shown in Figure 21-25 on page 439. Configure
the custom service. Select the Enable service at server option. If you do not select this
option, the custom service is not invoked when you start the server.

Enter the following information:

– Classname: com.ibm.connector2.ims.db.IMSJdbcCustomService

– Display Name: A name for the custom service, in our case, IMS ODBA Custom Service

– Classpath: The path to the directory that contains imsjava.jar and libJavTDLI.so, in our
case, /SC53/imsv9/imsjava91

Click OK.

Note: You might have to add the execute authority to the libJavTDLI.so file on UNIX
System Services.

438 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 21-25 Configuration panel for the custom service

This lists the custom service, as shown in Figure 21-26.

Figure 21-26 List of custom services with IMS ODBA Custom Service

5. Click Save. The Save page opens. Under Save to Master Configuration, click Save to
ensure that the changes have been made.

Step 2-4: Installing the data source for IMS Java EJB on z/OS
Unlike the data source for z/OS applications, this data source does not have values for the
IMS-specific properties. At run time, the client application’s data source properties are
propagated to an instance of this data source. The only requirement is that you should specify

Chapter 21. IMS Remote Database Services 439

the JNDI name as imsRDSDataSource. We install the data source for IMS Java EJB by
performing the following steps:

1. In the left frame of the WebSphere Application Server for z/OS administrative console,
click Resources, and then click Resource Adapters. This opens a list of resource
adapters, as shown in Figure 21-27.

Figure 21-27 List of resource adapters

2. Click the name of IMS JDBC resource adapter that you chose when you installed the
adapter. A configuration opens, as shown in Figure 21-28. Under Additional Properties,
click J2C connection factories.

Figure 21-28 Configuration panel for resource adapters

3. In the J2C connection factories panel, click New. A configuration panel opens, as shown
in Figure 21-29 on page 441. Enter the following information:

– Name: The name for the data source, in our case, IMS RDS DataSource

– JNDI name: rdsDataSource

Click OK.

440 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 21-29 Configuration panel for J2C connection factory

This lists the data source in the J2C Connection Factories, as shown in Figure 21-30.

Figure 21-30 List of J2C connection factories with IMS RDS data source

4. Click Save to Master Configuration. The Save to Master Configuration opens. Click
Save.

Step 2-5: Installing the EAR file including IMS Java EJB
The EAR file contains the two IMS Java-provided EJBs. These stateful session beans act as
server-side extensions of the IMS distributed JDBC resource adapter. We install the EAR file,
including the IMS Java EJB, by performing the following steps:

1. From the WebSphere Application Server for z/OS administrative console, click
Applications, and then click Install New Application. A panel for installing a new
application opens, as shown in Figure 21-31 on page 442. Type the path to the EAR file
named imsjavaRDS.ear. In our case, the path is /u/jouko2/imsjavaRDS.ear.

Note: Before running this step, you must download the required resources for RDS from
the IMS Web site. For more information about the download, see the following Web site:

 http://www.ibm.com/software/data/ims/imsjava/rds.html

Chapter 21. IMS Remote Database Services 441

http://www.ibm.com/software/data/ims/imsjava/rds.html

Figure 21-31 Installing a new application panel

2. Click Next. A panel for preparing for application installation opens, as shown in
Figure 21-32. Accept the defaults. Click Next.

Figure 21-32 Preparing for the application installation panel

442 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

3. The Install New Application wizard starts. The “Step 1: Select installation options” panel
opens, as shown in Figure 21-33. Clear the Create MBeans for resources check box.
Click Next.

Figure 21-33 Select installation options

4. The “Step 2: Map modules to servers” panel opens, as shown in Figure 21-34. Accept the
defaults. Click Next.

Figure 21-34 Map modules to servers

Chapter 21. IMS Remote Database Services 443

5. The “Step 3: Provide JNDI Names for Beans” panel opens, as shown in Figure 21-35. In
the JNDI name field, verify that the JNDI names are as follows:

ejb/com/ibm/ims/rds/host/HostBeanManagedSessionHome
ejb/com/ibm/ims/rds/host/HostContainerManagedSessionHome

Click Next.

Figure 21-35 Provide JNDI Names for Beans

6. The “Step 4: Map resource references to resources” panel opens, as shown in
Figure 21-36. Verify that the JNDI name of the resource reference for both EJBs of the
IMS Java Remote Database Services EJB module is rdsDataSource. Click Next.

Figure 21-36 Map resource references to resources

Note: After this panel, you might receive an Application Resource Warning with
ADMA8019E message, which can be ignored because this simply indicates you are
installing the EAR file with a dataSource that applies to a J2C resource adapter. If you
see the message, click Continue.

444 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

7. The “Step 5: Correct use of System Identity” panel opens, as shown in Figure 21-37.
Verify that no role has been selected. Click Next.

Figure 21-37 Correct use of System Identity

8. The “Step 6: Ensure all unprotected 2.x methods have the correct level of protection”
panel opens, as shown in Figure 21-38. Make any necessary changes for your security
requirement. In this case, we select the Uncheck option. Click Next.

Figure 21-38 Ensure all unprotected 2.x methods have the correct level of protection

Chapter 21. IMS Remote Database Services 445

9. The options that you specified are displayed in the “Step 7: Summary of the Install New
Application wizard” panel, as shown in Figure 21-39. Verify that the options are correct,
and then click Finish. A message is displayed that indicates first that the imsjavaRDS
application is being installed, and then that the installation was successful.

Figure 21-39 Summary of the Install New Application wizard

10.Click Save to Master Configuration. The Save page opens. Under Save to Master
Configuration, click Save.

21.5.3 Step 3: Installing the metadata class for the sample application
We use IMS IVP application (DFSIVP37) for our sample Web application; therefore, we need
the metadata class from the DFSIVP37 PSB source and IVPDB2 DBD source. We already
discussed the sample metadata class creation in 21.3.1, “Example of using the DLIModel
utility” on page 422 with these PSB/DBD sources. In this section, we introduce how to set the
WebSphere Application Server for z/OS classpath to the location of your metadata classes.
Before adding the classpath, we compile the metadata source file and create the JAR file by
using the command shown in Example 21-23 on our UNIX System Services environment.

Example 21-23 Compile the metadata source and create the JAR file

JOUKO2 @ SC53:/u/jouko2>javac imsrds/*.java

JOUKO2 @ SC53:/u/jouko2/>jar -cvf imsrds.jar ./imsrds/*
added manifest
adding: imsrds/@dlictl(in = 601) (out= 274)(deflated 54%)
adding: imsrds/DFSIVP37DatabaseView.class(in = 1208) (out= 605)(deflated 49%)
adding: imsrds/DFSIVP37DatabaseView.java(in = 1279) (out= 517)(deflated 59%)
adding: imsrds/DFSIVP37DatabaseViewJavaReport.txt(in = 437) (out= 212)(deflated 51%)
adding: imsrds/META-INF/(in = 0) (out= 0)(stored 0%)
adding: imsrds/META-INF/MANIFEST.MF(in = 62) (out= 61)(deflated 1%)
adding: imsrds/imsrds.jar(in = 2495) (out= 2055)(deflated 17%)

446 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

One way to set the classpath is to add the metadata class to the IMS JDBC resource adapter
classpath by performing the following steps:

1. From the WebSphere Application Server for z/OS administrative console, click
Resources, and then click Resource Adapters. This displays a list of resource adapters,
as shown in Figure 21-40.

Figure 21-40 List of resource adapters

2. Click the name of the IMS JDBC resource adapter. A configuration panel opens, as shown
in Figure 21-41. In the Class path field, add your location of metadata class. In our case,
the location is /u/jouko2/imsrds/imsrds.jar.

Do not delete imsjava.jar. Click OK.

Figure 21-41 Configuration panel for resource adapter

3. Click Save. The Save page opens. Under Save to Master Configuration, click Save to
ensure that the changes have been made.

After completing this step, the configuration for then WebSphere Application Server for z/OS
side is completed. Then, you have to recycle the WebSphere Application Server for z/OS
region to reflect your new configurations.

Chapter 21. IMS Remote Database Services 447

21.5.4 Step 4: Setting up application server for distributed platforms
environment

In this section, we introduce how we set up the WebSphere Application Server for distributed
platforms environment.

Step 4-1: Installing the IMS distributed JDBC resource adapter
Before deploying applications, you must first set up WebSphere Application Server on the
non-z/OS client side by installing the IMS distributed JDBC resource adapter. WebSphere
Application Server on the client side requires only the IMS distributed JDBC resource
adapter, imsjavaRDS.rar.

We install the IMS distributed JDBC resource adapter by performing the following steps:

1. From the client-side WebSphere Application Server administrative console, click
Resources, and then click Resource Adapters. This displays a list of resource adapters,
as shown in Figure 21-42.

Figure 21-42 List of resource adapters in WebSphere Application Server for distributed platforms

2. Click Install RAR. A panel for installing the resource adapter opens, as shown in
Figure 21-43. Then, enter the Local path to the imsjavaRDS.rar file. Click Next.

Figure 21-43 Install RAR File panel

448 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

3. A configuration panel opens, as shown in Figure 21-44. Click Next.

Figure 21-44 Configuration panel

4. The IMS distributed JDBC resource adapter is listed, as shown in Figure 21-45.

Figure 21-45 List of resource adapters with IMS distributed JDBC resource adapter

5. Click Save to Master Configuration. The Save page opens. Under Save to Master
Configuration, click Save.

Step 4-2: Installing the data source for the client application
Our client application will use the data source on the WebSphere Application Server for
distributed side to connect the WebSphere Application Server for z/OS and make the specific
ODBA connection with the PSB. The J2C properties on the WebSphere Application Server
for distributed platforms will be propagated to an instance of the IMS RDS data source
definition on the WebSphere Application Server for z/OS side. We install the data source for
our client application by performing the following steps:

1. In the left frame of the client-side WebSphere Application Server administrative console,
click Resources, and then click Resource Adapters. This displays a list of resource
adapters.

Chapter 21. IMS Remote Database Services 449

2. Click IMS Distributed JDBC RA. A configuration panel opens, as shown in Figure 21-46.
Under Additional Properties, click J2C connection factories.

Figure 21-46 Configuration panel

3. Click New. A configuration panel opens, as shown in Figure 21-47. Enter the following
information:

– Name: Display name of the J2C connection factory, in our case, imsjavaRDSRedBook

– JNDI name: JNDI name of the J2C connection factory, in our case, imsjavaRDSRedBook

Click OK.

Figure 21-47 Configuration panel for the J2C connection factory

Tip: To avoid the messages J2CA0107I and J2CA0114W, both of which can be
ignored, set the default values for the component-managed authentication alias and
container-managed authentication alias.

450 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

4. The data source is listed in the J2C connection factories, as shown Figure 21-48. Click the
name of the data source that you installed in step 3.

Figure 21-48 List of data source with the J2C connection factories

5. Under Additional Properties, click Custom Properties. A table lists six properties. We
specified the property values in Table 21-6.

Table 21-6 Custom properties

6. Click Save. The Save page opens. Under Save to Master Configuration, click Save to
ensure that the changes have been made.

After completing this step, the configuration for the WebSphere Application Server for
distributed platforms side is completed. Then, you have to recycle WebSphere Application
Server for distributed platforms to reflect your new configurations.

21.5.5 Step 5: Developing the sample application
In this section, we discuss how to develop your enterprise application that accesses the IMS
database from the WebSphere Application Server for distributed platforms environment. For
this purpose, we make simple Java servlets to access the IMS database on the environment
configured in the previous sections. You can download the ZIP file, which contains two
Rational Application Developer Version 6 projects (the dynamic Web project and the EAR
project), from the following IBM Redbook Web site (see Appendix C, “Additional material” on
page 507):

ftp://www.redbooks.ibm.com/redbooks/SG246794/IMSRDSSampleProjects.zip

Custom property name Description Our value

DatabaseViewName Fully qualified name of the
metadata class

imsrds.DFSIVP37DatabaseView

DRAName The DRA name of the IMS to
which to connect

IMSG

HostName The host name (or IP address)
of WebSphere Application
Server for z/OS

wtsc53.itso.ibm.com

PortNumber The IIOP port number of
WebSphere Application Server
for z/OS

12809

TraceLevel Trace level for J2EE tracing 0

TransactionResource
Registration

Type of transaction resource
registration (enlistment)

This value must be “dynamic”
(deferred) for this resource adapter.

Chapter 21. IMS Remote Database Services 451

ftp://www.redbooks.ibm.com/redbooks/SG246794/IMSRDSSampleProjects.zip

You can add the two projects to your Rational Application Developer workspace from the ZIP
file using Rational Application Developer import function. To import the projects, execute the
following steps:

1. Click File and then click Import. A import wizard opens, as shown in Figure 21-49. Select
Project Interchange. Click Next.

Figure 21-49 Import wizard

2. In the Import Project Interchange Contents panel shown in Figure 21-50 on page 453,
specify your downloaded Zip file location in the From zip file field. Then, select the
following projects:

– RedBookIMSRDS
– RedBookIMSRDSEAR

452 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 21-50 Import Project Interchange Contents

3. Click Finish. Two projects are added to your workspace, as shown in Figure 21-51.

Figure 21-51 Project Explorer on workspace

The RedBookIMSRDS project contains the resources shown in Table 21-7.

Table 21-7 RedBookIMSRDS project contents

Servlet for IMS JDBC access with global transaction semantics
ImsRdsSampleGlobal.java is the servlet that contains the IMS JDBC access logic and
transaction handling logic for global transaction execution in the Web container. In this
section, we explain how this servlet works. Appendix B, “IMS RDS application example” on
page 499 provides the complete servlet code.

Resource Description

ImsRdsSampleGlobal.java Servlet for IMS JDBC access with global transaction semantics

ImsRdsSample.java Servlet for IMS JDBC access with local transaction semantics

GlobalInput.html HTML document that invokes the servlet for global transaction

LocalInput.html HTML document that invokes the servlet for local transaction

Output.jsp JSP™ file for display the results

Chapter 21. IMS Remote Database Services 453

Step 1: Looking up the datasource and user transaction
Example 21-24 shows the code for looking up dataSource and the userTransaction. The
dataSource is registered with the naming service based on JNDI. This dataSource object has
properties that pertain to the actual data source that the application needs to access. The
sample looks up the dataSource, which is configured in “Step 4-2: Installing the data source
for the client application” on page 449.

Example 21-24 Look up datasource and user transaction

.....
//Obtain the initial JNDI Naming context for JDBC Connection
Context initialContext = new InitialContext();
dataSource = (DataSource)initialContext.lookup

("java:comp/env/imsjavaRDSRedBook");
System.out.println("IMS RDS Servlet : Success Create DataSource");

//Obtain the initial JNDI Naming context for User Transaction
Context initctx2 = new InitialContext();
userTransaction = (UserTransaction)initctx2.lookup("java:comp/UserTransaction");
System.out.println("IMS RDS Servlet : Success Create UserTransaction");

......

To look up the specific data source in the WebSphere environment, the Web application must
have a resource-ref element in the deployment descriptor. The resource-ref element
describes external resources. In the resource-ref element, you must have the following
elements:

<res-type>javax.sql.DataSource</res-type>
<res-sharing-scope>Unshareable</res-sharing-scope>

The <res-type> tag element specifies the type of data source. The <res-sharing-scope> tag
element specifies that the connections are not shareable.

We describe the resource reference in the Web application deployment descriptor. Because
the servlet has JDBC access logic in the servlet itself, not the EJB, the Web container will
refer the resource reference in the Web application deployment descriptor. Example 21-25
shows the resource reference description of this sample application.

Example 21-25 Resource reference description in the Web deployment descriptor

.....
<resource-ref id="ResourceRef_1119506677212">

<res-ref-name>imsjavaRDSRedBook</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>
.....

The sample code also looks up the userTransaction object. The servlet resides outside of the
EJB container and cannot use an EJBContext object. The initial context requires an additional
JNDI lookup to locate and instantiate the UserTransaction interface.

Step 2: Beginning the user transaction
Example 21-26 on page 455 shows the code for the begin of the user transaction. You can
define the scope of the transaction begin by using begin method. After issuing this method,
the application logic to access resources are included in the transaction demarcation until the
commit request is issued.

454 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 21-26 Begin user transaction

.....
//Start User Transaction
userTransaction.begin();
System.out.println("IMS RDS Servlet : Success Start UserTransaction");

.....

Step 3: Getting the connection
Example 21-27 shows the code for getting the connection. When the getConnection method
is issued, the database connection builds (in this case, the ORB connection from the
WebSphere Application Server for distributed platform to the WebSphere Application Server
for z/OS).

Example 21-27 Get connection

.....
Connection connection = null;

.....
//Get JDBC Connection
connection = dataSource.getConnection();
System.out.println("IMS RDS Servlet : Success Get Connection”);

.....

Step 4: Issuing an SQL statement
Example 21-28 shows the code for the issuing SQL. The Statement class defines the
interfaces that accept SQL statements by the createStatement method. Then, the
executeQuery method of the Statement class returns tables as the ResultSet object. In this
sample, the results object stores the query results from the IVPDB2 database defined as the
Person table in the metadata class. After receiving the SQL query result, the getString
method, which is implemented in the ResultSet interface, retrieves the row of the table and
converts the data type defined in the metadata class.

Example 21-28 Issue SQL statement

.....
Statement statement = null;
ResultSet results = null;

.....
//Issue SQL
String queryString = "SELECT * FROM PhoneBook.Person "

+ "WHERE Person.LastName = '" + keyValue + "'";
statement = connection.createStatement();
results = statement.executeQuery(queryString);

.....
//Get Output
while(results.next()) {

LastName = results.getString("Person.LastName");
FirstName = results.getString("Person.FirstName");
Extension = results.getString("Person.Extension");
ZipCode = results.getString("Person.ZipCode");

}
System.out.println("IMS RDS Servlet : Success Get Result");

.....

Step 5: Committing or rolling back a user transaction
Example 21-29 on page 456 shows the code of a commit/rollback user transaction. After
issuing the commit or rollback method, the resource update in the transaction demarcation

Chapter 21. IMS Remote Database Services 455

will be committed or aborted. In this case, WebSphere Application Server for distributed
platforms controls the two-phase commit process with the cooperation of WebSphere
Application Server for z/OS, RRS, and IMS database manager.

Example 21-29 Commit/rollback user transaction

.....
try{

.....
userTransaction.begin();

.....
//Commit UserTransaciton
userTransaction.commit();
System.out.println("IMS RDS Servlet : Success Commit UserTransaction");

.....
} catch (Exception e) {

.....
//RollBack UserTransaciton
userTransaction.rollback();

.....
}

Step 6: Closing the statement and connection
Example 21-30 shows the code for closing the statement and connection. After the
conncetion.close method is issued, the connection is returned to the connection pool on
WebSphere Application Server for distributed platforms and can be reused for another
connection request.

Example 21-30 Close statement and connection

.....
//Close JDBC Resources
if (statement != null) {statement.close();}
if (connection != null) {connection.close();}

.....

Servlet for IMS JDBC access with local transaction semantics
ImsRdsSample.java is the servlet that contains the IMS JDBC access logic and transaction
handling logic for local transaction execution in the Web container. Appendix B, “IMS RDS
application example” on page 499 shows the complete servlet code. With local transaction
semantics, you can commit or roll back a transaction that is started by creating a data source
connection. The IMS Java EJB that is on the z/OS server side automatically starts a
transaction if a global transaction context does not exist when a connection is created. Note
the following differences between the global transaction servlet and the local transaction
servlet:

� The local transaction servlet does not have any codes related with the
javax.transaction.UserTransaction interface. Therefore, the IMS Java JDBC request is
executed outside the global transaction demarcation.

� The local transaction servlet issues a commit/rollback request against the connection
object.

Example 21-31 on page 457 is a commit/rollback request against the connection object.

456 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Example 21-31 Commit/rollback request against the connection object

.....
try{

.....
connection = dataSource.getConnection();

.....
//Commit LocalTransaciton
connection.commit();
System.out.println("IMS RDS Servlet : Success Commit LocalTransaction");

.....
} catch (Exception e) {

.....
//RollBack LocalTransaction
connection.rollback();

.....
}

21.5.6 Step 6: Defining the IMS environment
The IMS ODBA function requires the RRS interface. Therefore, the IMS execution parameter
RRS= in the DFSPBxxx PROCLIB member must be set to Y (the default is N). If you execute
your Web application with RRS=N, you receive SQLException with AIBRETRN X'0108',
AIBREASN X'0544', which means that RRS is not active at the time that ODBA attempts to
establish a connection to IMS or DBCTL.

We need to make sure that the IMS IVP that the application program (which is used by our
stored procedure) will reference is defined to IMS. This includes building the required IMS
control blocks, DBD, PSB, and ACB, and the MODBLKS modules, which are part of stage 1
and stage 2 IMS generation, and copying them from the staging libraries to the online
libraries. We use the DBD(IVPDB2), PSB(DFSIVP37), and ACB members that come as part
of the IMS IVP environment.

You can confirm your IVP application environment for the sample execution using the IMS
commands shown in Example 21-32.

Example 21-32 IMS commands sample

 R 731,/DIS DB IVPDB2
 DFS000I DATABASE TYPE TOTAL UNUSED TOTAL UNUSED ACC CONDITIONS IMSG
 DFS000I IVPDB2 DL/I UP ALLOCS IMSG
 DFS000I *05178/144754* IMSG
*732 DFS996I *IMS READY* IMSG

 R 732,/DIS PGM DFSIVP37
 DFS000I PROGRAM TRAN TYPE IMSG
 DFS000I DFSIVP37 IVTCM JMP IMSG
 DFS000I *05178/144901* IMSG
*733 DFS996I *IMS READY* IMSG

Important: The local transaction programming model for IMS Java applies only to
applications that run on WebSphere Application Server on a non-z/OS platform and that
use the Remote Database Services of IMS Java. Any other IMS Java applications that run
on WebSphere Application Server for z/OS, CICS Transaction Server, DB2 stored
procedure, or JMP/JBP require the global transaction semantics, which is provided with the
Java Transaction API JB container service or the native transactional API, depending on
the environment.

Chapter 21. IMS Remote Database Services 457

21.5.7 Step 7: Running a Web application

Step 7-1: Adding the sample to the application server in Rational
Application Developer workspace

We add the sample Web application to WebSphere Application Server in the Rational
Application Developer workspace environment by performing the following steps:

1. In the Web perspective, right-click the server instance, and then select Add and remove
projects.

2. The Add and Remove Projects wizard opens, as shown in Figure 21-52. Click
RedBookIMSRDSEAR, and then click Add. Click Finish.

Figure 21-52 Add and Remove Projects wizard

Step 7-2: Executing the sample application and analyzing the output
You can invoke the servlet for the global transaction and the servlet for the local transaction
from different Web pages:

� To invoke the servlet for a global transaction, enter the following URL:

http://your_was_distributed_name:portnumber/RedBookIMSRDS/GlobalInput.html

� To invoke the servlet for a local transaction, enter the following URL:

http://your_was_distributed_name:portnumber/RedBookIMSRDS/LocalInput.html

In this section, we show an example execution of the servlet for global transaction.

Important: Before running the sample Web application, ensure that you establish a
two-way TCP/IP communication between that WebSphere Application Server for
distributed platforms environment and WebSphere Application Server for z/OS
environment. Note that two-way means not only the communication path from the
distributed environment to z/OS environment, but also the communication path from z/OS
environment to distributed environment for ORB transportation. This can include giving the
appropriate information about domain name resolution to z/OS and considering an
adequate network path through the firewall.

458 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Enter the URL of the Web page for the global transaction. Figure 21-53 is displayed. Enter the
key value (for example, LAST1) that you want to query, and then click Execute.

Figure 21-53 IMS RDS with Global Transaction execution page

The result page opens, as shown in Figure 21-54. In this case, the information about the
person named LAST1 is displayed.

Figure 21-54 Result page for the success of query

At the first execution of the servlet, you will see the messages shown in Example 21-33 on
page 460 on the console log of WebSphere Application Server for distributed platforms.

Chapter 21. IMS Remote Database Services 459

Example 21-33 Console log of WebSphere Application Server for distributed platforms (at first execution of the servlet)

[6/27/05 15:59:27:051 PDT] 00000036 SystemOut O IMS RDS Servlet : Start
[6/27/05 15:59:27:061 PDT] 00000036 SystemOut O IMS RDS Servlet : Success Create DataSource
[6/27/05 15:59:27:061 PDT] 00000036 SystemOut O IMS RDS Servlet : Success Create UserTransaction
[6/27/05 15:59:27:061 PDT] 00000036 ServletWrappe A SRVE0242I: [ImsRdsSampleGlobal]: Initialization
successful.
[6/27/05 15:59:27:071 PDT] 00000036 SystemOut O IMS RDS Servlet : Success Start UserTransaction
[6/27/05 15:59:27:071 PDT] 00000036 SystemOut O IMS RDS Servlet : Success Get Connection
[6/27/05 15:59:28:243 PDT] 00000036 SystemOut O IMS RDS Servlet : Success Get Result
[6/27/05 15:59:28:513 PDT] 00000036 SystemOut O IMS RDS Servlet : Success Commit UserTransaction
[6/27/05 15:59:28:754 PDT] 00000036 ServletWrappe A SRVE0242I: [/Output.jsp]: Initialization successful.
[6/27/05 15:59:28:784 PDT] 00000036 SystemOut O IMS RDS Servlet : Success Dispatch Result
[6/27/05 15:59:28:784 PDT] 00000036 SystemOut O IMS RDS Servlet : End

If you enter a key value of a segment that does not exist in the IVPDB2 database (for
example, SASAKI), you will see the result page shown in Figure 21-55.

Figure 21-55 Result page for the success of query (person does not exist)

The resultset object shows null values with no exceptions. Because you are using the SQL
language, you never see the status corresponding the DL/I status code “GE/GB”. When the
resutset.next method is executed, it invokes an internal DL/I call issue from the SQL query
condition in the IMS Java EJB on the z/OS side. If the IMS Java EJB receives the AIB status
code, which means status GE or GB, it simply returns the control to the WebSphere
Application Server for distributed platforms side, even if no segment is matched with the
query condition.

If you have an exception (for example, PSB DFSIVP37 is in stopped status), you will see the
result page as shown in Figure 21-56 on page 461.

460 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Figure 21-56 Result page for the failure with the exception (DFSIVP37 PSB is stopped status)

Also, you will see the following messages shown in Example 21-34 on the console log of
WebSphere Application Server for distributed platforms.

Example 21-34 Console log of WebSphere Application Server for distributed platforms (with exception)

[6/27/05 18:02:13:504 PDT] 0000003f SystemOut O IMS RDS Servlet : Success Start UserTransaction
[6/27/05 18:02:13:504 PDT] 0000003f SystemOut O IMS RDS Servlet : Success Get Connection
[6/27/05 18:02:14:415 PDT] 0000003f SystemOut O IMS RDS Servlet : Success Rollback UserTransacton
[6/27/05 18:02:14:505 PDT] 0000003f SystemOut O IMS RDS Servlet : Caught exception in main section is:
java.sql.SQLException: javax.resource.spi.EISSystemException: java.lang.RuntimeException: AIB return code
(AIBRETRN): 108 AIB reason code (AIBREASN): 30c

Function: APSB
Status Code Hex: 4040
AIB Return Code Hex (AIBRETRN): 108
AIB Reason Code Hex (AIBREASN): 30c
AIB Error Code Extension Decimal (AIBERRXT): -993598775

[6/27/05 18:02:14:505 PDT] 0000003f SystemOut O IMS RDS Servlet : Success Dispatch Result
[6/27/05 18:02:14:515 PDT] 0000003f SystemOut O IMS RDS Servlet : End

This information represents the following situation:

� The servlet received java.sql.SQLException when it executed the SQL query, and then it
roll backed the user transaction.

� The exception information delivered from the IMS Java EJB contains the AIB return code
X'108' and the AIB reason code X'30C', which means: “The program attempted to allocate
a PSB that is marked permanently bad. IMS cannot allocate the PSB.”

21.5.8 Problem determination for Remote Database Services
The Remote Database Services consists of a lot of components and applications to deliver
your SQL request to the IMS ODBA interface. This means that whenever your Web
application gets an exception, all of the components will be candidates for your problem
determination. Some of the information that can be used for this purpose includes:

� java.sql.SQLException information that you receive
� WebSphere Application Server for distributed platforms console logs
� IMS distributed JDBC resource adapter traces
� WebSphere Application Server for z/OS console logs
� IMS JDBC resource adapter traces
� Joblogs of WebSphere Application Server for z/OS servant regions and control region

Chapter 21. IMS Remote Database Services 461

� IMS system messages
� IMS logs and traces, dumps (usually in case of a defect)

In this section, we introduce some techniques to determine a problem concerning the Remote
Database Services. For the basic concepts of problem determination for the ODBA
environment, see 19.6.1, “Finding the problem” on page 375.

Tracing DL/I calls with image capture
The SQL requests from your Web application will change into DL/I calls in the IMS Java
engine on the WebSphere Application Server for z/OS side. Therefore, if you have a
performance problem with executing a SQL, or receive an unexpected result for the query
condition, it is a good idea to evaluate how your SQL is described in the DL/I call format
intently. For this purpose, you can use the tracing facility for DL/I calls with image captures by
using the IMS command.

To take a DL/I call image capture (for example, for the PSB DFSIVP37), use the following
sequence of events for tracing:

1. Turn on trace with the following command:

/TRACE SET ON PSB DFSIVP37 COMP

2. Run the Web application.

3. Turn off trace with the following command:

/TRACE SET OFF PSB DFSIVP37

4. Switch the online log data sets (OLDSs). This also causes the contents to be archived to
the secondary log data sets (SLDSs) with the following command:

/SWITCH OLDS

5. Execute the print utility DFSERA10, specifying the latest SLDS as input in SYSUT1 DD.
The DFSERA10 input control statements to retrieve the information from the log look
similar to the following statements (in a format that can be used as input to DFSDDLT0):

OPTION PRINT OFFSET=5,VALUE=5F,COND=M
OPTION PRINT EXITR=DFSERA50,OFFSET=25,FLDTYP=C
 VALUE=DFSIVP37,FLDLEN=8,DDNAME=OUTDDN,COND=E

For example, we executed the SQL statement shown in Example 21-35 against the PERSON
table through the metadata DFSIVP37DatabaseView with the DL/I call image capture trace.

Example 21-35 SQL example

SELECT * FROM PhoneBook.Person

After formatting the IMS log that contains trace data (X'5F' log), we see the trace result shown
in Example 21-36.

Example 21-36 DL/I call image capture result

U DATE=2005/180 TIME=15.04.09 DFSIVP37
S 1 1 1 1 1
S 1 1 1 1 1 000011
L GHU A1111111
E DATA LAST6 FIRST6 8-111-6666D06/R06
E 01 A1111111 0010LAST6
L GHN A1111111
E DATA LAST1 FIRST1 8-111-1111D01/R01
E 01 A1111111 0010LAST1
L GHN A1111111

462 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

E DATA LAST2 FIRST2 8-111-2222D02/R02
E 01 A1111111 0010LAST2
L GHN A1111111
E DATA LAST3 FIRST3 8-111-3333D03/R03
E 01 A1111111 0010LAST3
L GHN A1111111
E DATA LAST5 FIRST5 8-111-5555D05/R05
E 01 A1111111 0010LAST5
L GHN A1111111
E DATA LAST4 FIRST4 8-111-4444D04/R04
E 01 A1111111 0010LAST4
L GHN A1111111
E 00 GB 0000

The trace result shows the following information:

� The table name Person in the SQL statement is changed into the segment name A1111111
in the SSA, followed by the definition in the metadata class.

� At the first execution of the DL/I call, the IMS Java engine issued the get hold unique
(GHU) call with segment-qualified SSA that has no key value (because, in the SQL
statement, we did not specify the WHERE clause), and then got the first segment from
IVPDB2.

� Next, the IMS Java engine issued the GHN call with the same SSA condition until
receiving the status GB.

� The segments from IVPDB2 are not ordered by key value, because IVPDB2 has an HDAM
organization.

J2EE information tracing in a distributed environment
You can trace the IMS library classes using the WebSphere Application Server tracing service
for both the WebSphere Application Server for z/OS side and WebSphere Application Server
for distributed platforms side. You can choose several tracing levels by specifying the custom
property value in the J2C connection factory of the resource adapters. In this section, we
show the example trace data in the WebSphere Application Server for distributed platforms
environment. The following information summarizes how to enable the WebSphere
Application Server (for distributed platforms) tracing service.

Specifying the level of tracing
To use the WebSphere Application Server tracing service, you must first specify the level of
tracing. The level of tracing is defined as one of the custom property values in the J2C
connection factory. Table 21-8 shows the TraceLevel value and its description. You can
change the value from the WebSphere Application Server administrative console.

Table 21-8 Trace level in the J2C connection factory

Value Description

0 No library trace

1 Library exceptions

2 High-level constructors

3 High-level methods

4 High-level parms and return values

5 Middle-level constructors

Chapter 21. IMS Remote Database Services 463

Specifying the application server and the package to trace
After you specify the level of tracing, you can specify the application server and package to
trace. First, you must select the Enable log option from the Diagnostic Trace Service menu in
the administrative console. Then, you must add the following description in the Change Log
Detail Levels menu:

com.ibm.ims.rds.*=all=enabled

If you add these configurations in the Configuration tab, you must restating your server
instance. If you add it in the Runtime tab, you are not required to restart your server instance,
but the configuration is not persistent. For more information about enabling the trace, see IMS
Java Guide and Reference, SC18-7821

An example of a WebSphere trace for IMS RDS
Figure 21-37 shows an example of the WebSphere trace for the IMS Remote Database
Services with TraceLevel value 5 (middle-level constructors). You can see the internal logic
and communication interaction of the IMS distributed JDBC resource adapter on the
WebSphere Application Server for distributed platform side. You can also check some values
in the J2C connection factory, your SQL statement, and the returned value.

Example 21-37 WebSphere trace for IMS Remote Database Services with TraceLevel value 5

[6/30/05 11:44:54:719 PDT] 00000045 ManagerAdmin I TRAS0018I: The trace state has changed. The new trace state is *=info:com.ibm.ims.rds.*=all.
[6/30/05 11:45:59:963 PDT] 00000045 SystemOut O IMS RDS Servlet : Start
[6/30/05 11:46:00:513 PDT] 00000045 ClientManaged 3 -> [ClientManagedConnectionFactory.createConnectionFactory(ConnectionManager)]
[6/30/05 11:46:00:533 PDT] 00000045 ClientManaged 3 <-> [ClientDataSource()]
[6/30/05 11:46:00:533 PDT] 00000045 ClientManaged 3 -- [DataSource: com.ibm.ims.rds.ClientDataSource@1489d997]
[6/30/05 11:46:00:533 PDT] 00000045 ClientManaged 3 <- [ClientManagedConnectionFactory.createConnectionFactory(ConnectionManager)]
[6/30/05 11:46:00:533 PDT] 00000045 SystemOut O IMS RDS Servlet : Success Create DataSource
[6/30/05 11:46:00:543 PDT] 00000045 SystemOut O IMS RDS Servlet : Success Create UserTransaction
[6/30/05 11:46:00:543 PDT] 00000045 ServletWrappe A SRVE0242I: [ImsRdsSampleGlobal]: Initialization successful.
[6/30/05 11:46:00:624 PDT] 00000045 SystemOut O IMS RDS Servlet : Success Start UserTransaction
[6/30/05 11:46:00:624 PDT] 00000045 ClientManaged 3 -> [ClientDataSource.getConnection()]
[6/30/05 11:46:00:634 PDT] 00000045 ClientManaged 3 -> [ClientConnectionRequestInfo(String, String, String, Integer, PrintWriter, int)]
[6/30/05 11:46:00:634 PDT] 00000045 ClientManaged 3 <- [ClientConnectionRequestInfo(String, String, String, Integer, PrintWriter, int)]
[6/30/05 11:46:00:634 PDT] 00000045 ClientManaged 3 -> [ClientManagedConnectionFactory.createManagedConnection(Subject, ConnectionRequestInfo)]
[6/30/05 11:46:00:644 PDT] 00000045 ClientManaged 3 -> [ClientManagedConnection(String, Subject, ClientManagedConnectionFactory, String, boolean)]
[6/30/05 11:46:00:644 PDT] 00000045 ClientManaged 3 -- [databaseViewName: imsrds.DFSIVP37DatabaseView]
[6/30/05 11:46:00:644 PDT] 00000045 ClientManaged 3 -- [managedConnectionFactory: com.ibm.ims.rds.ClientManagedConnectionFactory@c2176b9d]
[6/30/05 11:46:00:644 PDT] 00000045 ClientManaged 3 -- [draName: IMSG]
[6/30/05 11:46:00:644 PDT] 00000045 ClientManaged 3 -- [isManagedServer: true]
[6/30/05 11:46:00:644 PDT] 00000045 ClientManaged 3 <- [ClientManagedConnection(String, Subject, ClientManagedConnectionFactory, String, boolean)]
[6/30/05 11:46:00:644 PDT] 00000045 ClientManaged 3 -- [ManagedConnection: com.ibm.ims.rds.ClientManagedConnection@4bd05995]
[6/30/05 11:46:00:644 PDT] 00000045 ClientManaged 3 <- [ClientManagedConnectionFactory.createManagedConnection(Subject, ConnectionRequestInfo)]
[6/30/05 11:46:00:644 PDT] 00000045 ClientManaged 3 -> [ClientManagedConnectionFactory.matchManagedConnection(Set, Subject, ConnectionRequestInfo)]
[6/30/05 11:46:00:644 PDT] 00000045 ClientManaged 3 -- [Matched ManagedConnection: com.ibm.ims.rds.ClientManagedConnection@4bd05995]
[6/30/05 11:46:00:644 PDT] 00000045 ClientManaged 3 <- [ClientManagedConnectionFactory.matchManagedConnection(Set, Subject, ConnectionRequestInfo)]
[6/30/05 11:46:00:684 PDT] 00000045 ClientManaged 3 -> [ClientManagedConnection.getConnection(Subject, ConnectionRequestInfo)]
[6/30/05 11:46:00:704 PDT] 00000045 ClientManaged 3 -> [ClientConnection(ClientManagedConnection, boolean)]
[6/30/05 11:46:00:704 PDT] 00000045 ClientManaged 3 -- [isManagedServer: true]
[6/30/05 11:46:00:704 PDT] 00000045 ClientManaged 3 <- [ClientConnection(ClientManagedConnection, boolean)]
[6/30/05 11:46:00:704 PDT] 00000045 ClientManaged 3 <- [ClientManagedConnection.getConnection(Subject, ConnectionRequestInfo)]
[6/30/05 11:46:00:714 PDT] 00000045 ClientManaged 3 -- [Connection: com.ibm.ims.rds.ClientConnection@17991995]
[6/30/05 11:46:00:714 PDT] 00000045 ClientManaged 3 <- [ClientDataSource.getConnection()]
[6/30/05 11:46:00:714 PDT] 00000045 SystemOut O IMS RDS Servlet : Success Get Connection
[6/30/05 11:46:00:714 PDT] 00000045 ClientManaged 3 -> [ClientConnection.createStatement()]
[6/30/05 11:46:00:714 PDT] 00000045 ClientManaged 3 -> [ClientConnection.createStatement(int, int)]
[6/30/05 11:46:00:714 PDT] 00000045 ClientManaged 3 -- [resultSetType: 1003]
[6/30/05 11:46:00:714 PDT] 00000045 ClientManaged 3 -- [resultSetConcurrency: 1007]
[6/30/05 11:46:02:977 PDT] 00000045 ClientManaged 3 -> [ClientStatement(ClientConnection, int, int, PrintWriter, int)]
[6/30/05 11:46:02:977 PDT] 00000045 ClientManaged 3 -- [ClientConnection: com.ibm.ims.rds.ClientConnection@17991995]
[6/30/05 11:46:02:977 PDT] 00000045 ClientManaged 3 -- [resultSetType: 1003]
[6/30/05 11:46:02:977 PDT] 00000045 ClientManaged 3 -- [resultSetConcurrency: 1007]

6 Middle-level methods

7 Middle-level parms and return values

8 Low-level constructors

9 Low-level methods

10 Low-level parms and return values

Value Description

464 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

[6/30/05 11:46:02:977 PDT] 00000045 ClientManaged 3 <- [ClientStatement(ClientConnection, int, int, PrintWriter, int)]
[6/30/05 11:46:02:977 PDT] 00000045 ClientManaged 3 <- [ClientConnection.createStatement(int, int)]
[6/30/05 11:46:02:977 PDT] 00000045 ClientManaged 3 <- [ClientConnection.createStatement()]
[6/30/05 11:46:02:977 PDT] 00000045 ClientManaged 3 -> [ClientStatement.executeQuery(String)]
[6/30/05 11:46:02:977 PDT] 00000045 ClientManaged 3 -- [sql: SELECT * FROM PhoneBook.Person WHERE Person.LastName = 'LAST1']
[6/30/05 11:46:03:438 PDT] 00000045 ClientManaged 3 -> [ClientSegment(byte[], ClientTypeInfo[], PrintWriter, traceLevel)]
[6/30/05 11:46:03:438 PDT] 00000045 ClientManaged 3 <- [ClientSegment(byte[], ClientTypeInfo[], PrintWriter, traceLevel)]
[6/30/05 11:46:03:448 PDT] 00000045 ClientManaged 3 -> [ClientResultSet(ClientStatement, EJBObject, int, int, ClientSegment, PrintWriter, int)]
[6/30/05 11:46:03:448 PDT] 00000045 ClientManaged 3 -- [ClientStatement: com.ibm.ims.rds.ClientStatement@6321999b]
[6/30/05 11:46:03:448 PDT] 00000045 ClientManaged 3 -- [EJBObject:
IOR:0000000000000046524d493a636f6d2e69626d2e696d732e7264732e686f73742e486f7374436f6e7461696e65724d616e6167656453657373696f6e3a3030303030303030303030303030303000
00000000000100000000000002d800010200000000147774736335332e6974736f2e69626d2e636f6d003d270000000001f4d6d9c2d20000001000000000bd19604d1ab46886000001780000007d090c
064d00000028000001cc00000003c3d3e4f6f5f3f1002500c400000046000001100000004b0000
01600000008d00
000000000000e3e8d7c5d9d4c97a8396944b8982944b8994a24b9984a24b8896a2a34bc896a2a3c39695a38189958599d4819581878584e285a2a28996957af0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f000
0000c3d3c1e28396944b8982944b8994a24b9984a24b8896a2a34bc5d1e2d9859496a385e2a381a38586a493c896a2a3c39695a38189958599d4819581878584e285a2a28996956df0f68482818681f0
0000c3d2c5e849454a500200dc5dabd10a7773363533317363353303454a4200000070acac000200010200000050494d53204a6176612052656d6f746520446174616261736520536572766963657323
696d736a617661524453486f73742e6a617223486f7374436f6e7461696e65724d616e6167656453657373696f6e08bd3d6638dface900000010ac00000003090c064d00000000000007000000000000
00080000000049424d0000000025000000040000000349424d0d0000004c000000000000004401011300e6e2f6f5f3f1c400bd19648b21304546000001780000007d090c064dc3d3f6f5f3f10000e2c3
f5f340404040a6a3a283f5f34b89a3a2964b8982944b8396944049424d040000000700050001020000000000001f0000000400000003000000200000000400000001000000010000001c000000000001
00010000000100010001000101000000000100010100]
[6/30/05 11:46:03:448 PDT] 00000045 ClientManaged 3 -- [fetchSize: 0]
[6/30/05 11:46:03:448 PDT] 00000045 ClientManaged 3 -- [maxRows: 0]
[6/30/05 11:46:03:448 PDT] 00000045 ClientManaged 3 -- [resultSetSegment: com.ibm.ims.rds.ClientSegment@42e15991]
[6/30/05 11:46:03:448 PDT] 00000045 ClientManaged 3 <- [ClientResultSet(ClientStatement, EJBObject, int, int, ClientSegment, PrintWriter, int)]
[6/30/05 11:46:03:448 PDT] 00000045 ClientManaged 3 <- [ClientStatement.executeQuery(String)]
[6/30/05 11:46:03:448 PDT] 00000045 ClientManaged 3 -> [ClientResultSet.next()]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 -- [result of next() call: true]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 <- [ClientResultSet.next()]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 -> [ClientResultSet.getString(String)]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 -- [columnName: Person.LastName]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 -> [ClientResultSet.getString(int)]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 -- [columnIndex: 1]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 -- [result: LAST1]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 <- [ClientResultSet.getString(int)]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 -- [result: LAST1]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 <- [ClientResultSet.getString(String)]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 -> [ClientResultSet.getString(String)]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 -- [columnName: Person.FirstName]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 -> [ClientResultSet.getString(int)]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 -- [columnIndex: 2]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 -- [result: FIRST1]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 <- [ClientResultSet.getString(int)]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 -- [result: FIRST1]
[6/30/05 11:46:03:548 PDT] 00000045 ClientManaged 3 <- [ClientResultSet.getString(String)]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 -> [ClientResultSet.getString(String)]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 -- [columnName: Person.Extension]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 -> [ClientResultSet.getString(int)]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 -- [columnIndex: 3]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 -- [result: 8-111-1111]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 <- [ClientResultSet.getString(int)]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 -- [result: 8-111-1111]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 <- [ClientResultSet.getString(String)]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 -> [ClientResultSet.getString(String)]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 -- [columnName: Person.ZipCode]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 -> [ClientResultSet.getString(int)]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 -- [columnIndex: 4]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 -- [result: D01/R01]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 <- [ClientResultSet.getString(int)]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 -- [result: D01/R01]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 <- [ClientResultSet.getString(String)]
[6/30/05 11:46:03:558 PDT] 00000045 ClientManaged 3 -> [ClientResultSet.next()]
[6/30/05 11:46:03:658 PDT] 00000045 ClientManaged 3 -- [result of next() call: false]
[6/30/05 11:46:03:658 PDT] 00000045 ClientManaged 3 <- [ClientResultSet.next()]
[6/30/05 11:46:03:658 PDT] 00000045 SystemOut O IMS RDS Servlet : Success Get Result
[6/30/05 11:46:03:968 PDT] 00000045 SystemOut O IMS RDS Servlet : Success Commit UserTransaction
[6/30/05 11:46:03:968 PDT] 00000045 ClientManaged 3 -> [ClientStatement.close()]
[6/30/05 11:46:04:079 PDT] 00000045 ClientManaged 3 -> [ClientResultSet.close()]
[6/30/05 11:46:04:079 PDT] 00000045 ClientManaged 3 <- [ClientResultSet.close()]
[6/30/05 11:46:04:079 PDT] 00000045 ClientManaged 3 <- [ClientStatement.close()]
[6/30/05 11:46:04:079 PDT] 00000045 ClientManaged 3 -> [ClientConnection.close()]
[6/30/05 11:46:04:169 PDT] 00000045 ClientManaged 3 -> [ClientManagedConnection.close(ClientConnection)]
[6/30/05 11:46:04:179 PDT] 00000045 ClientManaged 3 <- [ClientManagedConnection.notifyClose(ClientConnection)]
[6/30/05 11:46:04:179 PDT] 00000045 ClientManaged 3 <- [ClientManagedConnection.close(ClientConnection)]
[6/30/05 11:46:04:179 PDT] 00000045 ClientManaged 3 <- [ClientConnection.close()]
[6/30/05 11:46:04:239 PDT] 00000045 ServletWrappe A SRVE0242I: [/Output.jsp]: Initialization successful.
[6/30/05 11:46:04:259 PDT] 00000045 SystemOut O IMS RDS Servlet : Success Dispatch Result
[6/30/05 11:46:04:259 PDT] 00000045 SystemOut O IMS RDS Servlet : End

21.5.9 Summary of the IMS RDS implementation
In this section, we summarize the IMS Remote Database Services (RDS) implementation.
When you create a Web application that accesses the IMS database through the IMS RDS
environment, we use the following sequence of events for the implementation:

1. Define the data requirement of your business logic to the IMS database, and select the
DBD.

Chapter 21. IMS Remote Database Services 465

2. Create a new PSB, or choose an existing PSB that meets the requirement. Note that:

– A JDBC connection is made to a PSB. Your PSB needs to have enough DBPCBs for
your data requirement to avoid creating a lot of connections in the Web application.

– All DBPCBs need the PCB label for AIB access.

– PROCOPT=xP is required for the internal DL/I path call.

3. Execute ACB generation, MODBLKS generation, and add them to the online libraries if
needed.

4. Design the relational table structure from the IMS database. You can redefine the IMS
PSB/DBD definition much like human-familiar structures, but consider the IMS JDBC
characteristics of the logical conversion from a hierarchical database.

5. Implement the relational table design using the DLIModel utility.

6. Prepare the IMS environment. Define the DRA startup table parameter values for your
requirement, and create the DRA module. For example, the DRA MAXTHRD parameter
should have the following number:

The number of MAXTHRD >= The number of the J2C connection from WebSphere Application
Server for z/OS >= The number of the J2C connection from WebSphere Application Server
for distributed

In addition, consider the FP buffer definitions in the DRA startup table carefully, because
your SQL request might require a lot of FP resources that depend on your query
conditions. Set the IMS execution parameter RRS= to Y.

7. Configure the WebSphere Application Server for z/OS environment by:

– Concatenating the IMS libraries to the servant regions
– Installing the IMS JDBC resource adapter
– Installing the custom service
– Installing the data source for IMS Java EJB by defining the J2C connection factory
– Adding the classpath to the metadata class
– Installing the IMS Java EJB

8. Configure the WebSphere Application Server for distributed platforms environment by:

– Installing the IMS distributed JDBC resource adapter

– Installing the data source for the target IMS JDBC connection by defining the J2C
connection factory

9. Design and develop your Web application. Consider the following information:

– Transaction semantics

You should understand your transactional requirement (include your XA resource
updates within the single transaction boundary or not) and how the transaction
semantics affects commit and rollbacks operations. Generally, the global transaction
has larger system costs than the local transaction, and it might affect Web application
performance and IMS resource occupancy. This also might be the trade-off between
the transactional requirement and the performance.

– Security semantics

There are three areas to consider for security:

• Access to the client-side Web application: Deploy the client-side Web application
with the run-as deployment property set to system. Restrict access to the client-side
Web application.

• Network security: You can use identity assertion or SSL to secure the network
communication between the two application servers.

466 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

• Security between WebSphere Application Server for z/OS and IMS: ODBA requires
a preverified Access Control Environment Element (ACEE), which WebSphere
Application Server for z/OS places on the execution thread.

– IMS Java JDBC/SQL implementation

JDBC programmers should know the characteristics of the IMS table that comes from
the metadata definition and consider the special requirement of the IMS Java SQL
statement and JDBC interface. Be careful that the SQL API provides for the querying
data contained in a relational model, but, in fact, you are accessing the IMS database
by using DL/I API implicitly. For example:

• If you supply a predicate in the WHERE clause for a target segment somewhere
down the hierarchy and omit predicates for its parents, IMS must scan all candidate
segments at the parent levels in an attempt to match the predicate that you
supplied. Depending on the query condition, it can easily cause a full-database
scan.

• The Resultset.next method on the client side will invoke the next single DL/I call
(GHN) request in the IMS Java EJB on z/OS side, until either a GE or GB status
code is returned in the AIB, indicating there are no more segments to process. In
the IMS RDS environment, this means that if your query condition meets 10000
segments in the IMS database, the interaction, including network transportation
between the IMS Java EJB on the z/OS side and your Web application on the
distributed side, will occur 10,000 times within one SQL process.

For better performance, the IMS JDBC API has been enhanced to provide support
for additional methods that address the access issues from distributed
environments. Specifically, the setFetchSize methods on both the Statement and
ResultSet APIs are supported. The fetch size indicates the amount of rows to fetch
from the IMS database for a call to ResultSet.next(). For example, if you set the
fetch size to 50, the first call to next() retrieves the first 50 rows satisfying the query
and stores them in the WebSphere Application Server for distributed platforms
address space. This way, the next 49 calls to next() will not go across the network
because the data is on the client side. After the client requests the fifty-first result,
the call then goes across the network and returns the next 50 rows in one network
call.

Additionally, in the case of scroll-insensitive result sets (or queries that use
aggregate functions), all of the data is gathered from the IMS database on the first
request and stored on the WebSphere Application Server for z/OS side, up to the
MAX_ROWS limit specified by the client application. Then, the same thing happens
as described previously; for each call to next(), the specified number of rows are
returned from the server side, but no further DL/I calls are made to the IMS
database.

10.Deploy and test your Web application in the test environment. We recommend that you
check not only the expected process of your Web application, but also monitor the
resource usage and performance of WebSphere Application Server for distributed
platforms, WebSphere Application Server for z/OS, RRS, and, of course, IMS database
manager.

11.Release your Web application to the production environment. Keep monitoring the
performance and resource usage in the environment.

Chapter 21. IMS Remote Database Services 467

468 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Appendix A. Sample code: Non-IMS
Connector for Java client code

This appendix contains the complete sample programs that we use throughout this book. You
can download the source code from the following FTP address:

ftp://www.redbooks.ibm.com/redbooks/SG246794

We provide an example of a basic client written in the C and Java programming languages.
Both versions are functionally equivalent and can be used as a base to implement more
complex features. In 14.5, “Detailed code examples” on page 282, we cover the use of this
code.

A

Note: The code examples here are provided “AS-IS” and there are certain conditions for
using them. Before using the samples, read the information in “Notices” on page xi.

© Copyright IBM Corp. 2006. All rights reserved. 469

ftp://www.redbooks.ibm.com/redbooks/SG246794

C sample source code
Example A-1 provides the C sample source code.

Example: A-1 Sample C code for an IMS Connect client

/***/
/* sample.c - IMS Connector basic client written in C */
/* --- */
/* See the redbook IMS V9 Connectivity Update - SG24-6794 for details*/
/* and terms & conditions of use. */
/* */
/* Copyright (c) - International Busines Machines, Inc. 2005,2001 */
/* */
/* Author: Jordi Guillaumes Pons and others */
/* */
/***/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <netdb.h>
#include <getopt.h>
#include <limits.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define PREFIX_LENGTH 96
#define MAX_SEGMENTS 100

#define BLANK8 “ “

/*
 * Symbolic constants
 */
#define CM0 0x40
#define CM1 0x20
#define SL_NONE 0x00
#define SL_CONFIRM 0x01
#define SL_SYNCPT 0x02
#define SL_PURGE 0x04
#define SL_REROUTE 0x08
#define SL_PURGE_NOT_DELIVERABLE 0x04

/*
 * Structure to hold all the data about the interaction
 * we are going to have with our host.
 */
struct sampletran {
 /* IMS information */
 char * tranCode; /* Transaction code */
 char * tranText; /* Transaction data */
 char * datastoreID; /* Datastore (IMS) id */
 char * ltermName; /* LTERM override - optional */
 char ** response; /* Response segments */
 /* RACF security information */
 char * racfUserID; /* RACF User Id - optional */
 char * racfGroupName; /* RACF Group name - optional */
 char * password; /* RACF Password - optional */

470 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

 /* IMS Connect information */
 char * hostName; /* Host name or IP address in dot format */
 int portNumber; /* Port number where IMS Connect listens */
 char * clientID; /* Unique Client-Id - optional */
 char * exitID; /* Exit Id - Set to ‘*SAMPLE*’ */
 char syncLevel; /* Sync Level (encoded) */
 char commitMode; /* Commit Mode (encoded) */
 int sendOnly; /* 1: Use a send-only interaction */
 int resumeTpipe; /* 1: Issue a RESUME TPIPE */
 int ackRequired; /* ACK required by IMS Connect (output field) */
 int nakRequired; /* Send a NAK if posible and required */
 char timer; /* Value for IRM_TIMER */
 char reroute; /* Reroute not deliverable */
 char purge; /* Purge not deliverable */
 char *rerouteName; /* Optional reroute destination name */
};

/***/
/* Utility functions */
/***/

/*
 * Copy size bytes into bufPtr and return the first address available after copied data
 *
 * Parameters:
 * bufPtr Destination buffer address.
 * src Source string address.
 * size Number of characters to copy.
 *
 * Returns:
 * Address of the next available byte in the buffer.
 *
 * Warning: this function DOES NOT check, nor has any way to do it, if the destination
 * buffer has enough space available. DO NOT USE THIS CODE IN PRODUCTION.
 * There is a buffer-overrun risk, which could lead to a security problem.
 */
char *addBuffer(void *bufPtr, void *src, size_t size) {
 memcpy(bufPtr, src, size);
 bufPtr += size;
 return bufPtr;
}

/*
 * Copy a string from src to dst, up to size chars.
 * If the length of src is less than size, then pad dst with the
 * specifies padding char.
 *
 * Parameters:
 * dst Destination buffer address.
 * src Source string address.
 * size Destination buffer size.
 * padding Padding character (as int).
 */
void padCopy(char *dst, char *src, size_t size, int padding) {
 int i=0;
 int len = strlen(src);
 if (len > size) len = size;

 for(i=0;i<len;i++) dst[i] = src[i];
 for(;i<size;i++) dst[i] = padding;

Appendix A. Sample code: Non-IMS Connector for Java client code 471

}

void freeResponse(struct sampletran *sample) {
 int i=0;

 /* Free the response segments */
 if (sample->response != NULL) {
 for(i=0; i<MAX_SEGMENTS && sample->response[i] != NULL; i++) {
 free(sample->response[i]);
 }
 free(sample->response);
 }
}

/*
 * Free the dynamically allocated memory corresponding to
 * one instance of sampletran.
 *
 * Parameters:
 * sample Address of the sampletran structure to be freed.
 */
void freeSampleTran(struct sampletran *sample) {

 /* Free the response segments */
 freeResponse(sample);

 /* Free the sample parameters */
 free(sample->datastoreID);
 free(sample->racfUserID);
 free(sample->racfGroupName);
 free(sample->password);
 free(sample->clientID);
 free(sample->ltermName);
 free(sample->tranCode);
 free(sample->tranText);
 free(sample->rerouteName);
}

/***/
/* Communications setup functions */
/***/

/*
 * Connects to the host and returns a socket descriptor if successful
 *
 * Parameters:
 * sample Address of the sampletran structure with the communication parameters.
 *
 * Returns:
 * A connected socket descriptor.
 */
int sample_connect(struct sampletran *sample) {
 int sockfd;
 struct hostent * host;
 struct sockaddr_in socketAddress;

 /* get host info */
 if ((host = gethostbyname(sample->hostName)) == NULL) {
 perror(“gethostbyname”);

472 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

 exit(1);
 }

 /* initialize the socket descriptor */
 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
 perror(“socket”);
 exit(1);
 }

 /* set some socket address values */
 socketAddress.sin_family = AF_INET;
 socketAddress.sin_port = htons(sample->portNumber); /* network byte order */
 socketAddress.sin_addr = *((struct in_addr *)host->h_addr);
 memset(&(socketAddress.sin_zero), 0, 8); /* zero out the rest of the struct */

 /* connect the socket */
 if (connect(sockfd, (struct sockaddr *)&socketAddress, sizeof(struct sockaddr)) == -1)
{
 perror(“connect”);
 exit(1);
 }

 /* return the socket descriptor */
 return sockfd;
}

/*
 * Closes the socket
 *
 * Parameters:
 * sockfd Socket descriptor to close.
 */
void sample_disconnect(int sockfd) {
 /* close the socket */
 close(sockfd);
}

/***/
/* User messages */
/***/

/*
 * Shows the correct syntax and prints an error message
 */
void syntaxError(char *message) {
 fprintf(stderr,”%s\n”, message);

 fprintf(stderr,”Syntax:\n”);
 fprintf(stderr,”SEND : sample -h hostName -p portNumber [-d datastoreName]\n”);
 fprintf(stderr,” [-c clientid] [-t ltermName]\n”);
 fprintf(stderr,” [-u userId [-g groupName] [-w password]]\n”);
 fprintf(stderr,” [-x] [-y [rerouteName]]\n”);
 fprintf(stderr,” [-m {0|1}] [-l {N|C|S}] [-s] [-n] trancode
trandata...\n”);
 fprintf(stderr,”RESUME TPIPE: sample -h hostName -p portNumber [-d datastoreName]\n”);
 fprintf(stderr,” -c clientId -r [-n]\n”);
 fprintf(stderr,” [-u userId [-g groupName] [-w password]] \n”);
 fprintf(stderr, “The -m flag sets the commit mode to 0 or 1 on SEND interactions.\n”);
 fprintf(stderr,” The -x flag enables the purge not deliverable feature.\n”);

Appendix A. Sample code: Non-IMS Connector for Java client code 473

 fprintf(stderr,” The -y flag enables the reroute not deliverable feature. You can
specify an optional\n”);
 fprintf(stderr,” reroute destinarion name.\n”);
 fprintf(stderr, “The -l flag sets the Sync Level to N(one), C(onfirm) or S(ynch). on
SEND interactions.\n”);
 fprintf(stderr, “The -n flag forces a NAK, if the Sync Level is not NONE.\n”);
 fprintf(stderr,” The -s flag sets the interaction as SEND ONLY\n”);
 fprintf(stderr,”The Datastore Id (-d flag) should be specified unless your IMS Connect
exits take care of setting it.\n”);
 exit(8);
}

/*
 * Prints the content of the sampletran structure to stdout
 */
void listSampleTran(struct sampletran *sample) {
 printf(“IMS Connect information: \n”);
 printf(“\tClient ID :\t%s\n”, sample->clientID);
 printf(“\texitID :\t%s\n”, sample->exitID);
 printf(“\tsyncLevel :\t”);
 switch(sample->syncLevel) {
 case SL_NONE:
 printf(“NONE\n”);
 break;
 case SL_CONFIRM:
 printf(“CONFIRM\n”);
 break;
 case SL_SYNCPT:
 printf(“SYNCPOINT\n”);
 break;
 default:
 printf(“UNKNOWN\n”);
 break;
 }
 printf(“\tcommitMode:\t”);
 switch(sample->commitMode) {
 case CM0:
 printf(“0 - COMMIT THEN SEND\n”);
 break;
 case CM1:
 printf(“1 - SEND THEN COMMIT\n”);
 break;
 default:
 printf(“UNKNOWN!\n”);
 break;
 }

 if (sample->purge == 1) {
 printf(“\tPURGE NOT DELIVERABLE\n”);
 }
 if (sample->reroute == 1) {
 printf(“\tREROUTE NOT DELIVERABLE\n”);
 printf(“\t\t%s\n”, sample->rerouteName);
 }

 if (sample->sendOnly == 1) {
 printf(“\tSEND ONLY\n”);
 } else {
 printf(“\tSEND-RECEIVE\n”);
 }

474 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

 if (sample->resumeTpipe == 1) {
 printf(“\tRESUME TPIPE\n”);
 }
 printf(“IMS information:\n”);
 printf(“\tDatastore :\t%s\n”, sample->datastoreID);
 printf(“\tLTerm :\t%s\n”, sample->ltermName);
 if (sample->resumeTpipe == 0) {
 printf(“Transaction information:\n”);
 printf(“\tCode :\t%s\n”, sample->tranCode);
 printf(“\tText :\t%s\n”, sample->tranText);
 }
}

/***/
/* Send and receive functions */
/***/

/*
 * Sends the input data to the host
 *
 * Parameters:
 * sockfd Connected socket descriptor
 * sample Address of a sampletran structure with the interaction data
 * msgType Value of IRM_F4 (‘ ‘, ‘A’, ‘R’)
 *
 * Notice: This code has been modified to send all the data to IMS Connect in a
 * single write to enhance performance. The old IMS Connect sample does a write for
 * each field. YOU SHOULD NOT DO THAT. Build first the whole message in memory and
 * send it in one call.
 */

void sample_send(int sockfd, struct sampletran *sample, char msgType) {
 int totalLength, totalLengthBE;
 short segmentLength;
 short prefixLength = PREFIX_LENGTH;
 char irm_f3 = (char) 0;
 char irm_arch = (char) 0x01; /* Arch level 1 to use Reroute Name */
 char *message = NULL;
 char *currPtr = NULL;
 int zero = 0; /* need this so we can pass a pointer to zero */

 /* +4 for first LL, ZZ and final LL, ZZ */
 totalLength = 4 + PREFIX_LENGTH + 4;

 /* add in segment length, if segment is defined */
 if (sample->tranText != NULL) {
 totalLength += strlen(sample->tranText) + 12; /* +12 for LL, ZZ, tranCode */
 }

 /* Compute the IRM_F3 value */
 irm_f3 = sample->syncLevel;
 if (sample->purge) {
 irm_f3 |= SL_PURGE;
 }
 if (sample->reroute) {
 irm_f3 |= SL_REROUTE;
 }

 message = malloc(totalLength);
 if (message == NULL) {

Appendix A. Sample code: Non-IMS Connector for Java client code 475

 perror(“Could not allocate memory for the whole message.”);
 exit(32);
 }
 memset(message, 0, totalLength); /* Clean up the new allocated space */
 currPtr = message; /* Current write pointer set to beginning of message space */

 /* convert lengths to big endian */
 totalLengthBE = htonl(totalLength);
 prefixLength = htons(prefixLength);

 /* Build the message structure in the allocated buffer */
 /* Build the IRM prefix first */
 currPtr = addBuffer(currPtr, &totalLengthBE, 4); /* Total message length */
 currPtr = addBuffer(currPtr, &prefixLength, 2); /* IRM_LL */
 currPtr = addBuffer(currPtr, &irm_arch, 1); /* IRM_ARCH */
 currPtr = addBuffer(currPtr, &zero, 1); /* IRM_F0 */
 currPtr = addBuffer(currPtr, sample->exitID, 8); /* IRM_ID */
 currPtr = addBuffer(currPtr, &zero, 4); /* IRM_RES */
 currPtr = addBuffer(currPtr, &zero, 1); /* IRM_F5 - No option flow */
 currPtr = addBuffer(currPtr, &sample->timer, 1); /* IRM_TIMER */
 currPtr = addBuffer(currPtr, &zero, 1); /* IRM_SOCT - Transaction socket
*/
 currPtr = addBuffer(currPtr, &zero, 1); /* IRM_ES */
 currPtr = addBuffer(currPtr, sample->clientID, 8); /* IRM_CLIENTID */
 currPtr = addBuffer(currPtr, &zero, 1); /* IRM_F1 - No MODNAME request */
 currPtr = addBuffer(currPtr, &sample->commitMode, 1);/* IRM_F2 - Set commit mode */
 currPtr = addBuffer(currPtr, &irm_f3, 1); /* IRM_F3 - Set sync level... */
 currPtr = addBuffer(currPtr, &msgType, 1); /* IRM_F4 - Set message type */
 currPtr = addBuffer(currPtr, sample->tranCode, 8); /* IRM_TRNCOD */
 currPtr = addBuffer(currPtr, sample->datastoreID, 8);/* IRM_IMSDESTID */
 currPtr = addBuffer(currPtr, sample->ltermName, 8); /* IRM_LTERM */
 currPtr = addBuffer(currPtr, sample->racfUserID,8); /* IRM_RACF_USERID */
 currPtr = addBuffer(currPtr, sample->racfGroupName,8);/* IRM_RACF_GRPNAME */
 currPtr = addBuffer(currPtr, sample->password,8); /* IRM_RACF_PW */
 currPtr = addBuffer(currPtr, BLANK8, 8); /* IRM_APPL_NM */
 currPtr = addBuffer(currPtr, sample->rerouteName,8); /* IRM_REROUT_NM */

 /* Add the transaction segment (trancode + trantext) just for IRM_F4 = ‘ ‘ or ‘S’ */
 if (msgType == ‘ ‘ || msgType == ‘S’) {
 /* + 12 for LL and ZZ and trancode */
 segmentLength = (short) (strlen(sample->tranText) + 12);
 /* convert to big endian */
 segmentLength = htons(segmentLength);
 currPtr = addBuffer(currPtr, &segmentLength, sizeof(short)); /* Transaction LL */
 currPtr = addBuffer(currPtr, &zero, sizeof(short)); /* Transaction ZZ */
 currPtr = addBuffer(currPtr, sample->tranCode, 8); /* Transaction code
*/
 currPtr = addBuffer(currPtr, sample->tranText, strlen(sample->tranText)); /* data
*/

 }

 /* send final LL ZZ to signal no more data to IMS Connect */
 segmentLength = 4;
 /* convert to big endian */
 segmentLength = htons(segmentLength);
 currPtr = addBuffer(currPtr, &segmentLength, sizeof(short)); /* End of message LL */
 currPtr = addBuffer(currPtr, &zero, sizeof(short)); /* End of message zeros
*/

476 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

 /* Send the built message to IMS Connect and free the malloc() */
 send(sockfd, message, totalLength, 0);
 free(message);
}

/*
 * Receive the data from the host, and parses it into segment strings
 * We are using HWSSMPL0, so we don’t have a total-length prefix.
 * If we were using HWSSMPL1 we shoult take that into account.
 *
 * Parameters:
 * sockfd Connected socket descriptor
 * sample Address of a sampletran structure with the interaction data
 *
 * Warning: if you are adapting this code to be used in a production
 * program, please notice that this function DOES NOT free the heap
 * memory it allocates, namely the array sample->response and its
 * components.
 */
void sample_receive(int sockfd, struct sampletran *sample) {
 int totalLength, recordLength, segmentIndex, returnCode, reasonCode;
 char xsm_flg;
 char reserved;
 char * * segments;
 char * identifier;
 char * modName;
 char * segment;
 int done = 0;

 sample->nakRequired = 0;
 sample->ackRequired = 0;
 /*
 * malloc() up the segment array
 */
 segments = (char * *) malloc(sizeof(char *) * MAX_SEGMENTS);
 for (segmentIndex = 0; segmentIndex < MAX_SEGMENTS; segmentIndex++)

segments[segmentIndex] = NULL;
 segmentIndex = 0;

 /* read total length */
 recv(sockfd, &totalLength, sizeof(short), 0);
 /* read flags byte */
 recv(sockfd, &xsm_flg, sizeof(char), 0);
 /* read reserved byte */
 recv(sockfd, &reserved, sizeof(char), 0);

 /* convert total length from big endian */
 totalLength = ntohs(totalLength);

 /* read identifier (exitID) */
 if (totalLength < 12) {
 identifier = (char *) malloc(sizeof(char) * (totalLength - 4) + 1);
 memset(identifier, 0, sizeof(char) * (totalLength - 4) + 1);
 recv(sockfd, identifier, totalLength - 4, 0);
 } else {
 identifier = (char *) malloc(sizeof(char) * 8 + 1);
 memset(identifier, 0, sizeof(char) * 8 + 1);
 recv(sockfd, identifier, 8, 0);
 }

Appendix A. Sample code: Non-IMS Connector for Java client code 477

 /* check first segment for possible errors / alerts */
 if (strcmp(identifier, “*REQMOD*”) == 0) {
 /* read mod name */
 modName = (char *) malloc(sizeof(char) * 8);
 recv(sockfd, modName, 8, 0);
 /* add mod name to segment array */
 segments[segmentIndex++] = modName;
 } else if (strcmp(identifier, “*REQSTS*”) == 0) {
 /* read return code and reason code */
 recv(sockfd, &returnCode, sizeof(int), 0);
 recv(sockfd, &reasonCode, sizeof(int), 0);
 /* convert them from big endian */
 returnCode = ntohl(returnCode);
 reasonCode = ntohl(reasonCode);
 /* add them to the segment array */
 segments[segmentIndex] = (char *) malloc(sizeof(char) * 20);
 sprintf(segments[segmentIndex++], “RETURN CODE: %i”, returnCode);
 segments[segmentIndex] = (char *) malloc(sizeof(char) * 20);
 sprintf(segments[segmentIndex++], “REASON CODE: %i”, reasonCode);
 done = 1;
 /* return since there should be no more data */
 /* return segments; */
 } else {
 if (totalLength <= 12)
 segments[segmentIndex++] = identifier;
 else {
 /* read in the rest of the segment data */
 segment = (char *) malloc(sizeof(char) * (totalLength - 12) + 1);
 /* + 1 for trailing zero */
 memset(segment,0,sizeof(char) * (totalLength - 12) + 1); /* Clear buffer */
 recv(sockfd, segment, sizeof(char) * (totalLength - 12), 0);
 segments[segmentIndex] = (char *) malloc(sizeof(char) * (totalLength - 4));
 sprintf(segments[segmentIndex++], “%s%s”, identifier, segment);
 }
 }

 /* continue trying to read in data till we come across *CSMOKY* */
 if (done == 0) {
 while ((strcmp(segment, “*CSMOKY*”) != 0) && (done == 0)) {
 /* read next segment */
 /* read LL */
 recv(sockfd, &recordLength, sizeof(short), 0);
 /* read ZZ */

 /* read flags byte */
 recv(sockfd, &xsm_flg, sizeof(char), 0);
 /* read reserved byte */
 recv(sockfd, &reserved, sizeof(char), 0);

 /* convert record length from big endian */
 recordLength = ntohs(recordLength);
 /* read in segment data */
 segment = (char *) malloc(sizeof(char) * (recordLength - 4) + 1);
 /* + 1 for trailing zero */
 memset(segment,0,sizeof(char) * (recordLength - 4) + 1);/* Clear buffer */
 recv(sockfd, segment, sizeof(char) * (recordLength - 4), 0);
 /* add it to the segment vector */
 segments[segmentIndex++] = segment;
 if (segmentIndex >= MAX_SEGMENTS) {
 fprintf(stderr,”Maximum number of segments exceeded.\n”);

478 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

 done = 1;
 sample->nakRequired = 1;
 }
 }
 }
 if (sample->nakRequired == 0) {
 /* Now we have reached the CSM or the RSM */
 /* Check if ACK required */
 if (xsm_flg & 0x20) {
 sample->ackRequired = 1;
 } else {
 sample->ackRequired = 0;
 }
 }
 sample->response = segments;
 free(identifier);
}

/***/
/* main function */
/***/
/*
 * We use the getopt() function to parse the command-line arguments. This
 * function is part of the POSIX.2 specification, and should be present
 * in any reasonably compatible UN*X system. It’s on Linux, on *BSDs, on
 * Mac OS X, in AIX and in USS. In case your system does not have
 * a getopt(), it should be easy to overcome the limitation, since
 * the command-parsing is quite trivial.
 */

int main(int argc, char **argv) {
 int sockfd, i;
 int seglen = 0;
 int forceNAK = 0;
 int ackNakSent = 0;
 struct sampletran sample;
 char * segment = NULL;
 int ch;
 unsigned int timerInt=0;

 /* Initialize the sample structure to zeroes */
 memset(&sample, 0, sizeof(sample));
 sample.commitMode = CM1; /* Default: commit mode 1 */
 sample.syncLevel = SL_CONFIRM; /* Defaulr: Sync Level CONFIRM */
 sample.resumeTpipe = 0; /* Default: no RESUME TPIPE */
 sample.sendOnly = 0; /* Default: no SEND ONLY */
 sample.exitID = “*SAMPLE*”; /* Use sample EXIT */
 sample.timer = 0; /* User ICONN default value */

 /* Allocate storage for the sample structure items */
 /* In a real-world application we should check if the malloc() succeeded! */
 sample.datastoreID = malloc(9); strcpy(sample.datastoreID, BLANK8);
 sample.racfUserID = malloc(9); strcpy(sample.racfUserID, BLANK8);
 sample.racfGroupName = malloc(9); strcpy(sample.racfGroupName, BLANK8);
 sample.password = malloc(9); strcpy(sample.password, BLANK8);
 sample.clientID = malloc(9); strcpy(sample.clientID, BLANK8);
 sample.ltermName = malloc(9); strcpy(sample.ltermName, BLANK8);
 sample.tranCode = malloc(9); strcpy(sample.tranCode, BLANK8);
 sample.rerouteName = malloc(9); strcpy(sample.rerouteName, BLANK8);

Appendix A. Sample code: Non-IMS Connector for Java client code 479

 /* Loop through the command line arguments, and fill up the sample structure and
 some other variables */
 while((ch=getopt(argc,argv,”h:p:d:u:g:w:c:t:l:m:o:rsnxy:”)) != -1) {
 switch(ch) {
 case ‘h’:
 sample.hostName = optarg;
 break;
 case ‘p’:
 sample.portNumber = atoi(optarg);
 break;
 case ‘d’:
 padCopy(sample.datastoreID, optarg, 8,’ ‘);
 break;
 case ‘u’:
 padCopy(sample.racfUserID, optarg, 8, ‘ ‘);
 break;
 case ‘g’:
 padCopy(sample.racfGroupName, optarg, 8, ‘ ‘);
 break;
 case ‘w’:
 padCopy(sample.password, optarg, 8, ‘ ‘);
 break;
 case ‘c’:
 padCopy(sample.clientID, optarg, 8, ‘ ‘);
 break;
 case ‘t’:
 padCopy(sample.ltermName, optarg, 8, ‘ ‘);
 break;
 case ‘l’:
 if (strncmp(optarg,”N”,1) == 0) {
 sample.syncLevel = SL_NONE;
 } else if (strncmp(optarg,”C”,1) == 0) {
 sample.syncLevel = SL_CONFIRM;
 } else if (strncmp(optarg,”S”,1) == 0) {
 sample.syncLevel = SL_SYNCPT;
 } else {
 syntaxError(“Sync level must be N, C or S. The default value is C.”);
 }
 break;
 case ‘m’:
 if (strncmp(optarg,”0”,1) == 0) {
 sample.commitMode = CM0;
 } else if (strncmp(optarg,”1”,1) == 0) {
 sample.commitMode = CM1;
 } else {
 syntaxError(“Commit mode must be 0 or 1. The default value is 1.”);
 }
 break;
 case ‘o’:
 i = sscanf(optarg,”%x”,&timerInt);
 if (timerInt > UCHAR_MAX || i == 0) {
 syntaxError(“The timer value must be a hexadecimal byte.”);
 } else {
 sample.timer = (unsigned char) timerInt;
 }
 break;
 case ‘r’:
 sample.resumeTpipe = 1;
 sample.commitMode = CM0;

480 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

 break;
 case ‘s’:
 sample.sendOnly = 1;
 sample.commitMode = CM0;
 break;
 case ‘n’:
 forceNAK = 1;
 break;
 case ‘x’:
 sample.purge = 1;
 break;
 case ‘y’:
 sample.reroute = 1;
 if (optarg[0] == ‘-’) {
 optind--; // Back up one pos in arg list
 } else {
 padCopy(sample.rerouteName,optarg,8,’ ‘);
 }
 break;
 default:
 break;
 }
 }
 argc -= optind;
 argv += optind;

 /*
 At this point argc contains the number of non-parsed arguments, and
 argv points to the first one of those arguments.

 The first one should be the transaction code, and the rest the transaction text.
 */

 /* We can have a trancode, or --resumetpipe, but not both */
 if (argc < 1 && sample.resumeTpipe == 0)
 syntaxError(“Should specify at least the transaction code.”);
 else if (argc > 0 && sample.resumeTpipe == 1)
 syntaxError(“Transaction data not allowed with -r.”);

 /* Check the coherence of the command line args */
 if (memcmp(sample.hostName, BLANK8, 8) == 0 ||
 sample.portNumber == 0) {
 syntaxError(“You must specify host name and port number.”);
 }

 if (sample.resumeTpipe == 1) {
 if (memcmp(sample.ltermName, BLANK8, 8) != 0 ||
 sample.sendOnly != 0 ||
 sample.commitMode != CM0) {
 syntaxError(“Lterm, commit mode and SEND ONLY are not allowed with -r.”);
 }
 if (sample.sendOnly == 1) {
 if (sample.commitMode != CM0) {
 syntaxError(“-s (SEND ONLY) requires commit mode 0.”);
 }
 }
 }

 /*
 * Check the coherence between SYNC LEVEL and COMMIT MODE.

Appendix A. Sample code: Non-IMS Connector for Java client code 481

 */
 if (sample.commitMode == CM0 && sample.syncLevel != SL_CONFIRM) {
 syntaxError(“Commit mode 0 requires Synclevel CONFIRM.”);
 }

 /*
 * Check if NAK can be forced
 */
 if (forceNAK != 0 && sample.syncLevel == SL_NONE) {
 fprintf(stderr, “The -n flag (force NAK) will be ignored (sync level = NONE).\n”);
 }

 /* Let’s parse the rest of the command line arguments */
 if (argc > 0) {
 if (strlen(argv[0]) > 8) {
 syntaxError(“The transaction code is longer than 8 characters.”);
 } else {
 padCopy(sample.tranCode, argv[0], 8, ‘ ‘);
 }
 /* compute the maximum segment length we need to send our transaction */
 seglen = 0;
 for (i=1; i<argc; i++) {
 seglen += strlen(argv[i]); /* Add next argument size */
 seglen++; /* Add space for one blank or trailing zero*/
 }
 /* Allocate memory for our segment, and zero-init it */
 segment = malloc(seglen);
 memset(segment, 0, seglen);

 /* Concatenate the arguments after trancode into our segment */
 for (i=1; i<(argc-1); i++) {
 strlcat(segment,argv[i],seglen);
 strlcat(segment,” “,seglen);
 }
 strlcat(segment,argv[argc-1],seglen); /* Add last argument */

 /* Now we have our transaction text, and we are ready to proceed */
 sample.tranText = segment;
 }

 listSampleTran(&sample);

 printf(“Connecting to the host...\n”);
 sockfd = sample_connect(&sample);

 if (sample.resumeTpipe == 1) {
 printf(“Sending RESUME TPIPE...\n”);
 sample_send(sockfd, &sample, ‘R’);
 } else {
 printf(“Sending input data...\n”);
 if (sample.sendOnly == 0) {
 sample_send(sockfd, &sample, ‘ ‘);
 } else {
 sample_send(sockfd, &sample, ‘S’);
 }
 }

 if (sample.sendOnly == 0) {
 printf(“Receiving response...\n”);

482 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

 sample_receive(sockfd, &sample);

 /* print out the segment results */
 i = 0;
 while (i < MAX_SEGMENTS && sample.response[i] != NULL) {
 printf(“Segment %i: %s\n”, i, sample.response[i]);
 i++;
 }
 }

 /* Send NAK, if required */
 if (sample.syncLevel != SL_NONE) {
 if (sample.nakRequired != 0 || forceNAK != 0) {
 printf(“Sending NAK...\n”);
 sample.timer = 0xE9;
 sample_send(sockfd, &sample, ‘N’);
 ackNakSent = 1;
 }
 }

 /* Send ACK, if required */
 if (sample.ackRequired != 0 && forceNAK == 0) {
 printf(“Sending ACK...\n”);
 sample.timer = 0xE9;
 sample_send(sockfd, &sample, ‘A’);
 ackNakSent = 1;
 }

 if (ackNakSent == 1) {
 printf(“Waiting for ACK/NAK response...\n”);
 freeResponse(&sample); /* Free current response segments */
 sample_receive(sockfd, &sample);
 /* print out the segment results */
 i = 0;
 while (i < MAX_SEGMENTS && sample.response[i] != NULL) {
 printf(“Segment %i: %s\n”, i, sample.response[i]);
 i++;
 }
 }

 printf(“Disconnecting from the host...\n”);
 sample_disconnect(sockfd);

 freeSampleTran(&sample);

 return(0);
}

Appendix A. Sample code: Non-IMS Connector for Java client code 483

Java sample source code
Example A-2 provides the Java sample source code.

Example: A-2 Sample Java code for an IMS Connect client (non-IMS Connector for Java)

import java.io.ByteArrayOutputStream;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.net.Socket;
import java.util.Collection;
import java.util.Iterator;
import java.util.Vector;

/**
 * IMS Connector sample client written in Java
 * This class implements a basic IMS Connect client using the TCP/IP
 * sockets interface.
 *
 * @author Jordi Guillaumes Pons and others
 *
 */
public class Sample {

private Socket socket = null;

// connection information
private String hostName;
private int portNumber;

// IMS information
private String tranCode;
private String tranText;
private String datastoreID;
private String ltermName;
private Collection response;

// RACF security information
private String racfUserID;
private String racfGroupName;
private String password;

// IMS Connect information
private String clientID;
private String exitID;
private byte syncLevel;
private byte commitMode;
private boolean sendOnly;
private boolean resumeTpipe;
private boolean ackRequired;
private boolean nakRequired;
private int prefixLength = 96; // With IRM_ARCH = 0x01
private byte timer;
private boolean reRoute;
private boolean purgeAsync;
private String reRouteName;
private boolean RSM = false; // Response is RSM
private int returnCode = 0;

484 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

private int reasonCode = 0;

public static final byte CM0 = (byte) 0x40;
public static final byte CM1 = (byte) 0x20;
public static final byte SL_NONE = (byte) 0;
public static final byte SL_CONFIRM = (byte) 0x01;
public static final byte SL_SYNCPT = (byte) 0x02;
public static final byte SL_PURGE = (byte) 0x04;
public static final byte SL_REROUTE = (byte) 0x08;
public static final byte IRM_F5_NONE = (byte) 0x00;
public static final byte IRM_F5_SINGLE = (byte) 0x01;
public static final byte IRM_F5_AUTO = (byte) 0x02;
public static final byte IRM_F5_NOAUTO = (byte) 0x04;

///
// Constructor //
///

/**
 * Constructor for a Sample object.
 *
 * @param hostName Host name or IP address in dot format
 * @param portNumber Port number which IMS Connect listens
 * @param datastoreID Name of the IMS System we want to send transactions
 * @param ltermName LTERM override
 * @param tranCode Transaction code
 * @param tranText Transaction text
 * @param clientID Unique client identification
 * @param racfUserID RACF User id
 * @param racfGroupName RACF Group name
 * @param password RACF password
 * @param syncLevel Sync Level coded value
 * @param commitMode Commit Mode coded value
 * @param sendOnly This interaction will be send only
 * @param resumeTpipe This interaction is a RESUME TPIPE
 */
public Sample(

String hostName,
int portNumber,
String datastoreID,
String ltermName,
String tranCode,
String tranText,
String clientID,
String racfUserID,
String racfGroupName,
String password,
byte syncLevel,
byte commitMode,
boolean sendOnly,
boolean resumeTpipe,
byte timer,
boolean purge,
boolean reroute,
String rerouteName) {
// set the corresponding transaction data, making all strings 8
// characters long
this.hostName = hostName;
this.portNumber = portNumber;
this.datastoreID = stringPad(datastoreID, ' ', 8);

Appendix A. Sample code: Non-IMS Connector for Java client code 485

this.ltermName = stringPad(ltermName, ' ', 8);
this.tranCode = stringPad(tranCode, ' ', 8);
this.tranText = tranText;
this.clientID = stringPad(clientID, ' ', 8);
this.racfUserID = stringPad(racfUserID, ' ', 8);
this.racfGroupName = stringPad(racfGroupName, ' ', 8);
this.password = stringPad(password, ' ', 8);
this.reRouteName = stringPad(rerouteName, ' ', 8);

// Set the interaction parameters
this.syncLevel = syncLevel;
this.commitMode = commitMode;
this.sendOnly = sendOnly;
this.resumeTpipe = resumeTpipe;
this.timer = timer;
this.purgeAsync = purge;
this.reRoute = reroute;

// We will use HWSSMPL0
this.exitID = "*SAMPLE*";

}

///
// Communications setup methods //
///

/**
 * Establish a socket connection with the IMS Connect host
 */
public void connect() {

try {
// open a socket for the transaction
socket = new Socket(hostName, portNumber);

} catch (Exception e) {
System.err.println(e);
System.exit(1);

}
}

/**
 * Drop the socket connection.
 */
public void disconnect() {

// verify socket open before attempting to disconnect
if (socket != null) {

try {
socket.close();
socket = null;

} catch (Exception e) {
System.err.println(e);
System.exit(1);

}
}

}

///
// Send and receive methods //
///

/**

486 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

 * Build and send a message to IMS Connect
 * This method sends the message using a single write() call
 * to improve eficiency and performance.
 * The z/OS TCP/IP stack can be configured in such way that
 * there is a 200ms delay for every ack message (TCP ack, not
 * IMS Connect ACK). If such is the case, then you should expect
 * a severe performance penalty if you use multiple write() calls.
 * The old IMS Connect sample used a write for each field. DO
 * NOT DO THAT.
 * @param msgType Value for the IRM_F4 field (' ','R','A','N')
 */
public void send(char msgType) {

int totalLength;
String segment = null;
response = null;
byte irm_f3 = 0;

if (msgType == ' ')
segment = this.tranText;

// Compute the total length of the message.
// In java we don't care about byte order, since the write() methods
// of DataOutputStream always work in network order.

// +4 for first LL, ZZ and final LL, ZZ
totalLength = 4 + prefixLength + 4;

// add in segment length, if segment is defined
if ((segment != null) && (segment.length() > 0)) {

totalLength += segment.length() + 12; // +12 for LL, ZZ, tranCode
}

try {
// Allocate a conveniently sized byte stream.
ByteArrayOutputStream messageBuffer =

new ByteArrayOutputStream(totalLength);
// Associate a DataOutputStream to this newly created byte stream.
DataOutputStream out = new DataOutputStream(messageBuffer);
// Prepare another DataOutputStream to send the real message
// to our IP socket.
DataOutputStream outsocket =

new DataOutputStream(socket.getOutputStream());

// Compute the IRM_F3 byte
irm_f3 = syncLevel;
if (purgeAsync) {

irm_f3 |= SL_PURGE;
}
if (reRoute) {

irm_f3 |= SL_REROUTE;
}

// Build the IRM prefix
out.writeInt(totalLength); // total message length
out.writeShort(prefixLength); // IRM_LL
out.writeByte(0x01); // IRM_ARCH
out.writeByte(0x00); // IRM_F0
// out.writeShort((short) 0); // IRM_RSV
out.writeBytes(exitID); // IRM_ID
out.writeInt(0); // IRM_RES

Appendix A. Sample code: Non-IMS Connector for Java client code 487

out.writeByte(IRM_F5_SINGLE); // IRM_F5
out.writeByte(timer); // IRM_TIMER
out.writeByte(0x40); // IRM_SOCKET - Transaction socket
out.writeByte(0); // IRM_ES
out.writeBytes(clientID); // IRM_CLIENTID
out.writeByte(0); // IRM_F1 - No MODNAME request
out.write(commitMode); // IRM_F2 - Set commit mode
out.write(irm_f3); // IRM_F3 - Set sync level et al
out.writeByte(msgType); // IRM_F4 - Set message type
out.writeBytes(tranCode); // IRM_TRNCOD
out.writeBytes(datastoreID); // IRM_IMSDESTID
out.writeBytes(ltermName); // IRM_LTERM
out.writeBytes(racfUserID); // IRM_RACF_USERID
out.writeBytes(racfGroupName); // IRM_RACF_GRPNAME
out.writeBytes(password); // IRM_RACF_PW
out.writeBytes(" "); // IRM_APPL_NM
out.writeBytes(reRouteName); // IRM_REROUT_NM

// Add the transaction segment (trancode + trantext) if required
if (msgType == ' ' || msgType == 'S') {

// 12 for LL and ZZ and trancode
short recordLength = (short) (segment.length() + 12);
out.writeShort(recordLength); // Transaction LL
out.writeShort((short) 0); // Transaction ZZ
out.writeBytes(tranCode); // Transaction code
out.writeBytes(segment); // Transaction data

}

// send final LL ZZ to signal no more data to IMS Connect
out.writeShort((short) 4); // send LL
out.writeShort((short) 0); // send ZZ

// Send the built message to IMS Connect
out.flush();
outsocket.write(messageBuffer.toByteArray());
outsocket.flush();

} catch (Exception e) {
System.err.println(e);
System.exit(1);

}
}

/**
 * Read and parse the response from IMS Connect
 * We are using HWSSMPL0, so we won't have a total-length
 * prefix. If we were using HWSSMPL1 instead, wer should have
 * taken that into consideration.
 */
public void receive() {

byte xsm_flg = 0; // Flag byte
boolean done = false; // End of loop indication

// initialize segment vector
Vector segments = new Vector();

RSM = false;
try {

DataInputStream in = new DataInputStream(socket.getInputStream());

// read total length. We don't care about byte order

488 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

int totalLength = (int) in.readShort();
// read flags
xsm_flg = in.readByte();
// read and ignore reserved byte
in.readByte();

// read identifier
byte[] identifierBytes = null;
if (totalLength < 12) {

identifierBytes = new byte[totalLength - 4];
} else {

identifierBytes = new byte[8];
}
in.readFully(identifierBytes);
String identifier = new String(identifierBytes);

// check first segment for possible errors / alerts
if (identifier.equals("*REQMOD*")) { // Parse RMM

// read mod name
byte[] modBytes = new byte[8];
in.readFully(modBytes);
String modName = new String(modBytes);
// add mod name to segment vector
segments.add("MOD NAME: " + modName);

} else if (identifier.equals("*REQSTS*")) { // Parse RSM
// read return code and reason code
RSM = true;
returnCode = in.readInt();
reasonCode = in.readInt();
done = true; // No more data after RSM

} else {
if (totalLength <= 12)

segments.add(identifier);
else {

// read in the rest of the segment data
byte[] segmentBytes = new byte[totalLength - 12];
// identifier was actually
in.readFully(segmentBytes);
// part of the data. So we add it
segments.add(identifier + new String(segmentBytes));

}
}

String segmentData = "";
// continue trying to read in data till we come across *CSMOKY*
while (!segmentData.equals("*CSMOKY*") && !done) {

// read next segment
// read LL, XSM_FLG and reserved byte
short recordLength = in.readShort();
xsm_flg = in.readByte();
in.readByte();
// read in segment data
byte[] segmentBytes = new byte[recordLength - 4];
in.readFully(segmentBytes);
segmentData = new String(segmentBytes);
// add it to the segment vector
segments.add(segmentData);

}

// At this point, we have just read an RSM or a CSM.

Appendix A. Sample code: Non-IMS Connector for Java client code 489

// Check if an ACK will be required

if ((xsm_flg & 0x20) == 0x20)
ackRequired = true;

} catch (Exception e) {
System.err.println(e);
System.exit(1);

}

// return segment vector
this.response = segments;

}

///
// Utility methods //
///

/**
 * Pads or truncates a string to the specified length
 * @param string String to pad or truncate
 * @param padChar Padding character
 * @param padLength Length to pad or truncate to
 * @return The padded or truncated string
 */
private String stringPad(String string, char padChar, int padLength) {

String input = string;
// check if string is null, use a space in that case
if (input == null)

input = " ";
// construct a stringbuffer for padding efficiency
StringBuffer stringBuffer = new StringBuffer(input);
// pad the stringbuffer if string.length() is less than padLength
for (int i = 0; i < (padLength - input.length()); i++) {

stringBuffer.append(padChar);
}
// if truncation was necessary, substring will take care of that
return stringBuffer.substring(0, padLength);

}

/**
 * Print an error message and show the correct command-line syntax
 * @param message Message to print
 */
private static void syntaxError(String message) {

System.err.println(message);

System.err.println("Syntax:");
System.err.println(

"SEND : java Sample -h hostName -p portNumber -d datastoreName");
System.err.println(

" [-c clientid] [-t ltermName]");
System.err.println(

" [-u userId [-g groupName] [-w password]]");
System.err.println(" [-x] [-y [rerouteName]]");
System.err.println(

" -m {0|1} [-l {N|C|S}] [-s] [-n] trancode
trandata...");

System.err.println(
"RESUME TPIPE: java Sample -h hostName -p portNumber -d datastoreName");

490 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

System.err.println(" [-c clientid] -r [-n]");
System.err.println(

" [-u userId [-g groupName] [-w password]]");
System.err.println(

"The -m flag sets the commmit mode to 0 or 1 on SEND interactions.");
System.err.println(

"The -x flag enables the purge not deliverable feature.");
System.err.println(

"The -y flag enables the reroute not deliverable feature. You can specify an
optional");

System.err.println(" reroute destination name.");
System.err.println(

"The -l flag sets the Sync Level to N(one), C(onfirm) or S(ynch) on SEND
interactions.");

System.err.println(
"The -n flag forces a NAK if the Sync Level is not NONE.");

System.err.println("The -s flag sets the interaction as SEND ONLY.");
System.err.println(

"The Datastore Id (-d flag) must be specified unless your IMS Connect exits take
care of setting it.");

System.exit(8);
}

/**
 * Return a printable String representation of an instance of Sample
 */
public String toString() {

// Use a PrintWriter based on a StringWriter
// to build the String representation
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter(sw);

pw.println("IMS Connect information:");
pw.println("\tHostname :\t" + hostName);
pw.println("\tPort :\t" + portNumber);
pw.println("\tClient ID :\t" + clientID);
pw.println("\texitID :\t" + exitID);
pw.print("\tsyncLevel :\t");
switch (syncLevel) {

case SL_NONE :
pw.print("NONE\n");
break;

case SL_CONFIRM :
pw.print("CONFIRM\n");
break;

case SL_SYNCPT :
pw.print("SYNCPOINT\n");
break;

default :
pw.print("UNKNOWN\n");
break;

}
pw.print("\tcommitMode:\t");
switch (commitMode) {

case CM0 :
pw.print("0 - COMMIT THEN SEND\n");
break;

case CM1 :
pw.print("1 - SEND THEN COMMIT\n");
break;

Appendix A. Sample code: Non-IMS Connector for Java client code 491

default :
pw.print("UNKNOWN!\n");
break;

}
pw.println("\tSend Only:\t" + sendOnly);
pw.println("\tPurge :\t" + purgeAsync);
pw.println("\tReRoute :\t" + reRoute);
if (reRoute) {

pw.println("\t Name:\t" + reRouteName);
}

pw.print("IMS information:\n");
pw.println("\tDatastore :\t" + datastoreID);
pw.println("\tLTerm :\t" + ltermName);
if (resumeTpipe) {

pw.println("RESUME TPIPE");
} else {

pw.println("Transaction information:");
pw.println("\tCode :\t" + tranCode);
pw.println("\tText :\t" + tranText);

}
// Flush the Stream and return the built String
pw.flush();
return sw.getBuffer().toString();

}

///
// Main method //
///

/**
 * Main static procedure - execute one interaction.
 */
public static void main(String[] args) {

int i = 0;
String hostName = null;
String portNumberString = null;
int portNumber = 0;
String datastoreID = null;
String racfUserID = null;
String racfGroupName = null;
String password = null;
String clientID = null;
String ltermName = null;
String commitModeString = null;
String timeoutString = null;
byte timeout = (byte) 0;
byte commitMode = CM1;
String syncLevelString = "C";
byte syncLevel = SL_CONFIRM;
boolean resumeTpipe = false;
String tranCode = null;
String tranText = null;
boolean sendOnly = false;
boolean forceNAK = false;
boolean purge = false;
boolean reroute = false;
String rerouteName = null;
String segment = null;
boolean endProcess = false;

492 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

// Parse the command line parameters.

boolean endParseable = false;
for (i = 0; i < args.length && !endParseable; i++) {

if (args[i].equals("-h"))
hostName = args[++i];

else if (args[i].equals("-p"))
portNumberString = args[++i];

else if (args[i].equals("-d"))
datastoreID = args[++i];

else if (args[i].equals("-u"))
racfUserID = args[++i];

else if (args[i].equals("-g"))
racfGroupName = args[++i];

else if (args[i].equals("-w"))
password = args[++i];

else if (args[i].equals("-c"))
clientID = args[++i];

else if (args[i].equals("-t"))
ltermName = args[++i];

else if (args[i].equals("-m"))
commitModeString = args[++i];

else if (args[i].equals("-l"))
syncLevelString = args[++i];

else if (args[i].equals("-r")) {
resumeTpipe = true;
commitMode = CM0;

} else if (args[i].equals("-s")) {
sendOnly = true;
commitMode = CM0;

} else if (args[i].equals("-n")) {
forceNAK = true;

} else if (args[i].equals("-o")) {
timeoutString = args[++i];

} else if (args[i].equals("-x")) {
purge = true;

} else if (args[i].equals("-y")) {
reroute = true;
if (!args[i + 1].startsWith("-")) {

rerouteName = args[++i];
}

} else {
endParseable = true;
i--; // Adjust the index so we not jump over the parameter.

}
}

// At this point, the variable i contains the index of the first
// non-parsed parameter. We assume it's the transaction code we want
// to send, followed by the transaction text.

// let's do some sanity test

// Host and port are mandatory
if (hostName == null || portNumberString == null) {

syntaxError("You must specify the host name and the port number.");
}

// Port number must be numeric

Appendix A. Sample code: Non-IMS Connector for Java client code 493

try {
portNumber = Integer.parseInt(portNumberString);

} catch (NumberFormatException nfe) {
syntaxError("The port number should be an integer.");

}

// IRM_TIMER value should be an hex byte
if (timeoutString != null) {

try {
timeout = (byte) Byte.parseByte(timeoutString, 16);

} catch (NumberFormatException nfe) {
syntaxError("The timer value should be an hexadecimal byte.");

}
}

// Check commit mode.
if (commitModeString != null) {

if (commitModeString.equals("0")) {
commitMode = CM0;

} else if (commitModeString.equals("1")) {
commitMode = CM1;

} else {
syntaxError("The commit mode should be 0 or 1. The default value es 1.");

}
}

// Check sync level
if (syncLevelString.equals("N")) {

syncLevel = SL_NONE;
} else if (syncLevelString.equals("C")) {

syncLevel = SL_CONFIRM;
} else if (syncLevelString.equals("S")) {

syncLevel = SL_SYNCPT;
} else {

syntaxError("The sync level should be N, C or S. The default is C (Confirm).");
}

// No trancode+data allowed in RESUME TPIPE
if (resumeTpipe) {

if (i < args.length) {
syntaxError("Transaction data not allowed with -r (RESUME TPIPE).");

} else {
// No LTERM nor commit mode allowed in RESUME TPIPE
if (ltermName != null

|| commitMode != CM0
|| purge
|| reroute) {
syntaxError("Lterm, commit mode, purge and reroute are not allowed with -r

(RESUME TPIPE).");
}

}
} else {

// Transaction code is mandatory in SEND interactions
if (i == args.length) {

syntaxError("Should specify at least a transaction code.");
}
// SEND ONLY not compatible with CM1
if (sendOnly && commitMode != CM0) {

syntaxError("-s (SEND ONLY) requires commit mode 0.");
}

494 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

}

// CM1 requires sync level CONFIRM
if (commitMode == CM0 && syncLevel != SL_CONFIRM) {

syntaxError("Commit mode 0 requires sync level CONFIRM.");
}

// In Commit Mode 0 and SL_NONE, we will not send a NAK even if
// it was requested.
if (forceNAK && syncLevel == SL_NONE) {

System.err.println(
"The -n flag (force NAK) will be ignored (sync level = NONE).");

}

// Parse the transaction text
if (i < args.length) {

tranCode = args[i++];

// Now i points to the first token of the transaction text. We'll
// concatenate all those tokens into a String.

StringBuffer textbuf = new StringBuffer(1024); // Initial size: 1K

for (; i < (args.length - 1); i++) {
textbuf.append(args[i]);
textbuf.append(" ");

}
textbuf.append(args[args.length - 1]);

// set input text from StringBuffer
segment = new String(textbuf);

}

// create a new sample object
Sample sample =

new Sample(
hostName,
portNumber,
datastoreID,
ltermName,
tranCode,
segment,
clientID,
racfUserID,
racfGroupName,
password,
syncLevel,
commitMode,
sendOnly,
resumeTpipe,
timeout,
purge,
reroute,
rerouteName);

// Display the sample object (it will use the toString() method)
System.out.println(sample);

// connect to the host
System.out.println("Connecting to the host...");

Appendix A. Sample code: Non-IMS Connector for Java client code 495

sample.connect();

// We will deal separatelly for SEND_RECEIVE, SEND_ONLY and RESUME TPIPE

if (sample.isResumeTpipe()) {
System.out.println("Sending RESUME TPIPE...");
sample.send('R');
System.out.println("Receiving response...");
sample.receive();
if (!sample.isRSM()) {

// print out the response

Iterator it = sample.getResponse().iterator();
i = 0;
while (it.hasNext()) {

System.out.println("Segment " + i++ +": " + it.next());
}

} else {
System.out.print("Status code: " + sample.getReturnCode());
System.out.println("(X'" + Integer.toHexString(sample.getReturnCode()) +

"')");
System.out.print("Reason code: " + sample.getReasonCode());
System.out.println("(X'" + Integer.toHexString(sample.getReasonCode()) +

"')");
}
System.out.flush();
// If requested and posible, send NAK
if (sample.isAckRequired() && (sample.isNakRequired() || forceNAK)) {

System.out.println("Sending NAK...");
sample.setTimer((byte) 0xe9);
sample.send('N');

} else {
// If necessary, send ACK
if (sample.isAckRequired()) {

System.out.println("Sending ACK...");
sample.setTimer((byte) 0xe9);
sample.send('A');

}
}

} else if (sample.isSendOnly()) {
System.out.println("Sending SEND ONLY transaction ...");
sample.send(' ');

} else {
System.out.println("Sending transaction ...");
sample.send(' ');
System.out.println("Receiving response...");
sample.receive();
// print out the response
Iterator it = sample.getResponse().iterator();
i = 0;
while (it.hasNext()) {

System.out.println("Segment " + i++ +": " + it.next());
}
System.out.flush();
while (!sample.isRSM()) {

// If requested and posible, send NAK
if (sample.isAckRequired()

&& (sample.isNakRequired() || forceNAK)) {
System.out.println("Sending NAK...");

496 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

sample.setTimer((byte) 0xe9);
sample.send('N');

} else {
// If necessary, send ACK
if (sample.isAckRequired()) {

System.out.println("Sending ACK...");
sample.setTimer((byte) 0xe9);
sample.send('A');

}
}
System.out.println("Receiving ACK/NAK response...");
sample.receive();
// print out the response
it = sample.getResponse().iterator();
i = 0;
while (it.hasNext()) {

System.out.println("Segment " + i++ +": " + it.next());
}
System.out.flush();

}
System.out.print("Status code: " + sample.getReturnCode());
System.out.println("(X'" + Integer.toHexString(sample.getReturnCode()) + "')");
System.out.print("Reason code: " + sample.getReasonCode());
System.out.println("(X'" + Integer.toHexString(sample.getReasonCode()) + "')");

}
// disconnect from the host
System.out.println("Disconnecting from the host...");
sample.disconnect();

}

///
// Some getter methods follow //
///

/**
 * @return Returns the response.
 */
public Collection getResponse() {

return response;
}

/**
 * @return Returns the resumeTpipe.
 */
public boolean isResumeTpipe() {

return resumeTpipe;
}

/**
 * @return Returns the sendOnly.
 */
public boolean isSendOnly() {

return sendOnly;
}

/**
 * @return Returns the syncLevel.
 */
public byte getSyncLevel() {

return syncLevel;

Appendix A. Sample code: Non-IMS Connector for Java client code 497

}

/**
 * @return Returns the ackRequired.
 */
public boolean isAckRequired() {

return ackRequired;
}

/**
 * @return Returns the nakRequired.
 */
public boolean isNakRequired() {

return nakRequired;
}
/**
 * @return Returns the timer.
 */
public byte getTimer() {

return timer;
}
/**
 * @param timer The timer to set.
 */
public void setTimer(byte timer) {

this.timer = timer;
}

/**
 * @return
 */
public boolean isRSM() {

return RSM;
}

/**
 * @return
 */
public int getReasonCode() {

return reasonCode;
}

/**
 * @return
 */
public int getReturnCode() {

return returnCode;
}

}

498 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Appendix B. IMS RDS application example

The following samples illustrate simple IMS database access (query only) through the IMS
Remote Database Services (RDS). We use a Web application that consists of HTML,
servlets, and JSP for this purpose. The servlets have the JDBC access code for the IMS
database access. We developed these materials in the Rational Application Developer for
Windows product. You can download the materials in the Rational Application Developer
project interchange format from the following IBM Redbook Web site:

ftp://www.redbooks.ibm.com/redbooks/SG246794/IMSRDSSampleProjects.zip

Table B-1 lists the sample source components.

Table B-1 IMS RDS sample source

B

Resource Description

ImsRdsSampleGlobal.java Servlet for IMS JDBC access with global transaction semantics

ImsRdsSample.java Servlet for IMS JDBC access with local transaction semantics

GlobalInput.html HTML document that invokes the servlet for global transaction

LocalInput.html HTML document that invokes the servlet for local transaction

Output.jsp JSP file for display the results

© Copyright IBM Corp. 2006. All rights reserved. 499

ftp://www.redbooks.ibm.com/redbooks/SG246794/IMSRDSSampleProjects.zip

ImsRdsSampleGlobal.java
ImsRdsSampleGlobal.java is the servlet for the IMS JDBC access with the global transaction
semantics, as shown in Example B-1.

Example: B-1 ImsRdsSampleGlobal.java

package imsRds;

import java.io.IOException;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.servlet.RequestDispatcher;
import javax.servlet.Servlet;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import java.sql.*;
import javax.sql.*;
import javax.transaction.UserTransaction;

public class ImsRdsSampleGlobal extends HttpServlet implements Servlet {

DataSource dataSource;
UserTransaction userTransaction;

public void init() throws ServletException {
try {
 //Obtain the initial JNDI Naming context for JDBC Connection

System.out.println("IMS RDS Servlet : Start ");
Context initialContext = new InitialContext();
dataSource = (DataSource)initialContext.lookup("java:comp/env/imsjavaRDSRedBook");
System.out.println("IMS RDS Servlet : Success Create DataSource");

//Obtain the initial JNDI Naming context for User Transaction
Context initctx2 = new InitialContext();
userTransaction = (UserTransaction)initctx2.lookup("java:comp/UserTransaction");
System.out.println("IMS RDS Servlet : Success Create UserTransaction");

}catch (Exception e){
e.printStackTrace();

}
}
protected void doPost(HttpServletRequest arg0, HttpServletResponse arg1)

throws ServletException, IOException {

Connection connection = null;
Statement statement = null;
ResultSet results = null;

String LastName = null;
String FirstName = null;
String Extension = null;
String ZipCode = null;

try{
//Start User Transaction

500 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

userTransaction.begin();
System.out.println("IMS RDS Servlet : Success Start UserTransaction");

//Get JDBC Connection
connection = dataSource.getConnection();
System.out.println("IMS RDS Servlet : Success Get Connection");

//Get Key Value from Input Page
String keyValue = arg0.getParameter("keyValue").trim();

//Issue SQL
String queryString = "SELECT * FROM PhoneBook.Person "

+ "WHERE Person.LastName = '" + keyValue + "'";
statement = connection.createStatement();
results = statement.executeQuery(queryString);

//Get Output
while(results.next()) {

LastName = results.getString("Person.LastName");
FirstName = results.getString("Person.FirstName");
Extension = results.getString("Person.Extension");
ZipCode = results.getString("Person.ZipCode");

}
System.out.println("IMS RDS Servlet : Success Get Result");

//Commit UserTransaciton
userTransaction.commit();
System.out.println("IMS RDS Servlet : Success Commit UserTransaction");

//Set the result to the JSP
 arg0.setAttribute("OUT__LastName", LastName);

arg0.setAttribute("OUT__FirstName", FirstName);
arg0.setAttribute("OUT__Extension", Extension);
arg0.setAttribute("OUT__ZipCode", ZipCode);

} catch (Exception e) {
try{

//RollBack UserTransaciton
userTransaction.rollback();
System.out.println("IMS RDS Servlet : Success Rollback UserTransacton");

//Close JDBC Resources
if (statement != null) {statement.close();}
if (connection != null) {connection.close();}
System.out.println("IMS RDS Servlet : Caught exception in main section is: " + e);
arg0.setAttribute("e",e.getMessage());

} catch (Exception s){
System.out.println("IMS RDS Servlet : Caught exception in rollback section is: " + s);
arg0.setAttribute("s",s.getMessage());

}
} finally {

try{
//Close JDBC Resources
if (statement != null) {statement.close();}
if (connection != null) {connection.close();}
RequestDispatcher disp = arg0.getRequestDispatcher("Output.jsp");
disp.forward(arg0,arg1);
System.out.println("IMS RDS Servlet : Success Dispatch Result");
System.out.println("IMS RDS Servlet : End");

} catch (Exception t){

Appendix B. IMS RDS application example 501

System.out.println("IMS RDS Servlet : Caught exception in final section is: " + t);
arg0.setAttribute("t",t.getMessage());
RequestDispatcher disp = arg0.getRequestDispatcher("Output.jsp");
System.out.println("IMS RDS Servlet : Success Dispatch Result");
System.out.println("IMS RDS Servlet : End");
disp.forward(arg0,arg1);

}
}

}
}

ImsJavaRdsSample.java
ImsJavaRdsSample.java is the servlet for the IMS JDBC access with the local transaction
semantics, as shown in Example B-2.

Example: B-2 ImsJavaRdsSample.java

package imsRds;

import java.io.IOException;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.servlet.RequestDispatcher;
import javax.servlet.Servlet;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import java.sql.*;
import javax.sql.*;

public class ImsRdsSample extends HttpServlet implements Servlet {

DataSource dataSource;

public void init() throws ServletException {
try {
 //Obtain the initial JNDI Naming context for JDBC Connection

System.out.println("IMS RDS Servlet : Start ");
Context initialContext = new InitialContext();
dataSource = (DataSource)initialContext.lookup("java:comp/env/imsjavaRDSRedBook");
System.out.println("IMS RDS Servlet : Success Create DataSource");

}catch (Exception e){
e.printStackTrace();

}
}
protected void doPost(HttpServletRequest arg0, HttpServletResponse arg1)

throws ServletException, IOException {

Connection connection = null;
Statement statement = null;
ResultSet results = null;

String LastName = null;

502 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

String FirstName = null;
String Extension = null;
String ZipCode = null;

try{
//Get JDBC Conneciton
connection = dataSource.getConnection();
System.out.println("IMS RDS Servlet : Success Get Connection");

//Get Key Value from Input Page
String keyValue = arg0.getParameter("keyValue").trim();

//Issue SQL
String queryString = "SELECT * FROM PhoneBook.Person "

+ "WHERE Person.LastName = '" + keyValue + "'";
statement = connection.createStatement();
results = statement.executeQuery(queryString);

//Get Output
while(results.next()) {

LastName = results.getString("Person.LastName");
FirstName = results.getString("Person.FirstName");
Extension = results.getString("Person.Extension");
ZipCode = results.getString("Person.ZipCode");

}
System.out.println("IMS RDS Servlet : Success Get Result");

//Commit LocalTransaction
connection.commit();
System.out.println("IMS RDS Servlet : Success Commit LocalTransaction");

//Set the result to the JSP
arg0.setAttribute("OUT__LastName", LastName);
arg0.setAttribute("OUT__FirstName", FirstName);
arg0.setAttribute("OUT__Extension", Extension);
arg0.setAttribute("OUT__ZipCode", ZipCode);

} catch (Exception e) {
try{

//RollBack LocalTransaciton
connection.rollback();
System.out.println("IMS RDS Servlet : Success Rollback LocalTransaction");

//Close JDBC Resources
if (statement != null) {statement.close();}
if (connection != null) {connection.close();}
System.out.println("IMS RDS Servlet : Caught exception in main section is: " + e);
arg0.setAttribute("e",e.getMessage());

} catch (Exception s){
System.out.println("IMS RDS Servlet : Caught exception in rollback section is: " + s);
arg0.setAttribute("s",s.getMessage());

}
} finally {

try{
//Close JDBC Resources
if (statement != null) {statement.close();}
if (connection != null) {connection.close();}
RequestDispatcher disp = arg0.getRequestDispatcher("Output.jsp");
disp.forward(arg0,arg1);
System.out.println("IMS RDS Servlet : Success Dispatch Result");

Appendix B. IMS RDS application example 503

System.out.println("IMS RDS Servlet : End");
} catch (Exception t){

System.out.println("IMS RDS Servlet : Caught exception in final section is: " + t);
arg0.setAttribute("t",t.getMessage());
RequestDispatcher disp = arg0.getRequestDispatcher("Output.jsp");
System.out.println("IMS RDS Servlet : Success Dispatch Result");
System.out.println("IMS RDS Servlet : End");
disp.forward(arg0,arg1);

}
}

}
}

GlobalInput.html
GlobalInput.html is the HTML document that invokes the servlet for the global transaction, as
shown in Example B-3.

Example: B-3 GlobalInput.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=Shift_JIS">
<META name="GENERATOR" content="IBM Software Development Platform">
<META http-equiv="Content-Style-Type" content="text/css">
<LINK href="theme/Master.css" rel="stylesheet"

type="text/css">
<TITLE>InputPage</TITLE>
</HEAD>
<BODY>
<H1>IMS Remote Database Service:Global Transaction</H1>
<H2>Enter Key Value of Person Database !</H2>
<FORM METHOD="post" ACTION="ImsRdsSampleGlobal">
<H3>LastName</H3>
<P>
 <INPUT TYPE="text" NAME="keyValue" ID="keyValue" SIZE="10" MAXLENGTH="10" >
</P>
<P>
 <INPUT TYPE="submit" NAME="Execute" ID="Execute" VALUE="Execute">
 <INPUT TYPE="reset" NAME="Reset" ID="Reset" VALUE="Reset">
</P>
</FORM>

</BODY>
</HTML>

504 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

LocalInput.html
LocalInput.html is HTML document that invokes the servlet for the local transaction, as shown
in Example B-4.

Example: B-4 LocalInput.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=Shift_JIS">
<META name="GENERATOR" content="IBM Software Development Platform">
<META http-equiv="Content-Style-Type" content="text/css">
<LINK href="theme/Master.css" rel="stylesheet"

type="text/css">
<TITLE>InputPage</TITLE>
</HEAD>
<BODY>
<H1>IMS Remote Database Service:Local Transaction</H1>
<H2>Enter Key Value of Person Database !</H2>
<FORM METHOD="post" ACTION="ImsRdsSample">
<H3>LastName</H3>
<P>
 <INPUT TYPE="text" NAME="keyValue" ID="keyValue" SIZE="10" MAXLENGTH="10" >
</P>
<P>
 <INPUT TYPE="submit" NAME="Execute" ID="Execute" VALUE="Execute">
 <INPUT TYPE="reset" NAME="Reset" ID="Reset" VALUE="Reset">
</P>
</FORM>

</BODY>
</HTML>

Output.jsp
Output.jsp is the JSP file to display the results, as shown in Example B-5.

Example: B-5 Output.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<HTML>
<HEAD>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="ISO-8859-1"%>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM Software Development Platform">
<META http-equiv="Content-Style-Type" content="text/css">
<LINK href="theme/Master.css" rel="stylesheet"

type="text/css">
<TITLE>OutPut page</TITLE>
<BODY>
</HEAD>
<H2>IMS Remote Database Service:Result</H2>
<H3>LastName</H3>
<%= request.getAttribute("OUT__LastName") %>
<H3>FirstName</H3>

Appendix B. IMS RDS application example 505

<%= request.getAttribute("OUT__FirstName") %>
<H3>Extension</H3>
<%= request.getAttribute("OUT__Extension") %>
<H3>ZipCode</H3>
<%= request.getAttribute("OUT__ZipCode") %>

<H5>Exception in the Main Section</H5>
<%= request.getAttribute("e") %>
<H5>Exception in the Rollback Section</H5>
<%= request.getAttribute("s") %>
<H5>Exception in the Final Section</H5>
<%= request.getAttribute("t") %>

</BODY>
</HTML>

506 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Appendix C. Additional material

This redbook refers to additional material that can be downloaded from the Internet as
described in this appendix.

C

© Copyright IBM Corp. 2006. All rights reserved. 507

Locating the Web material
The Web material associated with this redbook is available in softcopy on the Internet from
the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246794

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the redbook form
number, SG246794.

Using the Web material
The additional Web material that accompanies this redbook includes the following files:

File name Description
JAVA SAMPLE IVP.zip Java sample program for testing IMS Connect
IMSRDSSampleProjects.zip Zipped RDS sample projects
sample.zip Sample C and Java client programs

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the Web
material ZIP file into this folder.

508 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

ftp://www.redbooks.ibm.com/redbooks/SG246794
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

ronyms

ACEE access control environment
element

AGN Application Group Name

AIB application interface block

APF authorized program facility

APPC Advanced Program-to-Program
Communication

BPE Base Primitive Environment

CCF Common Connector Framework

CGI Common Gateway Interface

CICS Customer Information Control
System

CSM Complete Status Message

CTG CICS Transaction Gateway

DBCTL Database Control

DBD database description

DRA database resource adapter

DVIPA dynamic virtual IP address

EAB Enterprise Access Builder

ECB Event Control Block

EMH Expedited Message Handler

FTP File Transfer Protocol

GUI graphical user interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business Machines
Corporation

IMS Information Management System

IMS TOC IMS TCP/IP OTMA Connection

IPCS Interactive Problem Control System

IPL initial program load

IRM IMS Request Message

ISC Intersystem Communication

ISPF Interactive Systems Productivity
Facility

ITOC IMS TCP/IP OTMA Connection

ITSO International Technical Support
Organization

ITSO International Technical Support
Organization

IVP installation verification program

J2C J2EE Connector architecture

Abbreviations and ac

© Copyright IBM Corp. 2006. All rights reserved.
J2EE Java 2 Platform, Enterprise Edition

JCA J2EE Connector architecture

JCL job control language

JDBC Java Database Connectivity

JDK™ Java Development Kit

JRE Java Runtime Environment

JSP JavaServer Pages

JVM Java Virtual Machine

LAN local area network

LPAR logical partition

LTERM logical terminal

LU logical unit

LU2 logical unit 2

MCI message control information

MFS Message Format Service

MOD message output descriptor

MPP message processing program

MSC Multiple Systems Coupling

MVS Multiple Virtual System

ODBA Open Database Access

OO object-oriented

OTMA Open Transaction Manager Access

OTMA C/I OTMA callable interface

PC personal computer

PCB program communication block

PPT program properties table

PSB program specification block

PST partition specification table

RACF Resource Access Control Facility

RAR resource archive

RMM Request MOD Message

RRS/MVS Resource Recovery Services/MVS

RSM request status message

SGML Standard Generalized Markup
Language

SMB scheduler message block

SMP/E System Modification
Program/Extended

SNA Systems Network Architecture

SOA service-oriented architecture

SOAP Simple Object Access Protocol
 509

STSN Set and Test Sequence Numbers

SVL Silicon Valley Laboratories

TCB task control block

TCP/IP Transmission Control
Protocol/Internet Protocol

Tpipe/TPIPE transaction pipe

UOR unit of recovery

W3C World Wide Web Consortium

WAN wide area network

VIPA virtual IP address

WLM workload manager

WSDL Web Service Definition Language

WWW World Wide Web

XCF cross-system coupling facility

XML Extensible Markup Language

510 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks” on
page 513. Note that some of the documents referenced here may be available in softcopy
only.

� IMS e-business Connectors: A Guide to IMS Connectivity, SG24-6514

� Ensuring IMS Data Integrity Using IMS Tools, SG24-6533

� IMS Installation and Maintenance Processes, SG24-6574

� IMS Version 8 Implementation Guide - A Technical Introduction of the New Features,
SG24-6594

� IMS DataPropagator Implementation Guide, SG24-6838

� Using IMS Data Management Tools for Fast Path Databases, SG24-6866

� IMS in the Parallel Sysplex, Volume I: Reviewing the IMSplex Technology, SG24-6908

� IMS in the Parallel Sysplex, Volume II: Planning the IMSplex, SG24-6928

� IMS in the Parallel Sysplex, Volume III: Operations and Implementation, SG24-6929

� The Complete IMS HALDB Guide, All You Need to Know to Manage HALDBs, SG24-6945

� Reorganizing Databases Using IMS Tools - A Detailed Look at the IBM IMS High
Performance Tools, SG24-6074

� IMS Version 9 Implementation Guide - A Technical Overview, SG24-6398

� DB2 for z/OS Stored Procedures: Through the CALL and Beyond, SG24-7083

� WebSphere Application Server V6 Scalability and Performance Handbook, SG24-6392

� Communications Server for z/OS V1R2 TCP/IP Implementation Guide Volume 5:
Availability, Scalability, and Performance, SG24-6517

Other publications
These publications are also relevant as further information sources:

� IMS Version 9: Administration Guide: Database Manager, SC18-7806

� IMS Version 9: Administration Guide: System, SC18-7807

� IMS Version 9: Customization Guide, SC18-7817

� IMS Version 9: IMS Java Guide and Reference, SC18-7821

� IMS Version 9: Messages and Codes Volume 1, GC18-7827

� IMS Version 9: Utilities Reference: System, SC18-7834

� IMS Version 9: Open Transaction Manager Access Guide and Reference, SC18-7829

� IMS Version 9: IMS Connect Guide and Reference, SC18-9287

© Copyright IBM Corp. 2006. All rights reserved. 511

� DB2 UDB for z/OS Version 8 Application Programming and SQL Guide, SC18-7415

� DB2 UDB for z/OS Version 8 Installation Guide, GC18-7418

� z/OS V1R6.0 MVS Initialization and Tuning Reference, SA22-7592

� z/OS V1R6.0 MVS Programming: Resource Recovery, SA22-7616

� z/OS V1R6.0 MVS System Commands, SA22-7627

� IBM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and
their environment, SA22-7961

� IMS Connect Extensions for z/OS V1.1 User's Guide, SC18-7255

� IMS Message Format Services Reversal Utilities for z/OS User's Guide, SC27-0823

� IBM IMS Performance Analyzer for z/OS User’s Guide, SC27-0912

� IBM IMS Performance Analyzer for z/OS Report Analysis, SC27-0913

� z/OS V1R6.0 CS: IP Configuration Reference, SC31-8776

� WebSphere MQ for z/OS System Setup Guide, Version 5 Release 3.1, SC34-6052

� Program Directory for IBM IMS Connect Extensions for z/OS, GI10-8504

� Program Directory for IBM IMS Connect for z/OS, GI10-8506

� Program Directory for IBM Information Management System Transaction and Database
Servers, GI10-8594

� Concepts, Planning, and Installation for Edge Components Version 6.0, GC31-6855

Online resources
These Web sites and URLs are also relevant as further information sources:

� IMS product page

http://www.ibm.com/ims/

� IMS Connect for z/OS

http://www.ibm.com/software/data/db2imstools/imstools/imsconnect.html

� IMS Connector for Java library

http://www.ibm.com/software/data/db2imstools/imstools-library.html#imsconjav-lib

� Information Management Software for z/OS Solutions Information Center

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp

� WebSphere Application Server - Edge Component Information Center

http://www.ibm.com/software/webservers/appserv/ecinfocenter.html

� WebSphere Studio Application Developer Integration Edition Information Center

http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp

� WebSphere MQ product page

http://www.ibm.com/software/integration/wmq/

� WebSphere Application Server - Edge Component Information Center

http://www.ibm.com/software/webservers/appserv/ecinfocenter.html

� Networking Technologies: VIPA

http://www.ibm.com/servers/eserver/zseries/networking/vipa.html

512 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

http://www.ibm.com/ims/
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://www.ibm.com/software/webservers/appserv/ecinfocenter.html
http://www.ibm.com/software/data/db2imstools/imstools-library.html#imsconjav-lib
http://www.ibm.com/software/integration/wmq/
http://www.ibm.com/software/webservers/appserv/ecinfocenter.html
http://www.ibm.com/servers/eserver/zseries/networking/vipa.html
http://www.ibm.com/software/data/db2imstools/imstools/imsconnect.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp

� ARMWRAP code

ftp://www.redbooks.ibm.com/redbooks/REDP0173/

� Updates to IMS Connect Extensions for z/OS V1.1 User's Guide, SC18-7255

http://www.ibm.com/support/docview.wss?rs=434&context=SSZJXP&dc=DA400&uid=swg27005885&lo
c=en_US&cs=utf-8&lang=en

� IBM developerWorks article “Introduction to the J2EE Connector Architecture”

http://www.ibm.com/developerworks/java/edu/j-dw-javajca-i.html

� IBM developerWorks article “JCA 1.5, Part 1: Optimizations and life-cycle management”

http://www.ibm.com/developerworks/java/library/j-jca1/

� IMS Family examples

http://www.ibm.com/software/data/ims/examples/exHome.html

� IMS Integration Solutions Suite, IMS MFS Web Support

http://www.ibm.com/software/data/ims/toolkit/mfswebsupport/index.html

� IMS SOAP Gateway

http://www.ibm.com/software/data/ims/soap/

� IMS Java 9.1 API Specification

http://www.ibm.com/software/data/ims/imsjava/api9_1/index.html

� DLIModel Utility Plug-in

http://www.ibm.com/software/data/ims/toolkit/dlimodelutility/

� Networking technologies

http://www.ibm.com/servers/eserver/zseries/networking/technology.html

� Information about Unicode, the Unicode Standard, and the Unicode Consortium

http://www.unicode.org/

� Cygwin

http://www.cygwin.com

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 Related publications 513

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/servers/eserver/zseries/networking/technology.html
ftp://www.redbooks.ibm.com/redbooks/REDP0173/
http://www.ibm.com/support/docview.wss?rs=434&context=SSZJXP&dc=DA400&uid=swg27005885&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/developerworks/java/edu/j-dw-javajca-i.html
http://www.ibm.com/developerworks/java/library/j-jca1/
http://www.ibm.com/software/data/ims/examples/exHome.html
http://www.unicode.org/
http://www.cygwin.com
http://www.ibm.com/software/data/ims/toolkit/mfswebsupport/index.html
http://www.ibm.com/software/data/ims/soap/
http://www.ibm.com/software/data/ims/imsjava/api9_1/index.html
http://www.ibm.com/software/data/ims/toolkit/dlimodelutility/

514 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

Index

Symbols
/DISPLAY OTMA 21, 26, 74
/DISPLAY TMEMBER 74
/SEC OTMA 21
/SECURE OTMA 20–22, 28, 114
/START OTMA 19

A
ACCEPT 21, 44, 74, 77, 159, 181–182, 239, 342, 367,
419, 442–443, 455
access control environment element (ACEE) 22
ACEE 22, 156, 200, 364–365, 434, 467
ACK 10, 13–14, 38, 49, 60, 93–96, 99, 101–102,
104–105, 128, 134, 169, 176–178, 181–184, 190, 198,
205, 207, 210, 212, 248, 258, 262–264, 266–267, 271,
273–275, 279–282, 284, 289–290, 292, 295–296, 302,
305, 487, 490, 496–497
ACK/NAK 14, 38, 70, 134, 177, 182–183, 205, 207, 210,
212, 267, 497
ACK/NAK required flag 134
ACK/NAK required notification support 38
ADFSMAC 390
AERTDLI 360, 363, 366–368, 370, 372
aggregate functions 467
AGN 362–366, 390
AIB 360, 363, 366–368, 370, 372–373, 375–376, 380,
388, 395, 460–461, 466–467
AIBREASN 369, 376, 393, 395–396, 404, 457, 461
AIBRETRN 369, 376, 393, 395–396, 404, 457, 461
ALTPCB 17–18, 20, 88, 100, 135, 258–259, 262, 281
APF 22, 45–46, 362–363, 391
APIs 360, 467
APPC xiii, 10, 19
applet 58–59
APPLID 20
APPLY xv, 28, 40, 44, 159, 204, 241, 246, 253, 259, 264,
270, 294, 344, 351, 402, 416, 418
APSB call 365, 369–370, 372, 385, 393
APSB security 365–366
ASCII 120, 122, 202, 212, 270, 276–278, 283, 419
asynchronous output 10, 23, 25, 38, 40, 51, 60, 91,
100–102, 105–107, 135, 137, 190, 244–245, 247, 261,
271, 273, 281–282, 303
asynchronous output support 38, 56, 100–101
ATRBACK 371
ATRCMIT 371
Authorized Program Facility (APF) 45
AUTO message control 104–105
autonomic computing 1

B
Base Primitive Environment (BPE) 44, 46
BPE 36–37, 44, 52–53, 63, 73, 130–131, 148–149,

© Copyright IBM Corp. 2006. All rights reserved.
152–153
BPE header 130–131, 144
BPECFG 45, 52, 142, 148, 160
BPECFGxx 44
BPXPRMxx 49, 320

C
cancel timer support 40
CLASSPATH 431, 433–434, 437–438, 446–447, 466
client bid 22, 31, 112, 114
client communication component (CCC) 36
clientID 58, 61, 67, 69, 97, 106, 127, 129, 137, 147, 172,
219, 233–234, 240, 242–244, 247, 249, 257, 260–261,
263, 272–273, 281–282, 285, 293, 299, 303–305, 309,
484–485, 488, 490–493, 495
ClientLauncher 58–59
CLOSEHWS 64–65, 73
CNBA buffers 374
COBOL 28, 145, 221, 355–356, 367, 379, 386–387, 392,
417, 420–421, 425
command component (CMD) 36
commit mode 9–13, 16, 21, 30, 38–40, 91, 93–98, 100,
102, 105–106, 119, 121–122, 129, 145, 168–169, 171,
176, 184, 210, 233–234, 240, 242–243, 246, 248–250,
255, 258, 260, 262, 264, 267, 270, 272–273, 279–282,
286, 293, 300, 304–305, 485, 488, 494–495
commitMode 229, 243–244, 247, 250, 286, 293,
484–486, 488, 491–495
commit-then-send 9–13, 23, 28, 74, 88, 93, 96–102, 129,
137
Complete Status Message (CSM) 92, 101, 133
connection pooling 226, 232–234
ConnectionFactory 224–225, 232–233, 236–237,
311–312
ConnectionManager 464
conversational xiii, 8–9, 17, 19, 22, 30, 39, 93–96,
99–100, 133–134, 168, 190, 204, 232, 244, 272,
274–275, 326, 340
conversations 15
correlator file 355–356
Coupling Facility 7, 35, 78
CREATE PROCEDURE 386–387, 392
CSM, Complete Status Message 133
CSQZPARM 31
CSSLIB 45–46, 142
cursor 337

D
database xiii, 2, 4, 14, 34, 41, 45, 224, 227, 237–238,
254, 359–360, 366, 374, 376, 379–380, 383–384, 386,
388, 390, 393, 395, 402, 404–408, 410, 413–416,
418–419, 421–422, 424, 428–430, 432, 434, 444, 451,
455, 457, 460–461, 464–465, 467, 499, 504–505
DataSource 421, 430, 433, 440, 444, 454, 457, 460, 464,
 515

500–503
datastore 24–25, 34, 36, 44, 47, 50–52, 55, 58, 64–65,
67, 69–70, 73, 87–88, 115, 123–124, 129, 137, 156, 159,
167, 172–173, 177–178, 181, 183, 190–196, 216, 218,
233, 240, 270, 279–281, 333–334, 347–348, 491
datastore communication component (DCC) 36
datastore name 50, 69, 73, 124, 172, 348
DATASTORE statement 50–51
DB/DC 362–363
DB2 3, 13, 29–30, 34, 36, 41, 155, 181, 223–224, 227,
255, 376, 380, 383–387, 389–398, 401–402, 404, 406,
457
DB2 stored procedures 4, 380, 383–386, 389, 396, 398
DBCTL 362, 374, 390, 393, 457
DBRC 397
DCE/RPC 8
DEALLOC 190
DEDB 362, 374
DELETE 18, 41, 54, 73, 159, 199, 201, 203–204, 303,
313, 378, 386, 388, 390, 411, 413, 415, 428, 430, 447
DESC 139, 411
DFS058I 340
DFSCCMD0 114
DFSCTRN0 114
DFSDDLT0 462
DFSERA10 462
DFSISIS0 364–365
DFSIVP37 422–425, 446, 457, 460, 462
DFSMO1 338, 341
DFSMO2 338, 341
DFSMO3 338–339, 341
DFSMO5 338, 341
DFSPBxxx 19–20, 50, 114, 136, 374, 393, 457
DFSRAS00 364–366
DFSYDRU0 20, 25, 51, 135, 258
DFSYPRX0 20, 25, 135–138, 258–259
diagnosing problems 319
DISPLAY ACTIVE 396
DL/I 227, 360, 366, 368–371, 376, 380, 383, 388, 393,
396, 405, 409, 411, 414, 417–419, 429, 457, 460,
462–463, 466–467
DLIModel 414, 416–417, 420–426, 428, 433–434, 466
DLIModel Utility 420–426
DRA 360–364, 366, 370, 372–374, 380, 385–386, 389,
391, 406, 429–431, 433–435, 451, 466
DRA startup table 360–364, 385, 389, 391, 435
driver components 37
DRU 28–29, 51, 135–137
DSN 27, 45–46, 54, 142, 160, 171–172, 174, 176, 390,
394, 401, 435
DSNAIMS 29–30
DUPLEX 10
DVIPA 85–86
DVIPA environment 86
dynamic allocation 362
dynamic VIPA 80–86

E
EBCDIC 120, 122, 202–203, 270, 276–278, 283, 324,
347, 392, 394

ECB 48
EJB 3, 110, 227, 250–252, 255, 311, 321–323, 374, 377,
405–406, 428, 430–434, 439–441, 444, 454, 456–457,
460–461, 466
E-MCS console 397
EMH 9
environment component (EVC) 36
ESS interface 30
exit 20, 24, 28–29, 31, 38–39, 47–56, 58, 64, 74, 87–88,
92, 98, 101, 111, 113, 115–126, 128, 130–138, 142–143,
145, 147, 159–162, 168–169, 171–173, 176–177, 184,
188, 196–197, 201–204, 211, 214–216, 218–219, 258,
268–269, 273–274, 277, 284–285, 290–291, 293, 296,
326, 333, 337–338, 340–341, 344, 364–366, 486, 488,
490–491

F
FACILITY class 22, 27, 53, 113–114
failover 77–78, 81, 87–88
Fast Path 8–9, 362, 374
FMID 34, 45, 71
formatted dump 38, 153–154
full-duplex message 10

G
GENERATE 17, 92, 111, 133, 219, 232, 240, 244,
322–323, 332–333, 336, 346–347, 349, 355–356, 362,
421, 423, 425, 427
GenericCredential 230
GRNAME 19, 21, 50
GSAM 373

H
HMK9900 34, 45
host name 57, 81, 237, 284, 291, 319, 333, 347, 431,
451, 485, 493
HOSTNAME 24, 48, 52, 55, 58, 64, 233, 238, 282–283,
291, 332–335, 348, 357, 431, 451, 484–486, 490–493,
495
HTML xv, 58, 230, 265, 333, 338, 344, 418, 441, 453,
458, 499, 504–506
HTTP 79, 242, 266, 330, 336, 338, 352, 354, 406, 458,
500, 502, 504–505
HTTP session 330, 338
HWS 24, 45–47, 50, 52–53, 55, 64–66, 69, 107, 113,
123, 142, 149–150, 158–159, 196, 262, 274
HWS statement 47
HWSCFGxx 24, 40, 44, 55, 65, 67–71, 262, 300, 303
HWSCSLO0 48, 54–55, 64, 117, 119, 121, 160
HWSCSLO1 48, 54–55, 64, 117, 119, 121, 160
HWSD0252W 301
HWSFTRC0 148–150
HWSIMSO0 51, 54, 98–99, 101, 118–120, 122,
128–130, 135
HWSIMSO1 51, 98–99, 118–120, 122, 128–129,
134–135
HWSJAVA0 48, 53–54, 98–99, 117–118, 121–122, 124,
127–128, 131, 144–145, 160, 203

516 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

HWSRCORD 46, 142, 160
HWSSMPL0 52, 55–56, 58, 64, 74, 98–99, 101,
118–122, 124, 128–130, 160, 172–173, 176, 184, 188,
268–269, 276, 283, 287, 290, 294, 486, 488
HWSSMPL1 24, 98–99, 118–122, 124, 128, 134–135,
268–269, 274, 287, 294, 296, 488
HWSUINIT 48, 51, 53–54, 117, 119, 123–125
HWSYDRU0 135, 137–138

I
IMS xiii–xiv, 1–4, 7–17, 19–31, 33–41, 43–61, 63–74,
77–79, 81–87, 89–107, 109–138, 141–145, 147–150,
152–171, 173–198, 200–210, 212–217, 219, 221–227,
229–232, 235–244, 246–248, 250, 253–262, 264–287,
290–294, 296–305, 307–312, 314, 316, 319–327,
329–333, 335–336, 338–341, 343, 345–348, 350,
353–357, 359–360, 362–376, 378–381, 383, 385–389,
393–397, 399–401, 405–410, 412–426, 428–435,
437–441, 444, 446–449, 451, 453, 455–457, 459–467,
469, 484–488, 491–492, 499–505
IMS Client for Java 56–61
IMS command 8–9, 11, 20–21, 28–30, 51, 74, 244, 462
IMS Connect xiii, 3–4, 8, 20–21, 23–25, 33–41, 43–56,
58, 60–61, 63–74, 77–78, 81, 83–89, 91–93, 97–107,
109–113, 115–119, 121–128, 130–135, 137–138,
141–142, 144–145, 147–153, 155–165, 167–171,
174–185, 187, 189–197, 200–205, 207–208, 210,
212–213, 215–217, 219, 221, 224, 229, 231–232, 235,
237–240, 244–248, 250, 258–259, 261–277, 279–287,
290–294, 296–305, 309–310, 314, 319–320, 333, 336,
341, 347, 470, 484, 487–488, 491
IMS Connect Base Primitive Environment 36–37, 52, 141
IMS Connect BPE 36–37, 52, 73, 148–149
IMS Connect commands 64, 319
IMS Connect Dump Formatter 141, 148–151
IMS Connect Extensions 4, 41, 87, 155–161, 163, 167,
170, 175, 177, 181, 184, 195, 200, 203–205, 208, 218,
298, 301, 306
IMS Connector for Java xiii, 4, 8, 34–35, 38–39, 41, 48,
50, 53, 67, 70, 74, 91, 98–100, 105–107, 111, 118, 121,
127–128, 130–132, 144–145, 147, 221, 224–225,
229–232, 235, 237–240, 255, 257–259, 261–265, 270,
291, 297–303, 305–310, 312, 319, 322, 332–333,
335–336, 338, 341, 348, 350, 484
IMS Control Center 4, 33, 36, 39, 41, 43, 48, 54–55, 65,
70, 119, 121
IMS conversation 99
IMS conversational transaction 244
IMS initialization errors 376
IMS Java 377, 380, 405–407, 409, 411, 416, 418–420,
424–425, 430, 433–434, 440–441, 456, 461–462, 464,
466
IMS JDBC Resource Adapter 377, 430, 432–434, 437
IMS Monitor Trace 142
IMS OTMA 24, 26, 28–30, 36–37, 45, 47, 50, 53, 116,
138, 190, 240, 244, 246, 324
IMS OTMA Communications 37
IMS Performance Analyzer 156, 177–178, 181–184
IMS Problem Investigator 156, 158, 167, 184, 205
IMS Remote Database Services xiii, 4

IMS Request Message (IRM) 92
IMS security 22, 109, 114, 365
IMS SOAP Gateway xiii, 353–357
IMS TCP/IP OTMA Connection (ITOC) 37
IMSConnectionFactory 224–225, 232, 237, 240
IMSConnectionSpec 225, 234, 242–244, 248–249, 259
IMSID 69, 360, 362, 388, 435
IMSInteractionSpec 229–230, 242, 259, 261, 299, 301,
334, 340
imsjava.jar 437–438, 447
IMSMON 142
IMSPLEX 19, 36–37, 41, 46–48, 50–51, 55, 65, 68–71,
116–117, 119, 121
IMSplex 19, 39, 51, 55, 65, 68, 70–71, 121
IMSplex communications component (ICC) 36
IMSplex driver (IPDC) 36
IMSPLEX statement 51
IMSXCF.group.member 22, 53
INSTALIB 362
INSTALL 3, 38, 45, 53–54, 56, 58, 61, 126, 149, 342,
350–351, 391, 421, 426, 436–437, 440–441, 446,
448–449, 466
INSTALL/IVP 61
installing 44, 57, 342, 434, 436–437, 439, 441, 444, 446,
448–449
instance servlets 329, 335–336, 338, 349
integrated IMS Connect function 3, 34, 40, 42, 63, 72,
217
InteractionSpec 50, 229, 232, 252, 302, 309, 341
Internet 3, 39, 48, 77, 90, 109, 216, 329, 343, 430, 507
IOPCB 9, 11, 16–19, 21, 30, 40, 88, 100, 105–106,
258–262, 267, 273, 305, 370
IPCS 141, 148–150, 152
IPV6 48, 55, 64, 216
IRM header 70, 93–97, 112, 118–119, 121–122, 124,
127–129, 147, 175, 202, 276–277, 305
IRM_TIMER 49, 97, 102–103, 127–128, 169, 269,
271–272, 279, 281–282, 285, 293, 298, 300–301,
303–305, 488, 494
ISC 13
ISIS 363–365
ISPF 149, 157–160, 175, 210, 391, 400
ITOC 37–38, 56, 123, 147, 175
ITOCRC 142–146
ITOCSN 142, 144–147
IVP 61, 145, 330, 345–346, 362, 386–389, 393, 422,
426, 434–435, 446, 457
IVTCM 457
IVTNO 143, 145–147, 175, 178–179, 332–333, 347, 352

J
J2C 38, 225, 232, 236, 241, 298–299, 306–309, 312,
430, 432, 434, 440–441, 444, 449–451, 463–464, 466
J2EE xiii, 34, 38–39, 110–111, 221–223, 234–236, 241,
245, 252, 335, 341, 377, 407, 430, 432–433, 451, 463
J2EE Connector architecture 38–39, 222
Java xiii, 2–4, 8, 34–35, 38–39, 41, 43, 48, 50, 53, 56–61,
67, 70, 74, 91, 98–100, 105–107, 111–112, 118, 121,
127–132, 144–145, 147, 221–223, 225, 227–233,
235–240, 242–244, 246, 248, 250–252, 255, 257–262,

 Index 517

264–265, 268, 270, 275–276, 279, 283, 291–292, 294,
297–303, 305, 307–309, 311–312, 316, 319, 321–322,
330, 332–333, 335–336, 338–341, 347–350, 354, 357,
377, 380–381, 401–402, 404–409, 411–414, 416,
418–419, 421–426, 428–431, 433–434, 438–439, 441,
444, 446, 451, 453, 456, 460–461, 463, 466, 469, 484,
487, 490, 499–500, 502, 505
Java 2 Platform, Enterprise Edition 221
Java applications 48, 246, 304, 309, 319, 377, 406, 457
Java classes 223, 306, 310, 330, 404, 423
Java development 41
Java execution 300
Java language 282
Java Native interface

JNI 223
Java runtime 309, 425
Java Virtual Machine 57, 406
java.io 241, 299, 402, 484, 500, 502
JavaScript 346
JBP 397, 406, 457
JCA 111, 221–224, 226–228, 230–231, 241, 245, 291,
316
JCL 27, 44–47, 50, 52–54, 83–85, 142–143, 160, 165,
170, 174–175, 362, 376, 386–387, 389–390, 406, 435
JDBC 224, 376–378, 380–381, 402, 404, 406–407,
409–410, 412, 414–416, 418–420, 429–434, 436–437,
440–441, 447–450, 453–456, 461, 464, 466–467,
499–503
JMP 397, 406, 457
JVM 282, 406

K
keyring 237–239
keystore 237–238
KSDS 158

L
LANG 53, 148, 251, 311, 422, 438, 461
libJavTDLI.so 438
Line Trace 46, 141, 143
Linux 3, 79, 283, 348
Load Balancer 78–79, 86
load balancing 77–80, 85, 87–89
Local Option 34–38, 46, 49, 66, 113, 224, 236–237, 253
local option communication component (LOCC) 36
local option driver (PCDC) 37
LTERM Name 111, 137, 246, 258, 273
LU2 11

M
map name 9, 11
Max Connections 313, 317, 319
MAXFILEPROC 49, 320
maximum connections 319
MAXSOC 24, 40, 48, 55, 64, 69, 314, 319
MAXSOCKETS 49, 320
MCS 397
Message Control Information 9

metadata 223, 307, 323, 330–333, 335–336, 339, 379,
414, 417, 420–428, 431, 433–434, 446–447, 451, 455,
462, 466
metadata catalog 379
MFS 9, 29, 129, 133–134, 145, 221, 241, 243–244, 246,
268, 270, 275, 321–327, 329–332, 335–341, 344–347,
349–350
MFS MOD name 93, 133–134
MFS Web Enablement 329–330, 336, 344
MFS Web Services 321–324
middleware 1, 115
migration 2, 120, 216
Min Connections 313
MOD 29, 93, 129, 133–134, 144, 246, 268, 270,
274–275, 287–288, 290, 294–296, 323, 330, 332–333,
339, 341, 346, 489
mode 8–13, 16–17, 19, 21, 30, 38–40, 91, 93–98, 100,
102, 105–106, 117, 119, 121, 129, 139, 145, 168–169,
171, 176, 184, 210, 233–234, 240, 242, 244, 246–250,
253–255, 258, 260, 262, 264, 267, 270, 272–273,
279–282, 286, 293, 300, 304–305, 331–332, 346–347,
349–350, 485, 488, 491, 494–495
MODname 9, 11, 172, 286, 288, 293, 295, 339, 341,
488–489
MPP 249–250, 254, 406
MQSeries 30
MSC 9, 19, 87
MVS 27, 320, 332, 367, 375, 400

N
NAK 10, 13–14, 22, 38, 60, 70, 94–96, 101–102,
104–106, 133–134, 177–183, 190, 205, 207, 210, 212,
262–263, 266–267, 271, 273–275, 282, 290, 491,
495–497
namespace 225, 232, 234
Network Dispatcher 77–80
NOAUTO message control 103–104
non-persistent socket 100, 269

O
ODBA 4, 359–372, 374, 376–378, 380, 383–397,
399–401, 406, 421, 429–435, 437–439, 449, 457,
461–462, 467
OLDS 462
OM 36–37, 39, 41, 51, 55, 65, 68, 119
on demand 1–3, 34
on demand strategy 1
online change 386
Open Database Access (ODBA) 4
Open Transaction Manager Access (OTMA) 4, 35
OPENDS 64–65, 73
OPENIP 64–65, 73
OPENPORT 64, 66, 73
operations 3, 21, 34, 57, 63, 321, 326, 419
Operations Manager 36, 51, 55, 119
Operations Manager (OM) 37, 41, 65
OTMA xiii, 4, 7–31, 35–37, 40–41, 44–45, 47–51, 53, 56,
69, 74, 89, 91–93, 97–98, 101–105, 109, 111–117,
120–123, 126–132, 135–138, 142, 144–145, 147, 162,

518 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

167–173, 176–184, 190, 206, 211, 216, 240, 244–246,
258–259, 267, 270, 272–273, 275–277, 279, 281, 300,
305, 324
OTMA C/I 8, 26–29
OTMA C/I restrictions 28
OTMA callable interface 8, 26–28
OTMA client 8, 10–11, 13, 16, 20–23, 26, 30, 50, 101,
112, 135–137, 258
OTMA driver (OTDC) 37
OTMA DRU (destination resolution) exit 135
OTMA header 9–10, 98, 101, 112, 114, 120–121, 128,
130–132, 144, 147, 277
OTMA message format 35, 92
OTMA message structure 9
OTMA super member 89
OTMA= 20
otma_alloc 28
otma_close 29
otma_create 28
otma_free 29
otma_open 28
otma_send_async 28
otma_send_receive 28
otma_send_receivex 28
OTMAASY 17–18, 21
OTMAASY=N 18
OTMACON 31
OTMAMD 20, 136–137
OTMANM 20–21, 50, 69–70
OTMANM= 20
OTMASE 20–21, 114
OTMASP 20

P
Parallel 4, 10, 78, 254
Parallel Sysplex 7, 30, 77–78
PasswordCredential 230
PCB 25–26, 29, 101, 135–136, 246, 248–249, 258, 267,
367–369, 371, 375, 396, 412–414, 416, 422–425, 466
performance 2–4, 7, 34, 36, 38, 43, 47–48, 80, 84,
112–113, 155–156, 158, 162, 167, 177–184, 190, 200,
205, 224, 226, 284–285, 292, 294, 305, 314–318,
374–375, 412–414, 419, 462, 466–467, 487
persistent socket 38–39, 56, 98–100, 102, 127, 129,
168–169, 229, 234, 240, 242–244, 246–247, 249, 269,
299
persistent socket support 39
PL/I 28, 367, 391
port 40, 44, 49, 57, 65–71, 73–74, 79, 83–84, 87, 122,
158, 160, 167, 172–173, 175–178, 181–182, 184,
196–198, 205–207, 214, 216, 219, 237–238, 273,
279–282, 284, 298–299, 303, 314–316, 319, 321,
332–333, 347–348, 356–357, 402, 404, 431, 451, 485,
493
PORTID 24, 49, 52, 55, 57, 64, 66–68, 71
POSIX 51, 283
PPT 27, 45–46
PQ62379 41
PQ69527 41
PQ70216 41

PQ90146 49
PROCLIB 19–20, 45, 47, 49, 51–52, 55, 136, 142, 160,
374, 389–390, 393, 457
Program Properties Table (PPT) 45–46
program-to-program switch 21, 246, 281
PROGxx 46
project xiii–xiv, 355, 427, 451–453, 458, 499
PSBGEN 369, 422
PST 372–373, 396
PTKTDATA statement 51
purge not deliverable support 40

Q
QUERY 41, 73, 124, 227, 250, 255, 319, 380, 408–409,
412–414, 416–419, 433–434, 455, 459–461, 466–467,
499
QUERY MEMBER 73

R
RACF 20–22, 27, 45, 47, 49, 51–53, 55, 57–58, 64, 66,
69, 73, 111–114, 122–123, 126, 129, 172, 178, 235,
237–238, 270, 332, 334, 339, 343, 347–349, 364–366,
434, 484–485
RAR 223–224, 350, 436, 448
RATE 178–180
Rational Application Developer 41, 230, 232, 245, 259,
306, 355, 402, 434, 499
RECEIVE 8, 22, 26, 28–29, 40, 44, 50, 58, 60, 65, 68,
77, 88, 94, 97, 101–103, 115, 126, 128, 144, 147, 150,
159, 169, 193, 205, 212, 224, 244, 246, 258, 267,
279–282, 287, 291, 294, 299–300, 303–304, 324, 333,
351–352, 367, 393, 410, 414, 444, 457, 461, 486, 488,
496–497
RECORDER 64, 66, 73, 141–142, 145, 167, 174–175,
298, 305–306
Recoverable Resource Services (RRS) 39
Recovery Resource Services 359
Redbooks Web site 508, 513

Contact us xv
Remote Database Services xiii, 4, 405, 428, 444, 457
Remote Database Services (RDS) 405
Request Mod Message 93, 133, 144, 268, 275
Request Mod Message (RMM) 93, 133
Request Status Message (RSM) 92, 133
res-auth option 236
resource 3, 15–16, 21, 27, 39, 53–54, 58, 88, 110–111,
113, 126, 156, 161, 167, 177–178, 200, 216, 222–224,
226–227, 230–232, 236, 241, 243–244, 248–250,
252–253, 299, 301, 305, 307–311, 317, 333, 335, 341,
350, 359–360, 364–366, 369, 371, 374–375, 377, 379,
390, 400, 418, 423–424, 430–434, 436–437, 440–441,
444, 447–449, 451, 453–454, 461, 463–464, 466–467,
499
Resource Manager 15–16, 221, 223, 227, 386, 400–401
Resource Recovery Services/MVS 15
RESUME TPIPE 23, 25, 60, 88–89, 101–104, 106,
128–129, 178, 182, 190, 261, 267, 271–273, 277,
281–282, 284, 298, 303, 485, 490, 492, 494, 496
Resume Tpipe report 182

 Index 519

RM 401
RRNAME 50, 107, 262, 274
RRS 10, 15–16, 19, 29–30, 39, 47, 67, 69, 223–224, 248,
250, 253–254, 359–360, 371–372, 374–375, 386, 391,
393, 397, 400–401, 431, 433, 435, 456–457, 466–467
RRSAF 386
RSR 20
RunAs 236
running errors 376
RUNOPTS 51

S
SAF 22, 113, 159, 178–181, 200, 234
SCEERUN 45–46, 142, 391
SCHEDxx 27, 46
SCI 36–37, 51, 55, 65, 68
SDFSJLIB 435
SDFSMAC 9, 54, 127, 131–132
SDFSRESL 27–28, 45–46, 54–55, 119, 121, 126, 142,
160, 362–363, 387, 390–391, 435
SDFSSRC 54
Secure Sockets Layer (SSL) 49
security 9, 20–22, 27, 34, 39, 43, 45, 49, 53, 66, 69, 74,
91, 109–115, 119, 122, 155–156, 159, 178, 197,
200–202, 221, 223, 230–231, 234–237, 273, 298,
342–343, 351, 361–366, 379, 392, 433–434, 445, 466,
484
security data 9, 22, 112, 114
SECURITY macro 365
send-then-commit 9–16, 21, 38, 70, 74–75, 88, 93–96,
98–99, 119, 121–122, 129, 145, 279
service-oriented architecture (SOA) 3, 353
servlet 110, 226, 252, 319, 329, 331–336, 338–341,
343–344, 347–349, 352, 453–456, 458–459, 461,
464–465, 499–504
set and test sequence number 13
SETRACF 47, 64, 66–67, 73, 113, 235
SETRRS 64, 67, 73
shared queues 19, 25–26, 89–90
Simple Object Access Protocol (SOAP) 353
SINGLE 4, 12, 34, 36, 39–40, 77, 79–80, 85, 87, 90,
98–103, 128, 137, 142, 145, 159, 168–169, 182,
190–191, 193, 195, 197–198, 205, 223, 227, 237,
244–245, 259, 269, 271, 284–285, 287, 291–292, 294,
319–320, 341, 361, 372–373, 378, 380, 384, 391, 394,
466–467, 487
single point of control (SPOC) 41
SMB 11, 136
SMP/E 38, 44, 159
SMU 364, 366
SOAP xiii, 3, 315–316, 353–357
SOAP message 354, 357
socket call 92
sockets 33–34, 36–40, 48–49, 77–78, 98–100, 105, 167,
175, 233–234, 237, 240, 248, 250, 266, 291, 303–304,
319–320, 338, 430, 484
SPA 243
SPOC 41
SQL 29–30, 376, 378–381, 384–387, 392, 398, 402,
405–408, 410, 412–413, 415–416, 418–419, 424,

454–455, 460–464, 466, 500–503
SRRBACK 371
SRRCMIT 371
SSL support 39, 46, 51, 110
SSLENVAR 49, 239
SSLPORT 49, 239
STARTDS 64–65, 73
STARTIP 64–65, 73
STARTP 66
STARTPT 64, 73
state data 9–12, 25, 340, 399
static VIPA 81
STGCLASS 31
STOPCLNT 64, 67, 73, 303
STOPDS 64, 67–68, 73
STOPIP 64, 68, 73
STOPPORT 64, 68, 73
storage 17, 25, 27–28, 31, 36–37, 46, 52, 117, 130, 148,
200, 259, 290, 296, 360, 367–368
storage class 31
stored procedure 29–30, 376, 383–398, 401–404, 457
STSN 13
super member 23–26, 89
sync level=confirm 14–15, 93–96, 99–100, 134, 280
sync level=none 13–14, 94
sync point 13–16, 18–19, 39, 88, 248, 252–253, 256,
359, 386, 397, 491
synchronization level 9–11, 13–14, 94–97, 250, 267, 279
SYS1.PARMLIB 27, 45–46, 320
sysplex 7, 23, 30, 36, 43, 77–80, 82–83, 85–88, 314,
375, 391, 399
Sysplex Distributor 23, 77, 85–86
system definition 20, 158–161, 163, 169–170, 185, 193,
196, 200, 365
system generation 19, 386

T
takeover 80–82, 86
TCP/IP 3, 8, 33–38, 40–41, 44–50, 52, 56, 58, 60, 65–68,
70, 77, 80–84, 88, 91–92, 101, 109, 113, 115–116,
118–119, 122, 125, 147, 162, 178, 181, 205, 222, 224,
226, 229, 237, 239–240, 253, 266, 271, 279, 281, 284,
292, 298–299, 306, 320, 374, 458, 484, 487
TCP/IP clients 34–35, 37, 45, 48, 115
TCP/IP driver (TIDC) 37
TCP/IP statement 40, 48
TERMINATE 64, 99, 102, 104–105, 267, 273, 338, 340,
372, 374, 399–400
TIMEOUT xiii, 4, 49, 55, 64, 69, 97, 103, 162, 179, 182,
205, 213–216, 244–245, 249, 254, 257–258, 267, 269,
271–272, 279–281, 298–305, 312–314, 316, 319,
332–333, 335, 338, 357, 362, 390, 398, 419, 492,
494–495
timeout 49, 97, 103, 182, 213–215, 244–246, 271, 281,
299–305, 313–314, 319, 332–334, 338, 390
TMEMBER 14, 24–25, 31, 50–52, 55, 64–65, 71, 74, 88,
167, 183
TPIPE 10–14, 20, 23, 25–26, 29, 31, 40, 60, 74, 88–89,
93, 96–97, 101–104, 106, 128–129, 137, 144, 147,
172–173, 178, 182–184, 190, 243, 247–250, 257–259,

520 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

261–263, 267, 271–274, 277, 281–282, 284, 298, 303,
305, 485, 490, 492, 494, 496
Tpipe 10–12, 14, 20, 23, 25, 31, 40, 74, 88–90, 94–95,
97, 101–103, 106, 128, 137, 172, 182, 184, 247–249, 257,
259, 261–262, 267, 271–273, 281, 303, 494
TRANSACT 13, 178–181, 183
transaction code 11, 31, 61, 70, 129, 147, 177–178, 182,
258, 266, 270, 273, 276–278, 286, 293–294, 299, 337,
340, 344, 485, 488, 493–494
transaction socket 98–100, 102, 127, 129, 176, 210, 269,
279–280, 285, 291, 293, 488
TRCLEV 53, 148
truststore 237–238
two-phase commit 10, 13, 16, 39, 47, 126, 221, 227, 254,
372, 374, 380, 386, 456

U
Unicode 38, 120, 269, 275–278
unit of recovery (UOR) 16
UNIX System Services 319–320, 422
UOR 16, 72–73, 397, 401
UPDATE 41, 45, 73, 86, 113, 149, 204, 227, 248,
254–255, 305, 338, 376, 378, 386, 388, 411, 413,
415–416, 430, 455
URID 71, 397
user data 9, 28–29, 31, 98, 122, 127–128, 130–132, 134,
147, 278
user exit 38, 47, 54, 58, 98, 113, 115, 117–118, 125–126,
128–129, 136, 162, 168–169, 202–204, 277, 365
user initialization exit 47, 53, 123
user initialization support 38
user message exit 39, 47–48, 87–88, 98–99, 101, 117,
119–121, 124, 142, 144, 177, 276

V
VIEWDS 64, 69, 73
VIEWHWS 25, 64, 67, 69, 73, 319
VIEWIP 64, 70, 73
VIEWPORT 64, 71, 73, 298
VIEWUOR 64, 71, 73
VIPA 77, 80–87
virtual IP address (VIPA) 77, 80
virtualization 1
VisualAge for Java 38
VTAM 8

W
Web application 330–331, 333, 335, 338, 349, 352, 405,
421, 429–430, 432–434, 446, 454, 457, 461–462,
465–467, 499
Web Service Definition Language (WSDL) 322
Web Services 2–4, 34, 321–325, 353–356, 406
Web Services Invocation Framework (WSIF) 322
WebSphere xiii, 2–3, 20, 30, 34–35, 38, 41, 79, 110, 225,
231, 236, 241, 250, 253, 259, 298, 306, 312, 333, 338,
342, 347–348, 350–352, 355, 377–379, 426, 430–431,
433–435, 437, 448–449, 451, 454, 458, 461, 463–464,
467

WebSphere Application Server 35, 38, 80, 106,
110–113, 221, 223–224, 230, 234–236, 238, 241–242,
250, 253–254, 261, 298, 306, 308–310, 312–315, 319,
321–322, 329–333, 335–336, 338, 341–343, 348,
350–352, 377–378, 380–381, 405–406, 421, 428–435,
437–438, 440–441, 446–449, 451, 455–461, 463–464,
466–467
WebSphere Application Server for z/OS 39, 236, 377,
406, 428, 431, 433–435, 438, 449, 457, 461, 467
WebSphere Application Server SOAP service 315
WebSphere Edge Components 77–78, 80, 86
WebSphere Edge Server 79
WebSphere Information Integrator Classic Federation
378–381
WebSphere MQ 8, 20, 30–31, 223, 259
WebSphere MQ API 30
WebSphere MQ IMS Bridge 30–31
WebSphere Studio 38, 230, 243–244, 246, 306,
321–322, 325–327, 425–426
WebSphere Studio Application Developer Integration Edi-
tion 232, 241, 261
WLM 375–376, 380, 384–387, 389, 391–392, 394,
398–399
WLM application environment 386, 391
workload balancing 3, 34, 85, 156, 158, 160, 189,
193–194, 218
Workload Manager 391, 398
writing ODBA application programs 366
WSDL file 321–323, 355–356
WSDL message 322
WTO 138–139, 298

X
XCF 7–8, 10–12, 19–22, 26–27, 30–31, 35–37, 39,
43–44, 50, 53, 69–70, 74, 82, 86, 89, 92, 183, 240, 250
XCF group 7–8, 21, 27, 31, 50, 69–70, 74, 113, 183
XCF member 21, 31, 50, 69–70, 74
XCFGNAME 31
XCFMNAME 31
XIB 47, 123–125
XIB control block 123
XIBAREA 47, 55, 64, 123
XIBD 123
XIBDS 123–124
XIBDS control block 124
XMI descriptions 421
XML 3, 223, 275, 311, 323, 329–336, 338–339, 343,
346–349, 354–355, 420–421, 425
XML data 3, 330, 336, 338, 354, 421, 425
XRF 20

Z
z/OS 7–8, 15, 22, 26–27, 29–31, 34–36, 38–40, 44–46,
48, 64, 73, 78, 82, 84, 106, 119, 159–160, 165, 168, 173,
177–178, 184, 205, 217, 224, 230, 236–238, 242, 250,
253, 281, 283–284, 292, 298, 320, 322, 325, 355,
359–364, 366, 368, 370–373, 375–376, 378–380, 384,
386, 391, 398–400, 404–406, 421–422, 428–435,
437–441, 446–449, 451, 455–456, 458, 460–461, 463,

 Index 521

466–467, 487
z/OS UNIX System Services 319–320

522 IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

IM
S Connectivity in an On Dem

and Environm
ent: A Practical Guide to

IM
S Connectivity in an On Dem

and Environm
ent: A

Practical Guide to IM
S Connectivity

IM
S Connectivity in an On Dem

and
Environm

ent: A Practical Guide to
IM

S Connectivity

IM
S Connectivity in an On Dem

and Environm
ent: A Practical Guide to IM

S

IM
S Connectivity in an On Dem

and
Environm

ent: A Practical Guide to
IM

S Connectivity

IM
S Connectivity in an On Dem

and
Environm

ent: A Practical Guide to
IM

S Connectivity

®

SG24-6794-00 ISBN 0738494224

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

IMS Connectivity in an On
Demand Environment:
A Practical Guide to IMS Connectivity

Become familiar with
IMS OTMA and IMS
Connect details and
usage

Explore IMS MFS Web
Services and IMS
SOAP Gateway

Introduce yourself to
ODBA, stored
procedures, and IMS
RDS

IBM Information Management System (IMS) is the IBM premier
transaction and hierarchical database management system.
Connectivity has always been a priority with IMS. IMS exploits the
latest technologies to address customers’ requirements for
accessing IMS transactions and data. This IBM Redbook is about
IMS connectivity.

This book provides a general overview of the IMS Open
Transaction Manager Access (OTMA) function and extensive
information about IMS Connect and its usage, including a chapter
that describes the IMS Connect Extensions product and how you
can enhance the IMS Connect operating environment with it.

This book provides a broad understanding of IMS Connector for
Java. We cover some special considerations, such as using the
conversational transactions, rerouting, and timeout support, as
well as programming roll-your-own clients without using IMS
Connector for Java.

We also introduce Open Database Access and provide examples
of using it with stored procedures and with IMS Remote Database
Services. As for future directions, we also include a chapter about
the IMS SOAP Gateway. This book updates and adds to the
information in the previous IBM Redbook IMS e-business
Connectors: A Guide to IMS Connectivity, SG24-6514.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. IMS connectivity in an on demand environment
	1.1 Addressing the components of the on demand strategy
	1.2 IMS in the On Demand Operating Environment
	1.3 Solutions for IMS connectivity
	1.4 The organization of this book

	Chapter 2. Open Transaction Manager Access
	2.1 OTMA client
	2.2 OTMA message structure
	2.3 Commit processing message flows
	2.3.1 Commit-then-send (commit mode 0) flow
	2.3.2 Send-then-commit message (commit mode 1) flows
	2.3.3 IMS commit mode 1 message processing

	2.4 Implementing OTMA
	2.5 OTMA security issues
	2.6 Super member support for IMS Connect
	2.6.1 Super member feature availability
	2.6.2 Defining the super member feature
	2.6.3 Using the super member feature

	2.7 OTMA callable interface
	2.7.1 OTMA C/I initialization
	2.7.2 OTMA C/I security
	2.7.3 OTMA C/I restrictions
	2.7.4 Compiling and binding requirements for OTMA C/I
	2.7.5 Call functions implemented by OTMA C/I

	2.8 DSNAIMS stored procedure for OTMA C/I access
	2.9 WebSphere MQ as an OTMA client

	Chapter 3. IMS Connect overview
	3.1 Introduction to IMS Connect
	3.2 IMS Connect architecture
	3.3 A brief history and evolution of IMS Connect
	3.3.1 ITOC: The predecessor to IMS Connect
	3.3.2 IMS Connect Version 1.1
	3.3.3 IMS Connect Version 1.2
	3.3.4 IMS Connect Version 2.1
	3.3.5 IMS Version 9 integrated IMS Connect - IMS Connect Version 2.2

	3.4 IMS Connect clients
	3.5 IMS Control Center

	Chapter 4. Configuring IMS Connect
	4.1 Introduction
	4.2 Installing IMS Connect
	4.3 Configuring IMS Connect
	4.3.1 IMS Connect start procedure
	4.3.2 Authorizing IMS Connect and BPE to the APF
	4.3.3 Updating the program properties table
	4.3.4 Creating the IMS Connect configuration member
	4.3.5 Defining IMS Connect security
	4.3.6 Installing the default user exits into IMS Connect resource library

	4.4 IMS Control Center support
	4.4.1 IMS Connect configuration for IMS Control Center support
	4.4.2 IMS Control Center configuration

	4.5 Confirming IMS Connect install with the sample Java client

	Chapter 5. IMS Connect operations
	5.1 IMS Connect REPLY commands
	5.1.1 CLOSEHWS
	5.1.2 OPENDS or STARTDS
	5.1.3 OPENIP or STARTIP
	5.1.4 OPENPORT or STARTP
	5.1.5 RECORDER
	5.1.6 SETRACF
	5.1.7 SETRRS
	5.1.8 STOPCLNT
	5.1.9 STOPDS
	5.1.10 STOPIP
	5.1.11 STOPPORT
	5.1.12 VIEWDS
	5.1.13 VIEWHWS
	5.1.14 VIEWIP
	5.1.15 VIEWPORT
	5.1.16 VIEWUOR

	5.2 IMS Connect MODIFY commands
	5.3 IMS Connect BPE commands
	5.4 IMS command support for IMS Connect and OTMA
	5.4.1 /DISPLAY OTMA
	5.4.2 /DISPLAY TMEMBER tmember_name TPIPE tpipe_ID

	Chapter 6. Accessing IMS Connect
	6.1 IMS Connect in Parallel Sysplex environment
	6.2 Load Balancer
	6.3 Virtual IP address (VIPA)
	6.4 Static VIPA
	6.5 Dynamic VIPA takeover
	6.6 Dynamic VIPA takeback
	6.7 Application-specific dynamic VIPA
	6.8 Sysplex Distributor
	6.9 IMS Connect load balancing and failover
	6.10 Retrieving output messages
	6.11 The whole picture

	Chapter 7. IMS Connect programming model
	7.1 IMS Connect message structures
	7.1.1 IMS Request Message (IRM)
	7.1.2 Request Status Message (RSM)
	7.1.3 Complete Status Message (CSM)
	7.1.4 Request Mod Message (RMM)

	7.2 IMS Connect sample message flows
	7.2.1 Non-conversational transaction, CM=0, sync level=confirm
	7.2.2 Non-conversational transaction, CM=1, sync level=none
	7.2.3 Non-conversational transaction, CM=1, sync level=confirm
	7.2.4 Conversational transaction, CM=1, sync level=confirm
	7.2.5 Send-only transaction, CM=0, sync level=confirm
	7.2.6 The CANCEL TIMER request

	7.3 Socket connections and settings
	7.3.1 Persistent sockets
	7.3.2 Transaction sockets
	7.3.3 Non-persistent sockets

	7.4 Asynchronous output support
	7.4.1 What is asynchronous output?
	7.4.2 Implementing asynchronous output support
	7.4.3 SINGLE message control
	7.4.4 SINGLE WAIT message control
	7.4.5 NOAUTO message control
	7.4.6 AUTO message control
	7.4.7 Purge not deliverable
	7.4.8 Reroute request

	Chapter 8. IMS Connect security
	8.1 General security overview
	8.2 IMS Connect security
	8.2.1 Connecting IMS Connect to OTMA
	8.2.2 User verification
	8.2.3 User exit security
	8.2.4 Local option security

	8.3 OTMA security

	Chapter 9. IMS Connect user exit support
	9.1 IMS Connect components and user exits
	9.2 IMS Connect communication with user exits
	9.3 User exits supported
	9.3.1 IMS Connect TCP/IP user message exit (HWSIMSO0 and HWSIMSO1)
	9.3.2 Sample user message exit (HWSSMPL0 and HWSSMPL1)
	9.3.3 Difference between HWSIMSO0/SMPL0 and HWSIMSO1/SMPL1
	9.3.4 IMS Connector for Java user message exit (HWSJAVA0)
	9.3.5 IMS Connect IMSplex message exits (HWSCSLO0 and HWSCSLO1)
	9.3.6 Security exit (IMSLSECX)
	9.3.7 User initialization exit routine (HWSUINIT)
	9.3.8 Event recording user exit (HWSTECL0)

	9.4 Message structures between IMS Connect and user exits
	9.4.1 Input message from client and passed to exit
	9.4.2 Input message returned from message exit
	9.4.3 Output message from IMS Connect to IMS Connector for Java client
	9.4.4 Output message: IMS Connect to non-IMS Connector for Java client

	9.5 IMS Connect DRU exit for asynchronous output support
	9.5.1 ALTPCB ISRT message routing flow using OTMA exits
	9.5.2 How IMS Connect communicates with the DRU exit
	9.5.3 HWSYDRU0 sample DRU exit
	9.5.4 Debugging the IMS OTMA exits

	Chapter 10. IMS Connect diagnostics
	10.1 IMS Connect recorder trace
	10.1.1 Enabling IMS Connect recorder trace
	10.1.2 Starting and stopping the IMS Connect recorder trace
	10.1.3 Printing out the recorder trace
	10.1.4 Interpreting the recorder trace printout
	10.1.5 Example of recorder trace output

	10.2 IMS Connect traces
	10.2.1 BPE configuration
	10.2.2 Formatting incore trace tables

	10.3 IMS Connect Dump Formatter
	10.3.1 IMS Connect Dump Formatter activation
	10.3.2 Accessing the IMS Connect Dump Formatter
	10.3.3 Using the IMS Connect Dump Formatter

	Chapter 11. IMS Connect Extensions
	11.1 Introduction to IMS Connect Extensions
	11.2 Event collection and reporting
	11.2.1 Activate event collection
	11.2.2 Journal management
	11.2.3 IMS Connect event records
	11.2.4 Event Collection print utility
	11.2.5 Recorder trace utility
	11.2.6 Active session utility
	11.2.7 IMS Performance Analyzer IMS Connect reports
	11.2.8 IMS Problem Investigator

	11.3 Workload management
	11.3.1 Transaction routing
	11.3.2 Workload balancing
	11.3.3 Transaction pacing

	11.4 Status Monitor
	11.4.1 System view
	11.4.2 Port view
	11.4.3 Form definition

	11.5 Security
	11.6 User exits management
	11.6.1 User exits definition
	11.6.2 User exits commands

	11.7 IMS Connect problem determination
	11.7.1 NODELAYACK issues
	11.7.2 Incorrect message length
	11.7.3 Client fails to ACK message
	11.7.4 Timeout issues
	11.7.5 Duplicate clients

	11.8 Highlights of IMS Connect Extensions Version 1 Release 2
	11.8.1 Status Monitor: Active sessions
	11.8.2 Programming interface for user applications
	11.8.3 Primary datastore routing
	11.8.4 Journal and journal print enhancements
	11.8.5 Client services exit
	11.8.6 Enhanced tracing

	Chapter 12. IMS Connector for Java
	12.1 J2EE Connector architecture (JCA)
	12.1.1 System contracts
	12.1.2 Common Client Interface
	12.1.3 Resource adapter module

	12.2 JCA infrastructure and API
	12.2.1 Connection management
	12.2.2 Transaction management
	12.2.3 Other JCA v1.5 items
	12.2.4 Interaction with EIS
	12.2.5 Security
	12.2.6 Summary

	12.3 Building applications that use IMS Connector for Java
	12.3.1 Introduction
	12.3.2 Connection properties
	12.3.3 Interaction properties
	12.3.4 Use considerations
	12.3.5 Summary

	Chapter 13. IMS Connector for Java rerouting and timeout support
	13.1 Asynchronous message processing
	13.2 Messages inserted to ALTPCB
	13.3 Multiple and timed out IOPCB responses
	13.3.1 Discarding the non-delivered messages
	13.3.2 Rerouting the non-delivered messages

	Chapter 14. Building roll your own clients
	14.1 Basic structure of a simple IMS Connect client program
	14.2 IMS Connect message structures
	14.2.1 The IMS Connect input message
	14.2.2 The IMS Connect output message

	14.3 IMS Connect Unicode support
	14.3.1 Transaction code translation
	14.3.2 Output message including Unicode data from IMS Connect
	14.3.3 Message structures for Unicode support

	14.4 Complete pseudocode samples
	14.4.1 Commit mode 1 send-receive programming
	14.4.2 Commit mode 0 send-receive programming
	14.4.3 Commit mode 0 RESUME TPIPE programming

	14.5 Detailed code examples
	14.5.1 C example
	14.5.2 Java example

	Chapter 15. IMS Connect client diagnostics
	15.1 No response from IMS or IMS Connect
	15.1.1 Hanging clients
	15.1.2 TCP/IP socket timeouts
	15.1.3 IMS Connect execution timeouts

	15.2 Error messages from IMS
	15.3 Wrong status codes from IMS Connect
	15.3.1 Duplicate clientID (reason code 56)
	15.3.2 OTMA protocol error (reason code 36)
	15.3.3 Other errors

	15.4 Exceptions in IMS Connector for Java applications
	15.4.1 Naming (JNDI)-related errors
	15.4.2 Connection pool-related errors

	15.5 Diagnosing problems related to sockets
	15.5.1 IMS Connect and IMS Connector for Java parameters for sockets
	15.5.2 z/OS UNIX System Services parameters for sockets

	Chapter 16. IMS MFS Web Services
	16.1 IMS MFS Web Services introduction
	16.2 IMS MFS Web Services development process overview
	16.3 IMS MFS Web Services supported features
	16.3.1 Supported device types
	16.3.2 Supported MFS statements

	16.4 IMS MFS Web Services limitations
	16.5 Adding operations, messages, and bindings
	16.6 Creating an enterprise service
	16.7 Deploying an MFS-based IMS enterprise service

	Chapter 17. IMS MFS Web Enablement
	17.1 How does IMS MFS Web Enablement work?
	17.2 IMS MFS XML Utility
	17.2.1 Overview of the MFS XML Utility
	17.2.2 User modes
	17.2.3 Invoking the MFS XML Utility

	17.3 IMS MFS Web Enablement runtime support
	17.3.1 MFS Web Enablement features and functions
	17.3.2 MFS Servlet
	17.3.3 MFS Adapter

	17.4 Installing the instance servlet WAR file
	17.5 Accessing the deployed instance servlet
	17.6 Sample MFS style sheets
	17.7 Instructions to Web-enable IMS Phonebook application
	17.7.1 Step 1: Parsing the MFS source file with MFS XML Utility
	17.7.2 Step 2: Generating an instance servlet
	17.7.3 Step 3: Generating a WAR file
	17.7.4 Step 4: Configuring WebSphere Application Server
	17.7.5 Step 5: Deploying the application WAR file
	17.7.6 Step 6: Invoking the instance servlet
	17.7.7 Step 7: Invoking the Phonebook application
	17.7.8 Step 8: Logging out

	Chapter 18. IMS SOAP Gateway
	18.1 IMS SOAP Gateway introduction
	18.2 Making your IMS application a Web service
	18.2.1 Creating a WSDL file for your IMS application
	18.2.2 Deploying WSDL and configuring properties with IMS SOAP Gateway
	18.2.3 Writing the client application

	Chapter 19. Open Database Access
	19.1 Accessing IMS databases through the ODBA
	19.2 The database resource adapter (DRA)
	19.3 Setting up the DRA and the ODBA interface
	19.3.1 Creating the ODBA DRA startup table
	19.3.2 Loading and running ODBA in the z/OS application region
	19.3.3 Linking application programs
	19.3.4 Establishing and defining security

	19.4 Writing ODBA application programs
	19.4.1 General application program flow
	19.4.2 Making calls to IMS
	19.4.3 The application interface block (AIB)
	19.4.4 DL/I calls in the ODBA application
	19.4.5 Server program structure and the unit of recovery

	19.5 Considerations for using ODBA
	19.5.1 Restrictions
	19.5.2 Multiple access to IMS subsystems
	19.5.3 IMS Fast Path resource usage
	19.5.4 The commit scope change and IMS resource occupancy
	19.5.5 RRS logging performance

	19.6 Problem determination
	19.6.1 Finding the problem
	19.6.2 IMS initialization errors
	19.6.3 Running errors
	19.6.4 The application interface block

	19.7 IBM-supplied ODBA infrastructures
	19.7.1 DB2 stored procedure
	19.7.2 WebSphere Application Server for z/OS and IMS Remote Data Access
	19.7.3 WebSphere Information Integrator Classic Federation for z/OS

	19.8 Summary of IBM-supplied ODBA infrastructures

	Chapter 20. ODBA from DB2 stored procedures
	20.1 A short introduction to DB2 stored procedures
	20.2 DB2 stored procedures’ use of ODBA
	20.3 Sample ODBA using DB2 stored procedures
	20.3.1 Provided sample jobs
	20.3.2 Provided sample source codes

	20.4 Step-by-step instructions for using the sample
	20.4.1 Step 1: Creating an IMS DRA startup table
	20.4.2 Step 2: Setting up the DB2 stored procedure address space for ODBA
	20.4.3 Step 3: Creating the WLM application environment
	20.4.4 Step 4: Building the stored procedure by DSNTEJ61
	20.4.5 Step 5: Defining the IMS environment
	20.4.6 Step 6: Running the stored procedure by DSNTEJ62
	20.4.7 Step 7: Analyzing the output

	20.5 Commands for ODBA DB2 stored procedure environment
	20.5.1 IMS commands
	20.5.2 DB2 commands
	20.5.3 z/OS Workload Manager commands
	20.5.4 RRS panel utility

	20.6 Sample Java client application for ODBA stored procedure

	Chapter 21. IMS Remote Database Services
	21.1 The big picture of the IMS Java environment
	21.1.1 IMS dependent regions
	21.1.2 IBM products on the z/OS environment

	21.2 IMS JDBC interface
	21.2.1 The layered set of IMS Java class libraries
	21.2.2 The basic concepts of relational access to hierarchical databases
	21.2.3 Comparison of DL/I access and IMS JDBC SQL access
	21.2.4 Supported SQL keywords
	21.2.5 IMS Java SQL usage

	21.3 DLIModel utility
	21.3.1 Example of using the DLIModel utility
	21.3.2 DLIModel utility plug-in
	21.3.3 Example of using the DLIModel utility plug-in

	21.4 Remote Database Services
	21.4.1 Remote Database Services components
	21.4.2 Client/server interaction
	21.4.3 Security

	21.5 Sample IMS RDS access
	21.5.1 Step 1: Creating the IMS DRA startup table
	21.5.2 Step 2: Setting up WebSphere Application Server for z/OS subsystem
	21.5.3 Step 3: Installing the metadata class for the sample application
	21.5.4 Step 4: Setting up application server for distributed platforms environment
	21.5.5 Step 5: Developing the sample application
	21.5.6 Step 6: Defining the IMS environment
	21.5.7 Step 7: Running a Web application
	21.5.8 Problem determination for Remote Database Services
	21.5.9 Summary of the IMS RDS implementation

	Appendix A. Sample code: Non-IMS Connector for Java client code
	C sample source code
	Java sample source code

	Appendix B. IMS RDS application example
	ImsRdsSampleGlobal.java
	ImsJavaRdsSample.java
	GlobalInput.html
	LocalInput.html
	Output.jsp

	Appendix C. Additional material
	Locating the Web material
	Using the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

